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Abstract 
A means for utilizing auxiliary information in surveys is to sample with inclusion probabilities 
proportional to given size values, to use a icps design, preferably with fixed sample size. A 
candidate in that context is Pareto jtps. This scheme has a number of attractive properties, 
notably simple sample selection, good resulting estimation accuracy, simple variance estima
tion and simple procedures for coordination of samples by permanent random numbers. 

However, Pareto jtps was derived by limit considerations and works with some degree of 
approximation for finite samples. In particular, desired and factual inclusion probabilities do 
not agree exactly, which in tum leads to some estimator bias. Practically useful information on 
small sample behavior of Pareto jrps can, to the best of our understanding, only be gained by 
numerical studies. Earlier investigations with that purpose have been too limited to allow for 
general conclusions, while this paper reports on a very extensive numerical study. The main 
conclusion is that estimator bias is negligible in almost all situations met in survey practice. 
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On inclusion probabilities and estimator bias 
for Pareto πps sampling 

1 Introduction and outline 
A means for utilizing auxiliary information in surveys is to sample with inclusion probabilities 
proportional to given size values, to use a 7tps design, preferably with fixed sample size. A 
candidate in that context is Pareto nps, introduced independently by Rosén (1997) and Saave-
dra (1995). This scheme has, as accounted for in Rosén (1997), many attractive properties, 
notably simple sample selection, good estimation accuracy, simple variance estimation and 
simple procedures for coordination of samples by permanent random numbers. 

Pareto πρε was derived by limit considerations, and works with some approximation. In par
ticular, desired and factual inclusion probabilities do not agree exactly. Rosén (2000) proved, 
though, that they under very general conditions are asymptotically (as the sample size tends to 
infinity) equal. Numerical investigations by Rosén (2000) and Aires (1999, 2000) indicated 
that the convergence is rapid. These studies were too limited, though, to allow for general con
clusions on how well desired inclusion probabilities are approximated by the factual ones. 
This paper reports on a much more extensive numerical study, in which the chief tool has been 
the algorithm in Aires (1999) for computation of Pareto πρε inclusion probabilities. 

The problem of how well desired inclusion probabilities are approximated has per se mainly 
theoretical interest. However, as is emphasized in the following, there is close connection 
between approximation accuracy for inclusion probabilities and estimator bias, the latter being 
an issue of great practical relevance. The convergence of inclusion probabilities implies that 
estimator bias is asymptotically negligible. Its magnitude for finite samples has been an open 
question, though. The chief aim in this paper is to enlighten this problem. The main conclusion 
is, somewhat sweepingly formulated, that the bias is negligible in practical survey situations. 

The paper is organized as follows. Sections 2 and 3 are expository and review some basics on 
ups sampling in general respectively on Pareto irps. Measures of approximation accuracy for 
inclusion probabilities and estimator bias are introduced in Section 4. Section 5 specifies cer
tain size value patterns which play a distinguished role in the numerical study. The detailed 
numerical findings are presented in Appendices 1 and 2, containing tables and graphs respec
tively. Recommendations for practical use of Pareto 7tps are formulated in Section 6. 

2 Generalities on πps sampling 
We consider probability sampling without replacement with fixed sample size from a popula
tion U = (1,2, ...,N), on which a study variable y=(y1, y2, —, yN) is defined. A frame which one 
- to - one corresponds with the population units is available. It is presumed that the frame con
tains unit-wise auxiliary information s =(s„ s2,..., sN), Sj > 0, i e U, interpreted as size values 
which typically are positively correlated with the study variable. 

A sampling design is a strict jq>s scheme if its factual inclusion probabilities 7Cj, / e U, are the 
following desired inclusion probabilities λ = (λι, λ2,..., λκ), η standing for sample size ; 

(2.1) 

Remark 2.1 : Formula (2.1) can lead to λ-values exceeding 1, which is incompatible with 
being probabilities. If so, the usual "adjustment" is to assign the units with largest size values 
to a "sample for certain" stratum. A 7tps sample is then drawn from the remaining units (with 
remaining sample size). In the sequel is presumed that 0 < λί < 1, / e U. n 
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As stated, a strict Ttps scheme is characterized by the relation re, - h, ie U. We will be more 
generous, though, and accept a sampling scheme as a vps scheme if (2.2) below is met; 

(2.2) 

In the strict 7rps case, the Horvitz-Thompson (HT) estimator for a total T(y)=yi +y2 +...+yN is 
as stated below. As is well known, this estimator is unbiased. 

(2.3) 

We presume that the estimator in (2.3) is used also under the more generous 7cps notion based 
on (2.2). Then it may have some bias, though. The estimator is re - stated in (2.4) where it is 
denoted t (y) , which henceforth stands for this particular estimator. In (2.4) it is also written 
on an alternative form, which will be useful a bit later on. Ii, I2,.., IN denote the sample inclu
sion indicators, i.e. I; = 1 if unit i is selected to the sample and = 0 otherwise. 

(2.4) 

3 On Pareto πps 
3.1 Definition 

DEFINITION 3.1 : The Pareto Ttps scheme with size values s = (sl9 s2,..., sN) and 
sample size n generates a sample by the following steps. 
1. The desired inclusion probabilities X =(X,1, À^,..., A,N) are computed by (2.1). 

2. Independent random variables Ri, R2,..., RN with uniform distribution on [0,1] 
are realized, and ranking variables Q are computed as follows ; 

(3.1) 

3. The sample consists of the units with the n smallest Q-values. 

It is by no means obvious that the above scheme actually is a 7tps scheme (in the (2.2) sense). 
However, Rosén (2000) proved that (2.2) holds with asymptotic (as n -» °o) equality. 

As stated earlier, a main task for the present study was to find out how well approximation 
(2.2) works for finite Pareto 7cps samples. The central measure of approximation goodness will 
be the maximal absolute relative error (for inclusion probabilities) ; 

(3.2) 

Ψ is a natural performance measure in the approximation problem, which is rather theoretical, 
though. However, Ψ also has considerable practical interest due to fact that there is close con
nection between Ψ and the magnitude of estimator bias, which is discussed next. 

3.2 On estimator bias for Pareto πps 
We presume that the sample is drawn by Pareto 7tps and that the estimator x(y) in (2.4) is 
used. As in Section 2, we confine the estimation considerations to the "fundamental" problem, 
estimation of a population total. Since (2.2) holds, t(y) is afflicted with some bias. To get an 
expression for it, we take expectation in (2.4) ; 

(3.3) 
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Hence ; 

The bias for the estimator (3.4) 

Formulas (3.4) and (3.2) yield; 

The absolute relative bias for the estimator %(y) is 
1 -v, / 

(3.5) 

If the study variable y takes only non-negative values, as is the case in most practical surveys, 
the last factor in (3.5) equals 1. Hence; 

For a non-negative study variable y : The absolute relative bias for t(y) < Ψ. (3.6) 

Remark 3.1: The bounds in (3.5) and (3.6) are often conservative for the following reasons, 
(i) They disregard cancellation effects due to alternating signs of jç/Ai - 1 . (ii) All discrepan
cies 17tj /X[ -11 do not have the maximal value Ψ. The bounds can be attained, though, e.g. with 
y; = 0 for i with 17tj /Ai -1 | < Ψ, and y;= signfa / ^ -1) for i with 17tj IXi -11 = Ψ. n 

3.3 Chief questions in the numerical study 
A pair (N ; s ) of a population size N and size values s = (s}, s2,..., sN ) is referred to as a size 
value situation. A Pareto 7tps scheme is specified by (N, s) and the sample size n. When we 
want to emphasize dependence on one or more of these parameters, we use notation as Pareto 
Jtps(N, s, n) or Pareto 7tps(s), ?n(n), X{(n ; s), Ai(n ; N ; s) and 7ti(n), 7tj(n ; s), 7i;(n ; N ; s) for desired 
and factual inclusion probabilities. Analogously, Ψ in (3.2) is often elaborated to; 

(3.7) 

The chief problems that are addressed are stated in (3.8) and (3.9) below. Note that (3.9) is a 
"converse" to (3.8). 

For a specific size value situation (N;s) : 
How large, at most, is Ψ(n ; N ; s) for a specific sample size n ? (3.8) 
Which sample sizes n imply Ψ(n ; N ; s) < (3 for a specified P > 0 ? (3.9) 

In the first round questions (3.8) and (3.9) relate to the approximation (2.2), how well the fac
tual inclusion probabilities approximate the desired ones. However, by virtue of (3.5) and 
(3.6), answers to (3.8) and (3.9) also provide information on relative estimator bias. In the 
sequel the approximation problem refers to both these aspects, estimator bias as well as dis
crepancy between factual and desired inclusion probabilities. 

To the best of our understanding it is in vain to hope for precise answers to (3.8) and (3.9) via 
analytical formulas. One has to be content with (fairly) coarse answers derived by numerically 
demanding computation efforts. The employed numerical algorithm is described next. 

3.4 The computation algorithm 
The chief work in deriving answers to (3.5) and (3.6) consisted of computation of 7ti(n;N; s), 
i'=l,2,... ,N, for a rich set of values for (N, s) and n. For that the core tool was the algorithm 
for computation of Pareto ftps inclusion probabilities which is derived and justified in Aires 
(1999). To give an idea of the numerical efforts, a sketch of the algorithm is presented below. 
It describes computation of % \ (n ; N ; s) for / = N. 7t i - value for general i were computed by 
appropriate re-labeling of the population units. 
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Computation algorithm for Pareto inclusion probabilities 

The given quantities are N, s and n. 

Step 1 : Compute Ài(n,s)by (2.1), i = 1,2,...,N. 

Step 2 : For a mesh % of t-values, which is fine enough to yield desired precision in the 

numerical integration in Step 3, compute {Fn
N_I (t) : t e tft} by the double recursion ; 

(3.10) 
with boundary conditions 

F0
M(t) = 1, for all M and 0 < t < oo. (3.11) 

Step 3 : Compute, by numerical integration; 

(3.12) 

4 Bounds employed in the approximation problem 
4.1 Some definitions 
In the sequel size measures s=(sl5 s2,..., sN) are presumed to be normed so that average size is 
1, i.e. so that (4.1) below holds; 

(4.1) 

A normed s is called a size value pattern. Set; 

(4.2) 

As stated in Remark 1.1, it is presumed that all A, given by (2.1) are smaller than 1. This lays 
the following constraint on the sample size n, where f • ] denotes integral part and - "less than" ; 

(4.3) 

The quantity nm in (4.3) is called the maximal sample size in situation (N ; s ). An n which sat
isfies (4.3) is said to be an admissible sample size in situation (N ; s ). 

À, - values close to 1 may lead to "capricious" samples, which can be avoided by prescribing 
that Ai < a, i = 1,2,... ,N, for some specified a < 1. a = 0.9, 0.8 are considered in the numerical 
context. The a-maximal sample size nm; a and a-admissible sample sizes are determined by ; 

(4-4) 

In Section 6 nm,a is also used as a means for stating conditions to the effect that a sample size 
must not be "too large". For that purpose also a = 0.5 was considered. 

We shall relate approximation error bounds to size pattern families of the following type; 

(4.5) 

In words : A size pattern is in ^5(N ; y, Ö) if at least one population unit has (normed) size value 
y, at least one has value ô, and the others have size values in [y,ö]. This kind of family is of 
interest for at least the following reasons, (i) When all size values are equal, y = 5 = 1, Pareto 
7tps(s) is nothing but simple random sampling, with 7t;(n)= Ai(n)=n/N, and the approximation 
(2.2) is perfect. Thus, for an approximation problem to be at hand, different size values must 
occur. ,5(N ; y, ô) lays constraints on how different they can be. The smaller y and the larger Ô 
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is, the more different are size values, (ii) It is simple to determine to which ^£(N ; y, S) a size 
pattern belongs by computing the smallest and largest normed size values. 

Since nm(N ; s) and nm>a(N ; s) in (4.3) and (4.4) depend only on N and smax, they are the same 
for all patterns in >5(N;y,S). We therefore use the following simpler notation; 

For s e ,5(N ; y, 5) we write nm(N ; 5) and nm,a(N ; 8) for nm(N ; s) and nm,a(N ; s). (4.6) 

4.2 Bounding sequences 
A size value situation (N ; s) determines a sequence {^(n ; N ; s) : n = 1,2,..., n m } , with Ψ given 
by (2.4), which we refer to as the associated ^-sequence. Such sequences will play a central 
role in the subsequent considerations. 

At the outset of this study we had various conjectures about the behavior of Ψ - sequences. 
Many of these turned out to be wrong when confronted with numerical data. One was that all 
Ψ - sequences have bath-tub shape. That this is not true in general is illustrated in Figure 4.1, 
which shows T-sequences for three different size value patterns, all with N = 100, y = 0.5 and 
0 = 2 . Their names, "boundary", "middle" and "even" are explained later on. A multitude of 
other x¥- sequence graphs are presented in Appendix 2. 

Figure 4.1. Psi sequences for three size patterns 

Our aim is to answer (3.8) and (3.9) in terms of the parameters N, y and Ô. Figure 4.1 shows 
that there is no simple domination rule for x¥- sequences for different size value patterns in the 
same family ,5(N ; y, 5). As functions of n they can take turn to lie above each other. To find 

bounds which hold uniformly for N, y and ô we must introduce envelope notions. 

4.2.1 Ψ-envelope sequences 
The Ψ- envelope sequence for the family ^5(N ; y, 8), denoted Ψ( • ; N ; y ; 8), is (recall (4.6) ; 

(4.7) 

In words Ψ(n;N;8;y) means the maximal relative approximation error in (2.2) for a Pareto 
7tps sample of size n selected from a population of size N with maximal and minimal normed 
size values 8 and y. Technically formulated; 

For s e ^5(N ; y, 8) and n < nm(N ; 8) : 

(4.8) 
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Hence, knowledge of Ψ(-;N;y;8) enables answers to (3.8). In fact, Ψ is the smallest upper 
bound sequence that works for all s in ,5(N ; y, 5). 

4.2.2 Quasi envelopes 
The envelope (4.7) is defined in terms of suprema over the infinite family ,5(N;y,8). To com
pute it in practice, one needs to know a finite extremal sub -family of ^$(N ; y, 8), by which we 
mean a finite sub - family with the same envelope. Regrettably, we cannot exhibit such a sub -
family with mathematical rigor. However, we strongly believe, supported by numerical find
ings, that the following intuitive arguments lead to a "close to extremal" sub-family. 

Numerically extremal size value patterns (as regards Ψ - values) are found among geometri
cally extremal patterns. In the latter category, the following three types of size value patterns 
come into mind, (i) Patterns with size values (fairly) evenly spread over [y, 5]. (ii) Patterns 
with the majority of size values in the middle of [y, 5]. (iii) Patterns with the majority of size 
values at the boundaries of [y,S]. Precise specifications of such patterns are given in Section 
5, where they are denoted s(N ; y; 8 ; e), s(N ; y ; ô ; m) and s(N ; y; 5 ; b), e for "even spread", m 
for "middle" and b for "boundary". 

The quasi W- envelope sequence for „$(N;y,8), denoted Ψ(- ;N;y;5) is; 

(4.9) 

Believing that {s(e), s(m), s(b)} is a "close to extremal" sub - family of „5(N ; y, 5) we work 
under the following presumption in the sequel ; 

Ψ**(- ;N;y;5) yields good approximation of the true envelope Ψ*(• ;N;y;8). (4.10) 

Since *Ψ** is determined by just three size value patterns it is computable provided that a 
computation algorithm for Ψ(n;N;s) for given s and n is available, which it is by Section 3.4. 
Strictly mathematically, though, (4.10) is a conjecture, based on intuition and with some 
numerical support. We made attempts to justify (4.10) more rigorously by employing numeri
cal optimization programs to find extremal size value patterns. However, this approach turned 
out to be unfeasible at least with the optimization programs we tried. 

4.2.3 Upper sequences 
A quasi envelope may be quite irregular, wiggling up and down, as seen from Figure 4.1. To 
enable simple answers to (3.8) and (3.9) we introduce coarser upper bound sequences (than the 
quasi envelope), called upper sequences, which are non-increasing functions of sample size. 

The upper sequence T{ • ) for the family „5(N ; Y> 8) is ; 
(4.11) 

In words : T(no ;N ;y; 8) bounds the relative approximation error in (2.2) for a Pareto ;rps sam
ple from a population of size N, with maximal and minimal normed size values 8 and y, for all 
sample sizes > no. 
Under (4.10) the following bound holds with good approximation. 

Fo r se^ (N;y ,8 ) ; 
(4.12) 
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4.2.4 Upper sequences for α-admissible sample sizes 
Since Pareto 7tps is based on limit considerations, one believes in the first round that condi
tions for good approximation basically should be of the type "provided the sample size is at 
least...". However, as seen from the graphs in Appendix 2,Ψ**(•) often attains its largest val
ues for large (admissible) sample sizes. As a consequence, sharp conditions for good approxi
mation must also contain an ingredient of the type "provided the sample size is at most ...". 
This aspect will technically be handled as follows. An a is specified, 0 < a < 1, and used in 
conditions saying that sample sizes must not exceed nm, a in (4.4), which is a way of saying 
"provided the sample size is at most ...". In line with this, the notion of upper sequence is 
extended as follows. 

The upper sequence for a-admissible sample sizes is 
(4.13) 

Under (4.10) the following bound holds with good approximation. 
For se ,5(N;y;ô); 

(4.14) 

Remark 4.2.-The maximum operations in (4.11) and (4.13) add to what is said in Remark 3.1. 
In (4.12) and (4.14) T( n ; N ; y ; S) and Ta( n ; N ; y ; 5) may be quite conservative bounds for 
many sample sizes n. n 

Appendix 1 presents numerical values for general upper sequences as well as for a-admissible 
sample sizes, with a = 0.9, 0.8, 0.5. 

4.2.5 Sufficient sample sizes 
Let p ,0< |3< l , b e a specified tolerance level for the relative approximation error in (2.2). By 
disregarding the (mildly) approximate nature of the statement in (4.10), an answer to (3.9) is 
given by the smallest no such that r(no ; N ; y; 5) < P, called the /? - sufficient sample size for 
,5(N ; y, 8) and denoted by no(P). It informs about sample sizes which are large enough to 

guarantee approximation accuracy p. Formally; 

(4.15) 

As discussed in Section 4.2.4, large sample sizes rather than small ones jeopardize good 
approximation accuracy. This fact is addressed by the following notion. The 0, a)-sufficient 
sample size for ,5(N ; y, Ô), denoted no(P, a) , is the smallest sample size which guarantees that 
Y(n;N;y;Ô)<p forno(p;a)<n<nm,a(N;5).Formally; 

(4.16) 

The set of n-values over which minimum is taken In (4.15) and (4.16) may be empty. Then no 
is set to none. Numerical p- and (P,a)-sufficient sample sizes are presented in Appendix 1. 

4.2.6 Approximation accuracy and population size 
A conjecture about Ψ - sequence behavior which was supported by the numerical findings is 
formulated in (4.17). Somewhat sweepingly formulated it says that approximation accuracy 
improves as population size increases. Still, also (4.17) is a conjecture without a strict mathe
matical proof. It can be checked numerically in Appendices 1 and 2, though. 

For fixed n, y, 5 and a the values of upper sequences T(n;N;y;ô) and 
r a(n;N;y;8) decrease as the population size N increases. (4.17) 
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4.2.7 Weak quasi envelopes 
The quasi envelope in (4.9) dominates Ψ - sequences for all size pattern shapes. As illustrated 
by the graphs in Appendix 2, the "worst possible" pattern shape is the boundary pattern, unless 
when sample size is very small. Its Ψ - values mostly lie way above those for even spread and 
middle when sample size is "non - small". However, patterns of boundary type are unusual in 
practice where, at least we think so, most pattern shapes resemble even spread. Patterns in the 
last category will be said to lie in the vicinity of even spread. With this background we intro
duce the weak quasi envelope w*Ψ**, which takes into account only the even spread and mid
dle patterns ; 

(4.18) 

Moreover, weak upper sequences, weakly ft - sufficient sample sizes and weakly (j3, a)-suf
ficient sample sizes are defined in analogy with (4.11 ), (4.13) and (4.15) - (4.16), by using the 
weak quasi envelope wΨ** instead of Ψ**. Numerical values are presented in Appendix 1. 

Remark 4.2 : In Section 4.2.4 is pointed at the circumstance that the (full) quasi envelope usu
ally attains its largest values for large sample sizes. This growth depends mainly on contribu
tion from size patterns of boundary type. The weak quasi envelope, which is not influenced by 
boundary type patterns, behaves as "expected", it decreases as sample size increases. 

5 The special size patterns 
Here we give precise specifications of the size value patterns s in ,5(N ; y, 5) which are men
tioned in Section 4.2.2, boundary, middle and even patterns. Recall that (4.1) is presumed to 
hold and the relation; 

(5.1) 

(5.2) 
Note the following relations ; 

(5.3) 
MY and Mg split into integral parts, NY and Ng, and fractional parts, FY and F5 as follows ; 

(5.4) 

Case 1 is said to be at hand if MY and Mg both are integers. Then (5.3) takes the form; 
(5.5) 

Case 2 is said to be at hand if MY and Mg not both are integers. Then none of them is 
an integer, since NY and Ng add to an integer. Moreover, as is readily checked; 

(5.6) 

The special patterns are first specified, and then is shown that they satisfy (4.1) and (5.1). 

The boundary pattern s(N;y;ô;b) 
It is presumed that N, y and Ö are such that Ny > 1 and Ng > 1. For this size pattern NY units 
are given the s - value y, and Ng units the value Ô. In Case 1 all units thereby get s - values. 
In Case 2 one unit remains, which is given the s-value; 

(5.7) 

The middle pattern s(N;y;5;m) 
It is presumed that N, y and 6 are such that y < l - ( y + 6 - 2 ) / ( N - 2 ) < 8 . For this size 
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pattern s -values are assigned as follows. The size values y and Ô re given to one unit each. 
All remaining units are given the s-value; 

(5.8) 

The even spread pattern s(N;y;S;e) 
It is presumed that N, y and 8 are such that Ny > 2 and N5 > 2. The s - values are allocated 
as follows. 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

In Case 1 all units get s-values by (5.9)-(5.11). In Case 2 one unit remains, which 
is given the s-value in (5.7). 

Thereby the "size patterns are defined and the remaining task is to show that they satisfy (4.1) 
and (5.1). For the middle pattern the verifications are straightforward. The same holds for the 
boundary pattern, when noted that SN in (5.7) is a linear combination of y and 8 and, hence, 
lies in the interval [y, 8]. For the even pattern we start with case (5.9). Formulas (5.10) and 
(5.11) readily yield; 

(5.15) 

which in turn yields ; 

(5.16) 

In Case 1 relation (5.1) follows from (5.16) and (5.5). In Case 2 it follows from the definition 
(5.7) of SN- It remains to show (5.1). The s-values in (5.11) are generated as ; 

(5.17) 

where e solves the equality version (1 - y) • NY = (8 - e) • N5, of the inequality in (5.9) ; 

(5.18) 

(5.9) yields that 1 < e, and (5.18) that e< 8. Hence, all s-values in (5.11) lie in [y,8]. The same 
holds for the s-values in (5.10). That SN in (5.7) satisfies (5.1) follows from (5.7). Then case 
(5.12) can be treated quite analogously, and is left to the reader. This concludes the proof. 

6 On the magnitude of estimator bias 
6.1 Factors that affect the bias 
6.1.1 introduction 
For a practitioner who considers to use Pareto Tips, a crucial question is ; 

Will the estimator bias be negligible in my particular sampling-estimation situation? (6.1) 

Answers to (6.1) in terms of practically available parameters are given in next section. They 
are with necessity a bit complex, since the approximation accuracy depends on several factors, 
notably those listed below and commented on thereafter. 
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• The study variable. 
• The tolerance limit for "negligibility". 
• The size value pattern. 
• The population size. 
• The sample size. 

As regards the study variable, we confine to the case with non-negative variable, which is the 
typical situation in practice. Hence, subsequent statements about bias shall be interpreted in 
according to (3.6). It is left to the reader to make appropriate modifications for situations with 
sign changing study variable. 

6.1.2 Tolerance level for negligibility 
There is of course no single answer to how large at most a "negligible" bias may be. It depends 
on the intended use of the statistic and the magnitude of other survey errors, notably the sam
pling error. We believe that most statisticians mean that 1%, or even 2%, relative bias is negli
gible, a reason being that the sampling error commonly is a good deal larger. 

6.1.3 Dependence on the size value variation 
As said in Section 4.1, for an approximation problem to be at hand the size values must exhibit 
variation, having the aspects range and shape. The range is the interval [smin, smax ] = [y, 5]. For 
a fixed size pattern shape Ψ - values increase with range. Based on experience we believe that 
in practical surveys smax

 = ö seldom is larger than 5 and smin = y seldom is smaller than 0.1. 
Some motivation is given below. 

The surveyor disposes of the size values, in the sense that "preliminary" values may be modi
fied. If the frame comprises units with very small (preliminary) size values, such units are 
often either definition-wise excluded from the target population or given larger size values. 

If size values vary very much over the entire population, there are often grounds for stratifica
tion by size before sampling, followed by selection of independent samples from the strata. (A 
typical example is provided by an enterprise survey with number of employees as size. Then it 
is often natural to divide into strata of types "very big", "big" and "small" enterprises. Mostly 
the "very big stratum" is totally inspected.) The strata then take population roles, and smax and 
Smin in strata are considerably smaller/larger than in the entire population. 

As regards size pattern shape our experience says, as stated in Section 4.2.7, that the boundary 
pattern, which is most adverse for good approximation, is very unusual in practice. 

Table 6.1 below introduces, for later use, a broad categorization of size value patterns. 
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6.1.4 Dependence on population and sample sizes 
As discussed in Section 4.2.6, approximation accuracy improves as population size increases 
(while Smin, smax, a and n are fixed). Some of the figures in Table 6.2 below are based on 
extrapolation from available numerical data by employing the mentioned principle. 

As regards dependence on sample size we refer to Sections 4.4 and 4.2.5. 

6.2 Condit ions for negligible estimator bias 
The full numerical material derived to provide answers to questions (3.8) and (3.9) is pre
sented in Appendices 1 and 2. It is somewhat difficult, though, to overview it as it stands in the 
appendices. The following Table 6.2 summarizes the numerical findings at the prize of some 
coarsening. In some cases it may be helpful to consult the more detailed material in the appen
dices. Population sizes smaller than 25 were not considered in the study. 

Table 6.2. Sample sizes that imply negligible bias 

From Remarks 3.1 and 4.1 follows that the sufficient sample sizes in Table 6.2 are more or 
less conservative and, hence, "overly safe". In particular, one should not conclude that the bias 
necessarily is larger than "guaranteed" for sample sizes that are smaller than stated no-values. 

Our overall conclusion from the findings is as follows. Although the figures in Table 6.1 are 
conservative, we believe that they in most practical situations lead to the conclusion that the 
bias is negligible for all admissible sample sizes and, hence, that Pareto Ttps can safely be 
employed. 
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Appendices with numerical results 
The following Appendices 1 and 2 contain numerical results. The basic quantities in this con
text are Ψ - sequence values for the three particular size value patterns (even spread, middle 
and boundary) for a variety of values for the parameters N, smjn and smax. The complete collec
tion of basic- data is, modulo possible visual difficulties, given by the Ψ-sequence graphs in 
Appendix 2. The corresponding numerical values constituted basis for deriving numerical val
ues for quantities of more direct practical relevance, upper sequences and sufficient sample 
sizes, which are presented in Appendix 1. When pondering upon these numbers, it is often 
illuminating to look at the corresponding graphs in Appendix 2. 

Appendix 1. Upper sequences and sufficient sample sizes 
This appendix presents values for upper sequences; general, for a-admissible sample sizes, in 
weak version (see (4.11) and (4.13)), and sufficient sample sizes ; general, in ((3, a) - version, 
in weak version (see (4.15) and (4.16)). For space reasons presentation of upper sequences are 
confined to their first 5 items. Considered parameter values are listed below. 

Tables 1 -4 : Upper sequences for smax = 2, s ^ = 0.5, 0.2, 0.1, 0.05, N = 25,40, 50, 80, 
100, a =1,0.9, 0.8, 0.5. 
Tables 5 - 8 : (3 - and (P, oc) - sufficient sample sizes for smax = 2, smm 

= 0.5,0.2,0.1,0.05, 
N = 25,40, 50, 80, 100, p = 5, 2,1, 0.5%, a = 1, 0.9, 0.8, 0.5. 
Tables 9-12 : Upper sequences for smax = 4 , smin = 0.5, 0.2, 0.1, 0.05, N = 25, 40, 50, 80, 100, 
a =1,0.9, 0.8, 0.5. 
Tables 13 -16 : P - and (P, a) - sufficient sample sizes for smax = 4, smin = 0.5,0.2,0.1,0.05, 
N = 25,40, 50, 80, 100, p = 5, 2, 1, 0.5%, a = 1, 0.9, 0.8, 0.5. 
Tables 17-20 : Upper sequences for smax = 5, smin = 0.5, 0.2, 0.1, 0.05, N = 25, 40, 50, 80, 
100,125,150, 175, 200 (for smin = 0.5 only for N up to 100), a = 1, 0.9, 0.8, 0.5. 
Tables 21 - 24 : P - and (P, a) - sufficient sample s i z e s for S m a x — 5 , Smin — 

0.5,0.2,0.1,0.05, 
N = 25,40, 50, 80,100,125, 150,200 (for smin= 0.5 only for N up to 100), p = 5, 2, 1, 0.5 %, 
a =1,0.9, 0.8, 0.5. 
Tables 25-28 : Upper sequences for smax = 10, smin = 0.5, 0.2, 0.1, 0.05, N = 25,40, 50, 80, 
100,125,150, 175, 200 (for Smin=0.5, only for N up to 100), cc= 1,0.9,0.8,0.5. 
Tables 29 - 32 : P - and (p, oc) - sufficient sample sizes for smax — 10, Smin ~ 

0.5,0.2,0.1,0.05, 
N = 25,40, 50, 80, 100, 125,150, 200 (for smin= 0.5 only for N up to 100), p = 5,2, 1, 0.5%, 
a =1,0.9, 0.8, 0.5. 
Tables 33-34 : Weak upper sequences for s„,ax = 2 and 4, smin= 0.5, 0.2, 0.1, 0.05, N = 25, 
40, 50, 80, 100. 
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Tables 35-36 : Weakly P - sufficient sample sizes for smax — 2 and 4, smin— 0.5, 0.2, 0.1, 0.05, 
N = 25, 40, 50, 80, 100, p = 5, 2, 1, 0.5%. 

Tables 37-38: Weak upper sequences for smax = 5 and 10, smin = 0.5, 0.2, 0.1, 0.05, N = 25, 
40, 50, 80, 100, 125, 150, 175, 200 (for smin=0.5 only for N up to 100). 

Tables 39 - 40 : Weakly P - sufficient sample sizes for smax = 5 and 10, smin = 0.5, 0.2, 0.1, 0.05, 
N = 25, 40, 50, 80, 100, 125, 150, 200 (for smin=0.5 only for N up to 100), p = 5, 2, 1, 0.5%. 

Tables for smax = 2 
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Tables for smax = 4 
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Tables for Smax = 5 
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Tables for Smax = 10 
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Tables for weak quantities, smax = 2 and 4 
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Tables for weak quantities, smax = 5 and 10 
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Appendix 2. Ψ-sequence graphs 
For smax = δ = 2 and smin = y= 0.5 
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For Smax = S = 2 and smin = y= 0.2 
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For Smax = δ = 2 and smin = y= 0.1 
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For smax = δ = 2 and smin = y= 0.05 
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For smax = δ = 4 and smin = y= 0.5 
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For smax = δ = 4 and smin = y= 0.2 
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For smax = δ = 4 and smin = y- 0.1 
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For Smax = δ = 4 and smin = y = 0.05 
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For smax = δ = 5 and smin = y= 0.5 
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For smax = δ = 5 and smin = δ = 0.2 
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For smax = δ = 5 and smin = y= 0.1 
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For Smax = δ = 5 and smin = y= 0.05 
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For smax = δ = 10 and smin = y= 0.5 
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For Smax = δ = 10 and smin = y= 0.2 
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For smax = δ = 10 and smin = y= 0.1 
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For smax = δ = 10, smin = Y = 0.05 
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