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ABSTRACT 

In most surveys, inference for domains poses a difficult problem because 

of data shortage. This paper presents a design-inference (or randomization theory) 

approach to some common types of statistical analysis for domains of a surveyed 

population. Simple and multiple regression analysis, and analysis of ratios are 

considered. Two new methods are constructed and explored which, with the aid of 

auxiliary information, can improve substantially over the ordinary method based 

on straight ir-inverse (product) sums. The theoretical conclusions are supported 

by empirical results from Monte Carlo experiments. 
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1. THE RESEARCH QUESTION 

Inference for domains is required in most surveys, and extensive research 

efforts are currently directed to this problem area. The question that initiated 

our work was: given survey data from a population divided into many domains, how 

do we make inference, domain by domain and in the standard randomization theory 

fashion, about measures of relationship between a criterion variable y and 

explanatory variables x, ,...,x , such as simple ratios or (multiple) regression 

slopes? The possible shortage of observations in any given domain poses a diffi­

culty which is overcome, in our methods below, by exploiting auxiliary information. 

Let U = {!,...,k,...,N} denote a finite population of labelled units 

and let U be divided into nonoverlapping domains u\. of sizes Nj. , 

d = 1.....D ; N=Z . , N. . If U is a country, and the units households, the 

Ud# may represent a possibly large number of geographical subdivisions of U . 

A sample survey is carried out on U according to a perhaps complex survey design. 

A random, often small number of observations will fall in a given domain U. . 

With only one x-variable, we have in mind the estimation of parameters measuring 

the rate of change in y given x , such as, for d = 1.....D , 

(1.1) 

(1.2) 

(E. denotes sum over k in the set A) . More generally we seek to estimate 

multiple regression coefficients for the d:th domain. Frequently in surveys 

one wishes not only to estimate such rate-of-change measures, but also to test 

for their significant differences between domains. Only the estimation part is 

dealt with below, but the paper contains the basis for futher work on the 

hypothesis testing problem. 
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We work under the randomization theory principle of adjustment for varying 

inclusion probabilities by "Tr-inverse weighting" of units. In this spirit, Kish 

and Frankel (1974) studied the estimation of (multiple) regression coefficients 

for the entire population. Fuller (1975), Shah, Holt and Folsom (1977) contributed 

further to the theory. They did not examine regression analysis for domains, and 

the use auxiliary information was not discussed. Important is that these authors 

see the regression slopes as descriptive finite population parameters, not as 

superpopulation model parameters. Here we share that view; extensions to 

discriminant analysis and logistic regression are reported in Binder (1982). 

Whether the finite population parameter or the superpopulation parameter 

perspective should be adopted depends on the situation. The latter view is held 

in the interesting model-based regression analysis of Nathan and Holt (1980), 

Holt, Smith and Winter (1980), Smith (1981). In Section 8 we discuss their approach, 

which permits auxiliary information to be incorporated, but again does not consider 

the domain estimation problem. 

2. STATEMENT OF PROBLEM AND GENERAL PROCEDURE 

Associated with unit k(k = 1,...,N) is the vector (y. »x. ,6k) . where 

x. = (x.......Xj.,...,x. )' , and domain membership is indicated by the D-vector 

<5k with typical element <5dk = 1 if k £ U. and $.. = 0 otherwise. In 

regression with an intercept, x., = 1 for k = 1.....N . Prior to sampling, 

(y. ,x. ) and often 6. , too, are unknown. However in two methods discussed 

below (F and P) , knowledge about domain membership is assumed to permit 

improvement of the basic C-method. 

The problem is to estimate, for d = 1,...,D , the regression coefficient 

vector of y on x defined for the d:th domain as 
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(2.1) 

N 
where A. = I, &liicY

li,\xl anc' A. is analogous, that is, the r-vector 

x.y. replaces the r x r matrix x.xj" in A. . The known constants w. , 

if not all equal to one, are to permit weighted regression. 

Our interest in B, is in line with the concern often present in 

surveys to estimate descriptive quantities for the finite population, rather than 

parameters in models. One notes that B. is the weighted least squares estimator 

of 0 that would arise in the hypotehtical "census fit" of the superpopulation 

model y. = x/B + £. to a!! N. points of U\ , if the £. are independant 

with mean 0 and variances wj" . Simple examples of (2.1) are (1.1), arising 

when r = 1 and /.,. .--• x,- ~ w" ,. and (1.2), arising when r = 2 , x. = (1 ,x,)' , 

w. = 1 . Their estimation is dealt with in Sections 5 and 6. 

Å probability sample s of fixed size n is drawn from U by a sampling 

design p(s) with strictly positive inclusion probabilities u. = P(kes) , 

nkl " ^..tes) • "̂ne Part of s that happens to fall within UH# is denoted 

s, , of random size n, „ where n = E. n,, . The estimators will be built 

on the data (y^x,,) for k e s . For estimation of B. , we examine three 

methods,, called C , F and P , each containing a Step 1 for constructing the 

estimator B, , and a Step 2 for constructing an estimated variance-covariance 

matrix, V (B.) , of B \ s theoretical variance-covariance matrix, v
D(Bd) • 

STEP 1, First estimate Ad x x and A. by, respectively, A d x x and 
~_] -

Adxv , ŵ 'ach then define the B .-estimator as 8^ = A d x xA d x v . 

STEP 2. Calculate an estimated (design-based) variance-covariance 

matrix of §, bv 
d 
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(2.2) 

where the ij": th element (i,j = l,...,r) of the r x r matrix YG, is 

the Yates-Grundy type quantity 

where udki is to be defined and A ^ = (^/"'Yt^lcfc ' 

The three methods propose different A. , A. in Step 1 and will 

give rise to different u.. . in Step 2. Computationally, Methods F and P 

also involve a preliminary Step 0. A brief statement of the three computational 

procedures is given in Section 3; discussion is saved for later sections. For 

interval estimation of B.. with 100(l-a)% confidence, 

(2.3) 

Z, /0 being the normal score, is recommended until more accurate methods have I-a/2 3 

been explored. If n is very large and the domain not too small, (2.3) gives 

roughly the right coverage rate for the procedures stated in Section 3. However: 

our Monte Carlo studies show that the normal score if often too modest to reach 

the nominal 100(l-ct)% coverage of the true slope B.. in repeated samples 

drawn by the fixed design. For a given total sample size n , the achieved 

coverage rate deteriorates with smallness of domain; further work may improve 

the confidence interval procedure. 

3. SKELETON OUTLINE OF PROCEDURE, METHODS C , F AND P 

The C method (C for Common) uses straight ir-inverse weighting in 

estimating each (product) sum. When applied to the full population, the C-method 
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is found in Fuller (1975), Shah, Holt and Folsom (1977). The extension to domain 

estimation is a minor modification. The two steps require no auxiliary infor­

mation: 

Step 1. Calculate the estimator of Bd as §Cd = ÄcdxxÄcdxy with 

ÄCdxx = Adxx • ÄCdxy = Adxy w h e r e' by definition, 

(3.1) 

Step 2. Calculate the estimated variance-covariance matrix of Bcd by 

(2.2) with udk. uCdk- , where, by definition, u ^ . = ^ v y ^ . e ^ with 

eCdk = y k ' xkBCd ' 

The remaining two methods seek to improve the B .-estimator by incor­

porating other information. Let M-vector z. = (z.,,... »z^.J' be known for 

k = 1,...,N . Knowledge of domain membership of each unit k is also assumed. 

Here we explore two improved methods, both of which use the principle of gene­

ralized regression estimation by means of the known z.-vectors, Cassel, Särndal 

and Wretman (1976, 1977); Särndal (1980): 

In the F method (F for First order variable), each of x,,...,x 

and y are explained, in the preliminary Step 0, by a regression fit on z . 

The steps are: 

Step 0. Calculate predictions of x. and yk as respectively, 

x^ = z^Lx and yk = z^t (k = 1.....N) , where the M x r matrix Lx is 

and the fl-vector L is analogous, the scalar y, replacing the r-vector 
y K 

xk in L . The known, constants a, are to permit differential weighting, if 
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desired. If the first x-variable is a constant one indicating an intercept 

in y,s regression on x , then define x., = x., = 1 for all k . 

STEP 1. Calculate the estimator of B. as Bc. = lZ. ÄCJ with 
d rd Fdxx rdxy 

AFdxx = Adxx + Adxx " Adxx ; AFdxy = Adxy + Adxy " Adxy • H e r e Adxx and 

Adxy a r e g i v e n by (3.1)' 

while A.~^ and A.~~ are analogous, x.y. replacing x.x' in both A.~~ 

and A.~~ . Domain membership, S.. , must be known for k = 1.....N in 

order to calculate A,~~ . 

STEP 2. Calculate the estimated variance-covariance matrix of Bp 

by (2.2), using Äd x x = Ä F d x x and udki = u p d k i defined by 

(3.2) 

The P method (P for Product variable) considers the r(r+l)/2 + r 

product variables t.. = x.x. , t. = x.y (i<j = 1 r) , each of which is 
1J I J 10 l 

explained in Step 0 by a regression f i t on z . ( I f the regression of y on 

x has an intercept, then t „ = 1 , t . . = x. ( j = 2 , . . . , r ) , and t l o = y .) 

The steps are: 

SIEP_0. Let t k i j = x k i x k j , t k i o = xk .yk , and calculate, for 

i = 1 r , predictions of t k - = ( t k n . . . . , t k l > ) ' and tkiQ by, respec­

t ive ly , ? ' . = zk3f.xx and t k . 0 = zk3f.xy where J - x x (Mxr) is given by 
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and J. (Mxl) is analogous, the scalar t. . replacing the r-vector t/. 

in X . For the intercept case, define t.,, = t.,, = 1 for k = 1.....N 

STEP 1. Calculate the estimator of Bd as Bpd = Apd x xAp d with 

APdxx = Adxx + Ad(5a) " Ad(x£) ; APdxy = Adxy + Ad(xy) " Ad(xy) 

Here, Ad x x and A d x y are given by (3.1); A d ( r x ) and A d ( - } are r x r 
N matrices whose i :th rows are given, respectively, by E, <Sd)<wkt/. and 

Zs ^ d ^ Ä i ^ k wni^e tne r x 1 columns A^-r^x and A^-^x are analogous, 

their i:th element having the scalar t. . in place of the r-vector 

t. . . As in Method F , domain membership, 6.. , must be known for 

k = 1.....N . 

STEP 2. Calculate the estimated variance-covariance matrix of Bpd 

by (2.2) using Ädx x = Ä p d x x and udki = upd k 1 defined by 

with 

Our Monte Carlo experiments so far (see Section 8) have not shown 

any great differences in efficiency between Methods F and P , both of 

which can however improve greatly over Method C . 
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4. DERIVING VARIANCE-COVARIANCE ESTIMATES 

The variance-covan'ance estimates in Step 2 of the C- , F- and 

P-methods rest on approximations. For the C-method, reference to Fuller 

(1975) suffices. As for the other two methods, we choose to illustrate how 

V (Bc.) is obtained, p Fd 

In the F-method, L estimates its population analogue 

The j : t h column of L° is made up of the weighted least squares regression 

coefficients that would arise in the "census f i t " of x. on z using the N 

data points of the whole population. Let the resulting r-vector of f i t ted 

values for unit k be x° = z/L° . Similarly, the k:th f i t t ed y-value 

would be y? = z/Ly , where L° is analogous to L° , with yk in place 

of x.1 . Set 

We express the error of the F-estimator as B^ - Bd = Ap(jxx( ' : i+F2^ 

where the r-vectors F, and F„ are 
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We arr ive at V (BF.) by way of an approximation of the theoret ica l 

mat r ix , V (Bp.) . In large samples, F„ w i l l be near zero in p robab i l i t y 

(as determined by the sampling design) for the twofold reason: (a) each 

A-matrix is close to i t s A-counterpart, and (b) L and L° are c lose, as 
A A 

are L and L° , so that A d x 0 y 0 and Ad~~ are close, as are Adxoyo 

and A . — , etc. The design variance contributed by F2 is expected to be 

small relative to that coming from F, , which is near zero in probability 

for only the first of the two reasons. Further, in a first approximation to 

variance, ÄZ. may be replaced by its target, A V . Thus, we take 

Br. - B . = A "J F. as the basis for an approximate variance-covariance calcu­

lation. Alternatively, 

where u F d k = (uFdkl.. • • »^dkr^'
 is d e t e r m i n e d b^ 

Now F. involves simple Horvitz-Thompson estimators, so directly 

where Vp. is r x r with ij-element 

This contains the unknowns A. , B. , L° and L° . For an estimated matrix, 

replace each of these by its sample couterpart, Ap. , Bpd , U and t , 

which implies replacement of vipdkl- by Uprf. . given by (3.2). Replacement 

of 
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completes the procedure. We have obtained the variance-covariance estimate given 

in the F-method's Step 2. 

5. DOMAINWISE ESTIMATION OF A RATIO OF AGGREGATES 

A special case of the foregoing is to estimate, domain by domain, the 

ratio R. , formula (1.1), of two domain sums. Important applications are of 

the type where one seeks to estimate "acreage under wheat (y) to total acreage 

(x)" for farms belonging to the d:th of D geographical subdivisions of a sampled 

larger region. Now R. is the ratio of two scalars, the linear sums 

N N 
A M = £, öj.yi and A., = £, 6 ., x. . Their estimation is simple in the C-method. 
diy i dk k dix 1 dK K 

The F-method as given in Section 3 also provides for estimation of linear sums, 

since the r-vector x. may contain the constant one. 

The C-method gives simply 

with estimated design variance 

£S 

w h e r e ucdk = 5 dk ( y k - x Ad } • 

In the F-method's Step 0, we have 
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and analogously for y. , with y. replacing x^ in xk . In carrying out 

Step 1, look upon Arflx as zj <5dxxkoxk , where xkQ = 1 = xko for all k , 

and analogously for A,, . We get 

where 

and analogously for Äp., , with y. and yk instead of xk and x. . The 

estimated variance, from Step 2, is 

with 

The performance of the two methods has been tested in Monte Carlo experiments on 

which we comment in Section 8. 

6. DOMAINWISE SIMPLE REGRESSION ANALYSIS 

To enrich the brief statement in Section 3, let us discuss our three 

methods with another simple application in mind: We seek to estimate, for each 

of the D domains, the slope B. , given by (1.2), of a simple regression with 

intercept of y on x . Frequently one needs to compare slopes in different 

domains, so the standard error calculations given below are important. 

In practice one often exploits the homogeneity gained by an a priori 

known categorization of the units. Let z. = (z.,,...,z.,...,z.„)' required 

in Step 0 be a category»indicator, with z. =1 if k e U and z, = 0 
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otherwise; m = 1.....M . The mutually exclusive categories U cut across the 
•m 

domains Ud> . Possibilities discussed in Section 7 are: (1) the categories are 

M = G "postgroups" (called groups in the following) that do not participate in 

the sampling design but are exploited after sampling to reduce the estimator's 

variance; (2) the categories are the M = H strata in a stratified random 

sampling design; (3) the categories are the M = GH cells resulting from a 

crossclassification of G groups with H strata. In the third case there will 

thus be three dimensions involved: if units are households, the domains 

could be smaller administrative areas of a sampled country, the strata could be 

larger geographical areas, and the groups family types. 

Domains crossed with the categories of z divides the population into 

DM cells U. of sizes N, . These latter are the auxiliary quantities that 

must be known, from census or other reliable sources, in order to make the F-

and P-methods work. We have 

(6.1) 

The respective parts of the sample s that happen to fall in U#m and Udm are 

denoted s „ , of size n , and s. , of size n.m . Then (6.1) holds with 
•m -m dm dm 

small n's substituted for the capital N's . In the general formulas of Section 

3, let x. = 0 » x k ) ' , and assume equal weights: wk = ak = 1 for all k . 

Let I indicate the method used; I = C , F or P . The slope estimator is in 

all three cases of the form 

(6.2) 

where £TJ and ZT. are defined below, and the estimated variance is 
Idxy Idxx 

(6.3) 
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Detai ls for each method are as fo l lows: Set N, = L 1/TT, . Use the symbol 
dm 

~ to indicate "Ti-means", that i s , i t - inversely weighted averages such as 

and analogously fo r several other ir-means used below. 

In the C-method, use I = C in (6.2) and (6.3), where 

Let t ing eC( jk = y k - y ^ - B ^ - ^ ) . we have 

(6.4) 

To simplify the F- and P-methods, create centered variables X. , Y. 

for the d:th domain as 

where 

is the estimate of the domain mean x.. = L. X U / N H . produced by both the 
d« d. 

F- and P-methods, and y* is analogous. 
sd-

In the F-method, use I = F in (6.2) and (6.3), where 

and Epdx v is analogous, with X,. Y» and X.$ Yrfs replacing Xrfk and 
„ y »m «m 

(X d s ^ ) . Letting e p d k - Ydk - B ^ , with Tr-mean e ^ in s.m . we 

have for k in s 
•m 
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(6.5) 

In the P-method, use I = P in (6.2) and (6 .3 ) , where 

~i 2 
where (X ) d s is the 7r-mean of Xd- for k in s# . Further, Lp. i s 

analogous, w i th Xd(<Ydk and (XY)ds replacing Xdk and (X )d . With 
•m «m 

ePdk = Ydk " BPdXdk ' w e h a v e f o r k in s.m 

(6.6) 

where (Xe)D. is the 7r-mean of X ,, en , , over k in s 
Pds m dk Pdk «m •m 

The u-quantities (6.4), (6.5) and (6.6) explain heuristically why the 

F- and P-methods are often superior to the C-method, as discussed in the next 

section. 

7. DISCUSSION OF SIMPLE REGRESSION ANALYSIS 

In the C-method, u c „ is (apart from the 6-factor) structured 

as "centered x-variable times residual". By contrast, in the F- and P-methods 

uFdk and uPdk ^ave (aPart ̂ rom 5 ) tne f o r m "centered x-variable times resi­

dual minus category mean adjustment", the latter being X\ eV. and 
, -m #m 

(Xe)pd , respectively. This difference explains the variance reductions 
•m 

realizable by the F- and P-methods, as seen more clearly for some simple 

designs: 

(i) Simple random sampling (srs) and G groups. The z-vector 

indicates membership in one of M = G groups labelled g = 1,...,G . The 
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estimated variance (6.3) becomes 

where f = n/N and 

is the sample variance of the iu .. . The respective group mean adjustments 

contained in up - and up., are X. eV. and (Xe)p. , the overbar 
•g .g .g 

indicating straight average over the group part, s#Q , of the whole sample, s . 

In methods F and P , the sample variance of u thus consists essentially of 

within group components. It will be substantially smaller than in the C-method, 

if the groups are efficient so that their mean adjustments differ markedly. 

With G - 1 group only, the F- and P-methods are identical, but the two are 

not identical to the C-method, as a first guess may have been. However, essen­

tially no variance reduction will be realized by the F = P method, since the 

one and only group adjustment applies to every unit k . 

(ii) Stratified random sampling (strs) and G groups. The strata, 

labelled h = 1,...,H , ordinarily cut across the G groups (g = 1,...,G) 

as well as the D domains (d = 1,...,D). Let N . , n . and f^ = i\>h/Nt>h 

denote stratum population size, stratum sample size and stratum sampling fraction. 

Then (6.3) becomes 

(7.1) 

where v (u I d ) i s the variance of Ur .. over k in the sample s. selected 
h 

randomly from stratum h . Here too , the F- and P-methods w i l l lead to 

substant ial variance reductions over the C-method, i f the grouping s t rongly 

supplements, rather than closely copies, the s t r a t i f i c a t i o n . The argument is 
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as in case (i) above: updk and up contain a group mean adjustment, which 

can strongly reduce the stratum variance of u if the grouping is efficient. 

There are at least two possibilities to code the z-vector necessary in Step 0 

of the F- and P-methods: (a) simply let z be the G-vector that indicates 

group membership; (b) let z be the extended vector of dimension GH indicating 

one of the cells in the crossclassification of groups with strata. For each of 

the three methods separately, (a) and (b) will not cause much difference in effi­

ciency. The possible gains from stratification are essentially discounted already 

in method (a), through the stratumwise buildup of (7.1). 

(iii) strs without grouping. Let z. indicate stratum membership. 

Clearly here one does not expect the F- and P-methods to be superior to the 

C-method. This can be seen more formally from (7.1), where v (uId) is the 
_ h 

stratum variance of u... , or, equivalently, of Uj » - u.. , which in all 
h 

three methods is "centered x-variables times residual minus stratum mean adjustment". 

In the F- and P-methods, the stratum mean adjustment is already present in u 

itself and tL. = up. = 0 ; in the C-method, the stratum adjustment is 
h h _ 

created through u-. . For a given unit k , u... - u. . is not exactly the 
h h 

same number in the C- , F- and P-methods, but the calculated values of 

v (u ) will be essentially equal in the three methods. 

Our methods have the generality of permitting more complex designs, 

including cases of two or more stages. The variance reducing effects of Methods 

F and P will continue to be strong when the z-vector contains essential 

extraneous information. 

8. MONTE CARLO EXPERIMENTS 

Our Monte Carlo experiments were designed primarily to assess the 
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variance reductions realizable by the F- and P-methods over the simple C-

method, and to see if the F- and P-methods differ by much in efficiency. It 

must be kept in mind that the results of any simulation depend entirely on the 

nature of the population chosen for study. A detailed account of our simulations 

will be given elsewhere. We simulated the estimation of the ratio R. given by 

(1.1) through the methods of Section 5, and the estimation of the slope B. 

given by (1.2) through the methods of Sections 6-7. Many conclusions are similar. 

Here we give only a brief summary of the results concerning B. . 

Three populations, called REAL , ART! and ART2, were used. REAL 

consisted of real data on 1202 Swedish households divided into D = 24 domains 

by Sweden's major admistrative regions (län) and into 6 = 5 groups by 

size and age characteristics of a household; y and x were, respectively, 

disposable household income and taxable household income. The groups were a 

rather weak explanatory factor for x as well as for y , so a priori the struc­

ture of REAL does not strongly favour the F- and P-methods. The artificial 

populations ART1 and ÅRT2 were therefore created to have a smaller within group 

variance, relative to the between group variance, in x as well as in y . 

The ART1 population shared a number of features with REAL : the cell 

frequencies N. , and the x-means, y-means and x-to-y correlations in each 

group. Group by group, each (x,y)-point of REAL was replaced by a new 

randomly generated point with the objective to reduce the within group vari­

ance. ÅRT2 was created to provoke a situation where extremely large efficiency 

gains are expected from the F- and P-methods. The cell frequencies Nd were 

as in REAL , but the (x.y)-values were chosen so that the within group to 

between postgroup variance was very small, and in addition the regression of y 

on x was markedly non-linear. 
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The domains varied in size from 20% to about 1% of the total population. 

1000 repeated simple random samples of size n = 300 (and n = 600 in a second 

round of experiments) were drawn, so the situation was that of case (i) in Section 

7. For each domain and sample we calculated the B.-estimate and the confidence 

interval (2.3), by each of methods C , F and P as given Section 3. Summary 

statistics for the 1000 repetitions were calculated, including each estimator's 

mean, variance, average estimated variance and coverage rate (= the percentage 

of the 1000 samples with a confidence interval covering the true slope Bj) . 

The three methods C , F and P shared the following features: (1) 

The design bias of each estimator is very small; (2) The variance of the esti­

mates agrees well with the average of the estimated variances in the larger 

domains, but the two differed markedly in some of the smaller domains; (3) The 

achieved coverage rates were close to (but always somewhat short of) the nominal 

95% or 90% in the larger domains, but considerably less in the smallest domains, 

when n = 300 . The increase in sample size to n = 600 improved these trailing 

coverage rates. 

The following emerged in the comparison of the three methods: (4) The 

F- and P-methods performed very similarly for all three populations, in terms 

of variance as well as coverage rate. There was some indication that the P-

method is prone to more erratic behavior for the smallest domains; (5) The 

variance reductions realized by the F- and P-methods over the C-method were 

modest for most domains (30%-0%) in the REAL population, strong in virtually 

all domains (60%-20%) in the ART1 population, and dramatically large in all 

domains (over 90%) in the ART2 population. 
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9. IMPLICATIONS FOR THE ESTIMATION OF COVARIANCE MATRICES 

In this section we disregard the important issue of domain estimation 

and compare our approach with some earlier work. Consider the estimation of the 

finite population covariance matrix 

where x = Z, x./N . Let the earlier y-variable be included with other vari­

ables in the x-vector, which in this section is assumed not to contain the 

constant one indicating intercept. Indirectly, we dealt with domainwise cova­

riance estimation in Section 6. The F- and P-methods of the earlier sections 

estimate product sums, rather than covariances directly. But 

(9.1) 

where A = E, x.x' and x = I, x./N . Therefore we can carry out the F- or 

P-method's Steps 0 and 1 for the intercept case to obtain estimators of A and 

x which, substituted in (9.1), yield an estimator of Z 

For the F-method, this works as follows: let z^ and x? = z/t be 

the auxiliary vector and the prediction constructed in Step 0. The F-estimator 

of E is approximately design unbiased and given by 

(9.2) 

(9.3) 

As for the P-method's estimator, Ep , x* is the same, but Apxx 

is replaced by Äp structured as (9.3) but with the obvious changes implied 

by the P-method's Step 0. 
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Nathan and Holt (1980), Holt, Smith and Winter (1980), Smith (1981), 

Skinner (1982) use a model-based approach to estimating a mean vector and a cova-

riance matrix when a selection procedure may cause bias in the straightforward 

estimators, unless corrective steps are taken. They use a result, described by 

Bimbaum, Paulson and Andrews (1950) and going back to Lawley (1943) and to Karl 

Pearson, about random vectors x and q following some multidimensional (super-

population) distribution: Me have made N observations on q „ For a selected 

subset of n , we have also observed x . The selection of the n from the N 

may depend on q . Under assumptions that (a) the regression of x given q is 

linear and (b) the conditional variances and covariances of x given q do not 

depend on q , one arrives at "selection-corrected" estimators of the superpo-

pulation's mean vector of x and its covariance matrix of x . One can proceed 

to study estimators of superpopulation regression coefficients and their model-

based confidence intervals, as done, in part by Monte Carlo techniques, in Nathan 

and Holt (1980), Holt, Smith and Winter (1980). 

The method, translated into the survey sampling setting, leads to the 

following estimator of the superpopulation's covariance matrix of x , see Holt, 

Smith and Winter (1980), Smith (1981) 

(9.4) 

Here, S = Z (x.-x )(x.-x )'/n is the simple uncorrected sample matrix» and 

the corrective second term is defined by 

where q. , x , q.. are vectors of straight sample or population means. Since 
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the reasoning is model-based, no inclusion probabilities appear in these formulas. 

Instead, the correction term is meant to remove the biasing effect of, say, a non-

proportional statified selection through the inclusion in q of the "design 

variables". They cons.ist, in the stratified case, of a vector indicating stratum 

membership, and q may contain other known variables. 

For an example, let q be the GH-vector indicating membership in one 

of the cells, labelled gh , in the crossclassification of G groups with H 

strata sampled by varying selection fractions. This is the situation ii(b) of 

Section 7, except that domains no longer exist. The estimator (9.4) can after 

rearrangement be partitioned as a within-cell term plus a between-cell term, 

(9.5) 

where 

To compare, le t us find the F-method's estimator in the same situation. 

In (9.2), let tr. = n .n/N# h = fh "for k in stratum h , and let the z-vector 

indicate membership in one of the GH cel ls . Defining N . = N . nau/n#n ' 

we arrive at 

(9.6) 

In the P-method, we obtain 

(9.7) 

To set the comparison straight, note that the design-based estimators 

(9.6) and (9.7) were conceived to estimate the finite population parameter (9.1), 

which has the partitioning 
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(9.8) 

where U . indicates mean vector or covariance matrix for the population cell 

U , . By contrast, the model-based (9.5) rather estimates the superpopulation's 

covariance matrix, so we do not have full comparability. All three estimators 

(9.5), (9.6) and (9.7) require that the N , be known. They differ only in the 

weights attached to the within-cell matrix S „„ ; n ,/n , N ./N and N ./N . 
xxs h gh gh' gh' 

In large samples, the common between-cell component of (9.5), (9.6) and 

(9.7) converges in design probability to its finite population counterpart in 

(9.8). Moreover, Svvc converges to S ,. for each cell. A priori, ED 

xxsgh ssugh PXX 
seems the more natural estimator since it applies the known proportions N . /N 

as weights for the S . However, the weights N u/N used by L- gives 
gh y 

the same large sample performance, so that both (9.6) and (9.7) converge to (9.8). 

By contrast, the weight n ./n of S causes design bias in the model-
gn xxsgh 

based method (9.5); it does not conform to the design-based standards of this 

paper, when allocation to strata is non-proportional. However, the weight nQn/n 

seems natural under the assumed model that the covariance structure of x given 

q does not depend on q . 
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