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ABSTRACT

In most surveys, inference for domains poses a difficult problem because
of data shortage. This paper presents a design-inference (or randomization theory)
approach to some common types of statistical analysis for domains of a surveyed
population. Simple and multiple regression analysis, and analysis of ratios are
considered. Two new methods are constructed and explored which, with the aid of
auxiliary information, can improve substantially over the ordinary method based
on straight mw-inverse (product) sums. The theoretical conclusions are supported

by empirical results from Monte Carlo experiments.
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1. THE RESEARCH QUESTION

Inference for domains is required in most surveys, and extensive research
efforts are currently directed to this problem area. The question that initiated
our work was: given survey data from a population divided into many domains, how -
do we make inference, domain by domain and in the standard randomization theory
fashion, about measures of relationship between a criterion variable y and
explanatory variables XpsesosXn such as simple ratios or (multiple) regression
slopes? The possible shortage of observations in any given domain poses a diffi-

culty which is overcome, in our methods below, by exploiting auxiliary information.

let U= {1,...,k,...,N} denote a finite population of labelled units

and let U be divided into nonoverlapping domains Uy, of sizes Ny

d=1,...,0; N==Z§L1 Nd- . If U 1is a country, and the units households, the

] may represent a possibly large number of geographical subdivisions of U .

d-
A samplie survey is carried out on U according to a perhaps complex survey design.
A random, often small number of observations will fall in a given domain U, .
With only one x-~-variable, we have in mind the estimation of parameters measuring

the rate of change in y given x , suchas, for d=1,...,0,

d

)2 (1.2)
de

B, = zud.(xk-iud.)(yk-yud.)/zud.(xk-iu
(EA denotes sum over k 1in the set A) . More generally we seek to estimate
multiple regression coefficients for the d:th domain. Frequently in surveys
one wishes not only to estimate such rate-of-change measures, but also to test
for their significant differences between domains. Only the estimation part is

dealt with below, but the paper contains the basis for futher work on the

hypothesis testing problem.



We work under the randomization theory principle of adjustment for varying
inclusion probabilities by "“w-inverse weighting" of units. In this spirit, Kish
and Frankel (1974) studied the estimation of (multiple) regression coefficients
for the entire population. Fuller (1975), Shah, Holt and Folsom (1977) contributed
further to the theory. They did not examine regression analysis for domains, and
the use auxiliary information ‘was not discussed. Important is that these authors
see the regression slopes as descriptive finite population parameters, not as
superpopulation model parameters. Here we share that view; extensions to

discriminant analysis and logistic regression are reported in Binder (1982).

Whether the finite population parameter or the superpopulation parameter
perspective should be adopted depends on the situation. The latter view is held
in the interesting model-based regression analysis of Nathan and Holt (1980),
Holt, Smith and Winter (1980), Smith (1981). In Section 8 we discuss their approach,
which permits auxiliary information to be incorporated, but again does not consider

the domain estimation problem.

2. STATEMENT OF PROBLEM AND GENERAL PROCEDURE

Associated with unit k(k = 1,...,N) 1is the vector (yk,xk,dk) , Where
X = (xkl""’xki”"’xkr)' » and domain membership is indicated by the D-vector
8 with typical element g = 1 if k e Ud. and Sak = 0 otherwise. In
regression with an intercept, Xy = 1 for k=1,...,N . Prior to sampling,
(yk,xk) and often 6, » too, are unknown. However in two methods discussed
below (F and P) , knowledge about domain membership is assumed to permit

improvement of the basic C-method.

The problem is to estimate, for d = 1,...,0 , the regression coefficient

vector of y on x defined for the d:th domain as
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By = (ByyreeaByp )’ = Mgy Agyy (2.1)
- N ' 3 i o -

where Adxx = Z] Gdkwkxkxk and Adxy is analogous, that is, the r-vector

XYy replaces the r x r matrix XX in Adxx . The known constants Wi

if not all equal to one, are to permit weighted regression.

Our interest in Bd is in line with the concern often present in
surveys to estimate descriptive quantities for the finite population, rather than
parameters in model:. One notes that Bd is the weighted least squares estimator
of B that would arise in the hypotehtical "census fit" of the superpopulation
- [ e { -i, 3 3 » .
mode] Yy ka + & to &l Nd- points of Ud- s 1f the g, are independant

with mean 0 and variances w;1. Simple examples of (2.1) are (1.1), arising

=1 - '
when r = | and Er S Xg = W s and (1.2), arising when r =2 , Xy = (1,xk) ’

W, = 1 . Their estimation is dealt with in Sections 5 and 6.

A probability sample s of fixed size n 1is drawn from U by a sampling
design ols) with stricily positive ‘nclusion probabilities L P(kes) ,
Tep © Pir,les) . The part of s that happens to tall within Ud- is denoted
s4. » of vandom size n, ., where n=1ZI,n, . The estimators will be built
cn the data {yk,xk) for k e s . For estimation of Bd , we examine three

methods, called £ , F and P , each containing a Step 1 for constructing the

estimator B and a Step 2 for constructing an estimated variance-covariance

(124 ®
matriz, %D(ﬁd) , of §é 5 theoretical variance-covariance matrix, Vp(ﬁd) .

1oy

N ?:n . - . . . -! -

TEP 1. First estimate Adxx and Adxy by, respectively, Adxx and
N b e : : . . - _ -_'l -

“dxy . which then define the Bd-est1mator as Bd = AdxxAdxy .

STEP 2. Calculate an estimated {design-based) variance-covariance

matrix of §d by



_ =1 ~=1
p d) - AdxxYGdAdxx (2.2)

where the ij:th element (i,j = 1,...,r) of the r x r matrix 'z"ifld is

the Yates-Grundy type quantity

-1 -1 -1 -1
L J et™e Uaki e Yagi (M VakTme Yaes!
€S

where Ugkj s to be defined and Ak£ = ("kﬂt'"kz)/“kt .

The three methods propose different Adxx » Adyy in Step 1 and will
give rise to different Udi in Step 2. Computationally, Methods F and P
also involve a preliminary Step 0. A brief statement of the three computational
procedures is given in Section 3; discussion is saved for later sections. For

interval estimation of Bd with 100(1-a)% confidence,

i

- s 172
Bai * I1ogy2lV(Bgi) "7 (2.3)

Zl-a/Z being the normal score, is recommended until more accurate methods have
been explored. If n is very large and the domain not too small, (2.3) gives
roughly the right coverage rate for the procedures stated in Section 3. However.
our Monte Carlo studies show that the normal score if often too modest to reach
the nominal 100(1-a)% coverage of the true slope By; in repeated samples
drawn by the fixed design. For a given total sample size n , the achieved

coverage rate deteriorates with smallness of domain; further work may improve

the confidence interval procedure.

3. SKELETON OUTLINE OF PROCEDURE, METHODS C , F AND P

The C method (C for Common) uses straight m-inverse weighting in

estimating each (product) sum. When applied to the full population, the C-method



is found in Fulier (1975), Shah, Holt and Foisom (1977). The extension to domain

estimation is a minor modification. The two steps require no auxiliary infor-

mation:
i A _ =1 = .
Step 1. Calculate the estimator of Bd as BCd = ACdxxACdxy with
ACdxx = Adxx ’ ACdxy = Adxy where, by definition,

(3.1)

- ] . -
Aaxx = Zs Saiic®k/ ™k 3 Adxy = Ls Sak™k*iYk/ Tk

Step 2. Calculate the estimated variance-covariance matrix of éCd by

(2.2) with Ugki = Yedki ° where, by definition, Uedki = adkwkxkieCdk with
- - '

®cak = Yk~ *k8cd

The remaining two methods seek to improve the Bd-estimator by incor-
porating other information, Let M-vector z, = (zk],...,sz)‘ be known for
k=1,...,N . Knowledge of domain membership of each unit k 1is also assumed.
Here we explore two improved methods, both of which use the principle of gene-
ralized regression estimation by means of the known zk—vectors. Cassel, Sdrndal

and Wretman {1976, 1977); Sdrndal (19280):

In the F_method (F for First order variable), each of XpseeesX
and y are explained, in the preliminary Step 0, by a regression fit on z .

The steps are:

Step 0. Calculate predictions of Xy and Y as respectively,
g | IN o~ ] - . ~ .
L, and ¥, = zkt& (k = 1,...,N) , where the M xr matrix L  is

T [l ‘] |
LX = (ZS akzkzk/ﬂk) ZS akzkxk/nk

~

and the li-vector Ly is analogous, the scalar Ye replacing the r-vector

x, in [ . The known, constants are to permit differential weighting, if

k X &y



desired. If the first x-variable is a constant one indicating an intercept

in y's regression on x , then define X =1 for all k.

k1 = *k1
P .
d 25 Bpy = ApgyxMpaxy With

"'Advi-y-

STEP 1. Calculate the estimator of B

= A - A A Here and

dxx ¥ Mdxx dxx ’ AFdxy = fdxy T Adiy Adxx

are given by (3.1),

AFdxx

Adxy

e Wk i X
Mazx = I1 Sak"iXk b Adrx = s SakMikk/ Mk
while Adiy and Adiy are analogous, XYk replacing XX n both Adi%

and A Domain membership, 5dk , must be known for k =1,...,N in

dXxX -

order to calculate Ad?% .

STEP 2. Calculate the estimated variance-covariance matrix of EFq

by (2.2), using Adxx = Ardux and Ugki = YFdki defined by

Uedki = Sak"k (Xci®rdk~*kiCFdk) (3.2)

. _ - 1 . -~_~l—
with eco = ¥ - XBey s epg = Y - X Bey -

The P method (P for Product variable) considers the r(r+1)/2 +r

product variables tij = x1.xj . tio

explained in Step O by a regression fit on z . (If the regression of y on

= Xy (i<j = 1,...,r) , each of which is

x has an intercept, then tn =1, ty, = X3 (3 = 2,...,r) , and tio =Y )

1J
The steps are:

STEP 0. Let tkij = xkixkj . tkio = XYy and calculate, for
i=1,...,r, predictions of t . = (tki1’°"’tkir) and t .. by, respec-

tively, téi = zéjixx and tkio = ijixy where Jixx (Mxr) is given by



~ . -1
Yixx = (Eg qzezp/m)  Ig apz tya/m
and Jixy (Mx1) 1is analogous, the scalar trio replacing the r-vector tes
in Jixx . For the intercept case, define tk11 = tk]l =1 for k=1,...,N.

. - P i
STEP 1. Calculate the estimator of Bd as de AdexAdey with

Rogxx = Adxx * (R0~ a0 ¢ Mpdxy = Adxy * MGz~ Pa(R9)

Here, Adxx and Ad are given by (3.1); Ad(ii) and Ad(?&) are rxr

matrices whose 1i:th rows are given, respectively, by z? 8 4i¥ kf' and
s dk K k1/“ while the r x 1 columns Ad(i}) and Ad(i?) are analogous,

their ij:th element having the scalar %kio in place of the r-vector

Eéi . As in Method F , domain membership, &, , must be known for

k= 1,...,0 .
STEP 2. Calculate the estimated variance-covariance matrix of EPd

by (2.2) using Ry = Bpgyx 304 YUges = Upgei defined by

Upaki = Sark Xki®pak(¥®)pgii)

with

Xki®pdk = *ki Y %Bpg) = thio = tkiBpa * (X®)pgri = tkio - Hibpq -

Our Monte Carlo experiments so far (see Section 8) have not shown
any great differences in efficiency between Methods F and P , both of

which can however improve greatly over Method C .



4. DERIVING VARIANCE-COVARIANCE ESTIMATES

The variance-covariance estimates in Step 2 of the C- , F- and
P-methods rest on approximations. For the C-method, reference to Fuller
(1975) suffices. As for the other two methods, we choose to illustrate how

Vp(BFd) is obtained.

In the F-method, [; estimates its population analogue

0_ N |‘] N [}

Lx = (Zl akzkzk) I} 42X, -
The Jj:th column of L: is made up of the weighted least squares regression
coefficients that would arise in the "census fit" of xj on 2z wusing the N
data points of the whole population. Let the resulting r-vector of fitted

values for unit k be x% =z'L° . Similarly, the k:th fitted y-value

K k™x
o _ 0 o . o 3 :
would be Yg = szy » Where Ly is analogous to Lx , WwWith Y in place
of xé . Set
A =N s wx%%C A /n
dxOx© 1 %dk"k*k*k  * "dxoxo T dk kX k k

We express the error of the F-estimator as §Fd - Bd Fdxx(F +F2)

where the r-vectors F] and F2 are

= (A B8

1 dxy'Adxy) - (Adxx_Adxx) d
B {(AdeyO-Adxoyo)-(Adx°x°-Adx°x°)Bd} ’
Fo = (AdeyO-AdxoyO) - (Ayyox0Agyox0)By

A

- {(Adiy'Adiy)'( oo Ay )Bg) -
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We arrive at Vp(éFd) by way of an approximation of the theoretical

matrix, Vp(EFd) . In large samples, F, will be near zero in probability

(as determined by the sampling design) for the twofold reason: (a) each

A-matrix is close to its A-counterpart, and (b) Ex and Lg are close, as

are t& and L; » SO0 that Adxoyo and Adi? are close, as are AdeyO

and A etc. The design variance contributed by F2 is expected to be

dxXy °’

small relative to that coming from F] , which is near zero in probability

for only the first of the two reasons. Further, in a first approximation to
. ~=1 . -1

variance, AFdxx may be replaced by its target, Adxx . Thus, we take

.- . . . _ . _
Fd d= AdxxFl as the basis for an approximate variance-covariance calcu

lation. Alternatively,

B., - B

i N
Fy = Zglkpge/m) = Iy wpgy
where Hpg = (“del"'°’“der)l is determined by
~ 0 0 . _ ot . 0 _ o _,0'
Medki = Sdick (XkiSFdk~*kiCFdk) > SFdk = Yk - *kBd 5 SFdk T Yk ~ %k Bd -

Now F, involves simple Hervitz-Thompson estimators, so directly

1
= = 2 10 -1
Vo (Beg) = Ep(Bey-By)™ = Mgy Veahaxx

where ng is rxr with ij-element

7, 0 (n-] -7 )(n-] -n-] .)
ke“k2 '™k MFdki™"e YFdei’‘\"k Mrdkj""e MFdej’! ¢

tot12

N
]
k-
. . o 0 . .
This contains the unknowns Adxx . Bd , Lx and Ly . For an estimated matrix,
replace each of these by its sample couterpart, A, . » Bry > tx and t& ,

which implies replacement of Megki DY Upgks given by (3.2). Replacement

of



1

N
%“szke(')(‘) by Z<%_ kf )()
€S

1=

<

completes the procedure. We have obtained the variance-covariance estimate given

in the F-method's Step 2.

5. DOMAINWISE ESTIMATION OF A RATIQ OF AGGREGATES

A special case of the foregoing is to estimate, domain by domain, the
ratio Rd- , formula (1.1), of two domain sums. Important applications are of
the type where one seeks to estimate “acreage under wheat (y) to total acreage
(x)" for farms belonging to the d:th of D geographical subdivisions of a sampled

larger region. Now Rd- is the ratio of two scalars, the linear sums

M M
Avy = Iy Sqi¥x and Agyy = Iy Sqpx -

The F-method as -given in Section 3 also provides for estimation of linear sums,

8 Their estimation is simple in the C-method.

since the r-vector X, may contain the constant one.

The C-method gives simply

-~

Rea = (Bg Ni/md/ (g | %/m)
with estimated design variance

-~ o~ -1 -1 2
VoReg) = T T 8y plme vpgmmp uegp)/ (2 X /)
k<l d-
€S

uhere ucgy = Sgi(YXiReq) -

In the F-method's Step 0, we have

> T 1 f -1
X = by = 2 (Eg a ez /m ) Eg 2z x I



12

and analogously for Yk , wWith Yi replacing Xy in Ik . In carrying out
1

N -

Step 1, look upon Ad]x as I, dexkoxk » Wwhere Xo = 1= %o for all k ,

and analogously for Ad]y . HWe get

-

Reg = Mrdry/Mraix

where N
Reqix = Z7 Sqi®k + Zs S (XX M/ m

and analogousiy for KFd]y s With Yi and yk instead of Xy and Yk . The

estimated variance, from Step 2, is
/e 2
V (R =
oRea) = 1 )

-1 -1 2 -
% B T UparTp Upge) / (pgyy
€S

with

Reg¥k

-~

Urgk = Sdk(®rdkCFak) b ®Fdk = Yk = Red¥c ¥ CFdk = Yk ~
The performance of the two methods has been tested in Monte Carlo experiments on

which we comment in Section 8.

6. DOMAINWISE SIMPLE REGRESSION ANALYSIS

To enrich the brief statement in Section 3, let us discuss our three
methods with another simple application in mind: We seek to estimate, for each
of the D domains, the slope Bd » given by (1.2), of a simple regression with
intercept of y on x . Frequently one needs to compare slopes in different

domains, so the standard error calculations given below are important.

In practice one often exploits the homogeneity gained by an a priori
known categorization of the units. Let z) = (zk]""’zkm""’sz)' required

in Step 0 be a category-+indicator, with Zem © 1 if k e U-m and Zem = 0
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otherwise; m = 1,...,M . The mutually exclusive categories U.m cut across the
domains U, . Possibilities discussed in Section 7 are: (1) the categories are
M =G "postgroups" (called groups in the following) that do not participate in
the sampling design but are exploited after sampling to reduce the estimator's
variance; (2) the categories are the M = H strata in a stratified random
sampling design; (3) the categories are the M = GH cells resulting from a
crossclassification of G groups with H strata. In the third case there will
thus be three dimensions involved: if units are households, the domains

could be smaller administrative areas of a sampled country, the strata could be

larger geographical areas, and the groups family types.

Domains crossed with the categories of 2z divides the population into

DM cells U of sizes Ndm . These latter are the auxiliary quantities that

dm
must be known, from census or other reliable sources, in order to make the F-

and P-methods work. We have

D M DM
N = g Ng. = % N.g = g % Ny (6.1)
The respective parts of the sample s that happen to fall in U‘m and Udm are
denoted s, of size n_, and s, . of size ny . Then (6.1) holds with
small n's substituted for the capital N's . In the general formulas of Section
3, let Xy = (l,xk)‘ » and assume equal weights: w, = a = 1 for all k.
Let I dindicate the method used; I =C , F or P . The slope estimator is in

all three cases of the form

Brd = Zidxy/L1dxx (6.2)
7 5 i timated variance is
where zIdx and ZIdxx are defined below, and the estim
- -1 -1 2,z 2
Vo(Brg) = E<§ Bep (M Uy e Yrgp) / (Frgx) (6.3)

€S
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Details for each method are as follows: Set ﬂdm = ZS l/nk . Use the symbol
dm

~ to indicate "w-means", that is, w-inversely weighted averages such as

= (2 Xk/wk)/(z

S4- Sd4- ]/’ﬂk) or x = (zs.m Xk/‘n’k)/(ZS. ]/'n'k)

sdo S.m m

and analogously for several other w-means used below.

In the C-method, use I = C in (6.2) and (6.3), where

-1 - -1
N'Z (kaxS

- 2 -~ ~ ~
Beguy © Yo/m s Togey = N (X=X )y -y M
Cdxx Sqe ] k Cdxy Sq. K Tsq. Tk Tsg Mk

d
Letting ecy =¥, -V - BCd(xk-xS .) » we have

Ueak = Sak XX, ecak (6.4)

To simplify the F- and P-methods, create centered variables Xd s Yd

for the d:th domain as

- - . = - Yk .
g = X = Xs 3 Yqe = Y Y5 s kely,
d- de
where
- / ’§< N, )X, )
x*¥* = N, {Z. X/ /7 + N, -N, )X
S4. d-""s,. k' "k mop dm Tdm’s o
is the estimate of the domain mean X,, = I x, /N produced by both the
Ud- Ud- k! "d-
F- and P-methods, and y; is analogous.
d.
In the F-method, use I = F in (6.2) and (6.3), where
s smoe TN R E, AN
Erdxx = s, A/ * ) dm “dm’‘“ds
d- m=1 «m
- ) . ~ ~ . 2
and ZFdxy is analogous, with Xdedk and de-mYds-m replacing Xdk and
o 2 . _ 2 . _ :
(de-m) . letting epy = Yy - BFdxdk’ with m-mean eFds.m in s, we

have for k 1in s m



~ ~

Urak * OakXakracHas, Erds ) (6.5)
In the P-method, use I =P in (6.2) and (6.3), where
M
- . 2 "3
Zoax = (Ts, Xae/met L (Ng-Re X%y MW
d- m=1 °m
7 . 2 ) - i
where (X )dS is the mw-mean of Xdk for k in s . Ffurther, I d is
om _ z-m ~ Pdxy
analogous, with Xdedk and (XY)ds.m replacing Xdk and (X )ds.m With
€pgk = de - dexdk , we have for k in S.m
Upgk = Gdk{xdkePdk-(xe)Pds.m} (6.6)
where (Xe)PdS'm is the w-mean of XdkePdk over k in Sum

The u-quantities (6.4), (6.5) and (6.6) explain heuristically why the
F- and P-methods are often superior to the C-method, as discussed in the next

section.

7. DISCUSSION OF SIMPLE REGRESSION ANALYSIS

In the C-method, Ue gk is  (apart from the §&-factor) structured
as “"centered x-variable times residual". By contrast, in the F- and P-methods

Uedk and Up i have (apart from &) the form "centered x-variable times resi-

dual minus category mean adjustment", the latter being Yds EFds and
— em °m
(Xe)Pds , respectively. This difference explains the variance reductions

em
realizable by the F- and P-methods, as seen more clearly for some simple

designs:

(i) Simple random sampling (srs) and G groups. The z-vector

indicates membership in one of M = G groups labelled g =1,...,G . The

15
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estimated variance (6.3) becomes

- 2 -2
srs(Brg) = N (-Avglupgd/n(Zg,,)

where f = n/N and

- 2
VS(uId) = ES(uIdk-uIdS) /(n"])

is the sample variance of the Urgg ° The respective group mean adjustments
contained in ug, —and up, ~are de‘géFds.g and (YE)Pds. , the overbar
indicating straight average over the group part, S.q ° of the whole sample, s .
In methods F and P , the sample variance of u thus consists essentially of
within group components. It will be substantially smaller than in the C-method,
if the groups are efficient so that their mean adjustments differ markedly.

With G =1 group only, the F- and P-methods are identical, but the two are
not identical to the C-method, as a first guess may have been. However, essen-

tially no variance reduction will be realized by the F = P method, since the

one and only group adjustment applies to every unit k .

(i1) Stratified random sampling (strs) and G groups. The strata,

labelled h = 1,...,H , ordinarily cut across the G groups (g =1,...,G)
as well as the D domains (d =1,...,0). Let N, n . and fo=n_ /N o
denote stratum population size, stratum sample size and stratum sampling fraction.

Then (6.3) becomes

-~

(B

Vstrs

Nt~

1) = N?-h(1'fh)vsh(uld)/n-~h(§Idxx)2 (7.1)

h=1

where Vsh(uld) is the variance of Urge over k 1in the sample Sh selected
randomly from stratum h . Here too, the F- and P-methods will lead to
substantial variance reductions over the C-method, if the grouping strongly

supplements, rather than closely copies, the stratification. The argument is
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as in case (i) above: UEdk and uPdk contain a group mean adjustment, which
can strongly reduce the stratum variance of u if the grouping is efficient.

There are at least two possibilities to code the z-vector necessary in Step 0

of the F- and P-methods: {a) simply let z be the G-vector that indicates
group membership; (b) let z be the extended vector of dimension GH indicating
one of the cells in the crossclassification of groups with strata. For each of

the three methods separately, (a) and (b) will not cause much difference in effi-

ciency. The possible gains from stratification are essentially discounted already

in method (a), through the stratumwise buildup of (7.1).

(iii) strs without grouping. Let z, indicate stratum membership.
Clearly here one does not expect the F- and P-methods to be superior to the
C-method. This can be seen more formally from (7.1), where Vg (uId) is the

h

stratum variance of Upqg » OF» equivalently, of Urdk ~ uIdsh » which in all
three methods is “centered x-variables times residual minus stratum mean adjustment".
In the F- and P-methods, the stratum mean adjustment is already present in u
itself and uFdsh = uPdsh = 0 ; in the C-method, the stratum adjustment is
created through quSh . For a given unit k , Urge = uIdsh is not exactly the
same number in the C- , F- and P-methods, but the calculated values of

Vg (uld) will be essentially equal in the three methods.
h

Our methods have the generality of permitting more complex designs,
including cases of two or more stages. The variance reducing effects of Methods

F and P will continue to be strong when the z-vector contains essential

extraneous information.

8. MONTE CARLO EXPERIMENTS

Our Monte Carlo experiments were designed primarily to assess the
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variance reductions realizable by the F- and P-methods over the simple C-
method, and to see if the F- and P-methods differ by much in efficiency. It
must be kept in mind that the results of any simulation depend entirely on the
nature of the population chosen for study. A detailed account of our simulations
will be given elsewhere. We simulated the estimation of the ratio Rd given by
(1.1) through the methods of Section 5, and the estimation of the slope Bd

given by (1.2) through the methods of Sections 6-7. Many conclusions are similar.

Here we give only a brief summary of the results concerning Bd .

Three populations, called REAL , ART1 and ART2, were used. REAL
consisted of real data on 1202 Swedish households divided into D = 24 domains
by Sweden's major admistrative regions (14n) and into G = 5 groups by
size and age characteristics of a household; y and x were, respectively,
disposable household income and taxable household income. The groups were a
rather weak explanatory factor for x aswell as for y , so a priori the struc-
ture of REAL does not strongly favour the F- and P-methods. The artificial
populations ART1 and ARTZ were therefore created to have a smaller within group

variance, relative to the between group variance, in x as well as in y .

The ART! population shared a number of features with REAL : the cell
frequencies ng , and the x-means, y-means and x-to-y correlations in each
group. Group by group, each (x,y)-point of REAL was replaced by a new
randemly generated point with the objective to reduce the within group vari-
ance. ART2 was created to provoke a situétion where extremely large efficiency
gains are expected from the F- and P-methods. The cell frequencies ng were
as in REAL , but the (x,y)-values were chosen so that the within group to
between postgroup variance was very small, and in addition the regression of y

on x was markedly non-linear.
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The domains varied in size from 20% to about 1% of the total population.
1000 repeated simple random samples of size n = 300 (and n = 600 in a second
round of experiments) were drawn, so the situation was that of case {i) in Section
7. For each domain and sample we calculated the Bd-estimate and the confidence
interval (2.3), by each of methods C , F and P as given Section 3. Summary
statistics for the 1000 repetitions were calculated, including eaczh estimator's
mean, variance, average estimated variance and coverage rate (= the percentage

of the 1000 samples with a confidence interval covering the true slope Bd) .

The three methods C , F and P shared the following features: (1)
The design bias of each estimator is very small; (2) The variance of the esti-
mates agrees well with the average of the estimated variances in the larger
domains, but the two differed markedly in some of the smaller domains; (3) The
achieved coverage rates were close to (but always somewhat short of) the nominal
95% or 90% in the larger domains, but considerably less in the smallest domains,

when n = 300 . The increase in sample size to n = 600 improved these trailing

coverage rates.

The following emerged in the comparison of the three methods: (4) The
F- and P-methods performed very similarly for all three populations, in terms
of variance as well as coverage rate. There was some indication that the P-
method is prone to more erratic behavior for the smallest domains; (5) The
variance reductions realized by the F- and P-methods over the C-method were
modest for most domains (30%-0%) in the REAL population, strong in virtually
alldomains (60%-20%) in the ART1 population, and dramatically large in all

domains (over 90%) in the ART2 population.
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9. IMPLICATIONS FOR THE ESTIMATION OF COVARIANCE MATRICES

In this section we disregard the important issue of domain estimation
and compare our approach with some earlier work. Consider the estimation of the

finite population covariance matrix
= oh(x -x){x;-X)'/N
XX 1Y i

where X = z? xk/N . Let the earlier y-variable be included with other vari-
ables in the x-vector, which in this section is assumed not to contain the
constant one indicating intercept. Indirectly, we dealt with domainwise cova-
riance estimation in Section 6. The F- and P-methods of the earlier sections

estimate product sums, rather than covariances directly. But
L= N'A_ - %X (9.1)

where A__ = XN x.x. and X = ZN Xx./N . Therefore we can carry out the F- or
XX 1 “k7k 1%
P-method's Steps O and 1 for the intercept case to obtain estimators of A , and

X which, substituted in (9.1), yield an estimator of Tex

For the F-method, this works as follows: Tlet z, and Eé = z"(Ex be
the auxiliary vector and the prediction constructed in Step 0. The F-estimator

of Eyx is approximately design unbiased and given by

halt By - [}
AFXX X*X* (9'2)
where x* = {Zs(xk/nk)+2?§k-zs(§k/wk)}/N and
- . No oo o oz ae
Ak = Es(xexp/m) + oy XX - £ X /m) (.3)

As for the P-method's estimator, szx , X* 1is the same, but AFxx

is replaced by KPxx structured as (9.3) but with the obvious changes implied

by the P-method's Step 0.



Nathan and Holt (1980), Holt, Smith and Winter (1980), Smith (1981),

Skinner (1982) use a model-based approach to estimating a mean vector and a cova-
riance matrix when a selection procedure may cause bias in the straightforward
estimators, unless corrective steps are taken. They use a result, described by
Birnbaum, Paulson and Andrews (1950) and going back to Lawley {1943) and to Karl
Pearson, about random vectors x and q following some multidimensional (super-
population) distribution: We have made N observations on g . For a selected
subset of n , we have also observed x . The selection of the n from the N
may depend on q . Under assumptions that (a) the regression of x given q is
Tinear and (b) the conditional variances and covariances of x given q do not
depend on q , one arrives at "selection-corrected" estimators of the superpo-
pulation's mean vector of x and its covariance matrix of x . One can proceed
to study estimators of superpopulation regression coefficients and their model-
based confidence intervals, as done, in part by Monte Carlo techniques, in Nathan

and Holt (1980), Holt, Smith and Winter (1980).

The method, translated into the survey sampling setting, leads to the
following estimator of the superpopulation's covariance matrix of x , see Holt,

Smith and Winter (1980), Smith (1981)

S + BAX(S (9.4)

XXs qqu'sqqs) qu

Here, Sxxs = Zs(xk-xs)(xk-xs) /n is the simple uncorrected sample matrix, and

the corrective second term is defined by
-1

Neo = R
Squ = Z](qk-qu)(qk-qu) A qu - Sqq_ssqxs

wm
|

qQqs zs(qk-qs)(qk-qs)'/n ; sqxs B Zs(qk'qs)(xk'xs)'/n

where as s ;s » Qy are vectors of straight sample or population means. Since

21
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the reasoning is model-based, nao inclusion probabilities appear in these formulas.
Instead, the correction term is meant to remove the biasing effect of, say, a non-
proportional statified selection through the inclusion in q of the “design

variables". They consist, in the stratified case, of a vector indicating stratum

membership, and q may contain other known variables.

For an example, let q be the GH-vector indicating membership in one
of the cells, labelied gh , in the crossclassification of G groups with H
strata sampled by varying selection fractions. This is the situation ii(b) of
Section 7, except that domains no longer exist. The estimator (9.4) can after

rearrangement be partitioned as a within-cell term plus a between-cell term,

iy hvi - v - [
L In_ /n)S + 3 VAN /NMX, =x_ )(x_ -x_,) (9.5)
gk gh xxsgh g E gh sgh st Sgh st

where

S =5 (x-x_ Mx,-x_ )'/n_ ;X =% x/n. ;X%X.,=J)7Y (N /NX

To compare, let us find the F-method's estimator in the same situation.
In (9.2), let L n-h/N-h = fh for k in stratum h , and let the z-vector
indicate membership in one of the GH <cells. Defining Ngh = N-h "gh/n-h ,

we arrive at

L., = S(N_ /N)S £ TN /N)(X. =X (X, -X_,.)"
XX g h gh XXS gh g E gh Sgh st sgh st
In the P-method, we obtain
Eopy = § J(N_ /N)S # 7 TN /N (ke =X X -X ) (9.7)
Pxx g Z gh xxsgh g g gh sgh st sgh st

To set the comparison straight, note that the design-based estimators
(9.6} and (9.7) were conceived to estimate the finite population parameter (9.1),

which has the partitioning
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. g E(Ngh/N)Sxx " ) Z gh/N (% gh-iu)(iughmiu)' (9.8)

where Ugh indicates mean vector or covariance matrix for the poputation cell

U By contrast, the model-based (9.5) rather estimates the superpopulation's

gh *
covariance matrix, so we do not have full comparability. All three estimators

(9.5), (9.6) and {9.7) require that the N be known. They differ only in the

gh
weights attached to the within-cell matrix S ; ngh/n s ﬁgh/N and Ngh/N .

XXSgh

In large samples, the common between-cell component of (9.5), (9.6) and
(9.7) converges in design probability to its finite population counterpart in

(9.8). Moreover, Sxxsgh converges to Sssugh for each cell. A priori, pyx

seems the more natural estimator since it applies the known proportions Ngh/N

as weights forthe S . However, the weights Ngh/N used by inx gives

XXS
gh
the same large sample performance, so that both (9.6) and (9.7) converge to (9.8).

By contrast, the weight "gh/n of § causes design bias in the model-

XXS
gh
based method (9.5); it does not conform to the design-based standards of this

paper, when allocation to strata is non-proportional. However, the weight ngh/n
seems natural under the assumed model that the covariance structure of x given

q does not depend on q .
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