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INCOME INEQUALITY MEASURES BASED ON SAMPLE SURVEYS

Fredrik Nygard
Department of Statistics
Swedish University of Turku
SF-20500 Turku 50, Finland

Arne Sandstrom
Statistical Research Unit
Statistics Sweden
S -115 81 Stockholm, Sweden

1. INTRODUCTION

The interest in the size distribution of income, its shape in different
countries, and evolution over time has increased substantially during the last
decades. One reason is that many political steps are taken to promote equality
between individuals and/or households - steps which typically involve redistri-
bution of incomes by means of taxes and transfers.

As a consequence the concept 'income inequality' ha§ entered the public con-
sciousness, and the question of how to assess its magnitude properly has been
much at issue in leading journals in economics and statistics.

In rough outline, the research devoted to make the concept 'income inequali-
ty' operational has adhered to one of two optional approaches. According to one
approach, a measure of income inequa]ity{shou1d be derjved from a well-defined
social welfare function, cf. e.g. Dalton (1920), Atkinson (1970), and Rothschild
and Stiglitz (1970), whereas the other approach is to determine the properties
an appropriate measure should possess and then derive its mathematical form,cf.
e.g. Kolm (1976), Cowell (1980), and Shorrocks (1980, 1983).

However, much Tess work has been done with respect to the sampling properties
of inequality measures. In the vast majority of papers on this subject, income
inequality is firmly regarded as a population characteristic (parameter), ignor-
ing the fact that this parameter frequently has to be estimated from sampled in-
come data. Even if occasional attention has been given this topic - Mendershau-
sen (1939) being one of the first - it was not until the 1970s it was brought
to light more energetically.

The aim of this paper is to point out that income inequality measures can be
estimated from sample surveys. In doing this, we shall merely consider one fami-
ly of inequality parameters, and especially one of its members, and see how it
can be estimated by some different approaches. The family under consideration
is the Gini family, including the most well-known income inequality measure,

viz. the Gini coefficient.




In Section 2 we define the Gini family of inequality parameters.A brief re-
view of its large-sample properties is given in Section 3. Section 4 contains a
discussion of three approaches in estimating the finite population parameters,
viz. the fixed population, the model, and the auxiliary model approaches.Various
variance estimators are discussed in Section 5 and some empirical results are
given in Section 6. Decompositions of the members of the Gini family, by sub-
groups and income sources, are briefly pointed at in Section 7.

2. THE GINI FAMILY

The discussion in this paper will be confined to the Gini family of inequal-
ity measures. Before giving a formal definition of this family, we shall short-
ly review three related topics, viz. the Lorenz curve, Gini's mean difference,
and the Gini coefficient.

"Plot along one axis cumulated per cents. of the population from poorest to
richest, and along the other the per cent. of the total wealth held by these
per cents. of the population." In these words Lorenz (1905) introduced a graph-
ical method for displaying income data, today widely known as the Lorenz curve
(LC). A main property of the LC is that, under quite reasonable assumptions (cf.
Atkinson (1970)) it may be interpreted in terms of income inequality, viz. the
closer the LC is to the diagonal in the Lorenz diagram, the lesser the inequal-
ity in the distribution. As a summary measure of this crucial distance we may
use the area between the diagram and the LC, usually referred to as the

Lorenz area (LA).

Closely related to the LA is the dispersion measure suggested by Gini (1912),
zzizj'yi'yj" where y,,...,yy denotes the incomes in a finite popu-
Gini's mean difference, is related to the

viz. GN = N
lation. Gini (1914) observed that GN,
LA through GN=49NLA, where }N=N'1>:i Y;» and proposed as a measure of concentra-
tion the ratio, RN, between the LA and the largest possible LA, i.e. RN=2LA=
GN/(eyN), The Gini family of income inequality measures is basically a gener-
alization of the parameter RN, the Gini coefficient.

To give a formal representation of the ideas by use of the Lebesgue-Stiltjes
integral, let F(y) denote the distribution function (df) of a variate Y with the
finite mean u= ffmde(y) # 0. Its first moment distribution, defined as F1(y)=

u'1 ff‘ng(t), represents the ordinate of the LC when plotted with the popula-

tion shares p=F(y) as abscissa. Using the inverse of the df, defined as F-1(p)—
inf (y|F(y)2p), 0<p<1, and F™'(0)- inf, {y|F(y)>0), the LC may be given the



single ejuation representation

L(p) = u™" I Fl(t)dt.
Thus, the Lorenz area is given by LA = fé (p-L(p))dp, and more generally we may
define weighted Lorenz areas (WLA) as

MLA =[] W(p)(p-L(p))dp,
where W(p) is a suitably chosen 'weight function'. The Gini coefficient, R, is
now obtained as a special case of the WLA, by putting W(p)=2, Further, under
mild regularity conditions, see Nygdrd and Sandstrom (1981,p.206), the WLA may
by rewritten as WLA = u'1f8 J(P)F'T(p)dp, where the function J(p) is derived
from W(p) through J(p)=U(p) - fgu(p)dpwithU(p)=fgw(t)dt. We will adopt this

reformulation as the formal definition of the family of inequality parameters.

DEFINITION 2.1 The Gini family of inequality parameters is defined as

I(F) = TJ(F)/T“(F), (2.1)
where TJ(F) = f; J(p)F'1(p)dp, T“(F)=u= ng'1(p)dp, and J(p) is a smooth
function.

The traditional Gini coefficient is obtained from (2.1) by selecting J(p) =
2p-1, i.e. R=u"" [0 (20-1)F"'(p)dp. By (2.1), the finite population Gini coeffi-
cient equals RN=(2/N29N)1 Zs iyi:N -1- N-1; where y1:N<y2:N<...<yN:Ndenote
ranked incomes. Since f0(2p-1)F'1(p)dp may be rewritten as G/2, where G =
_{8[8,F"1(p)-F°1(q)|dpdq denotes Gini's mean difference in the general case, the
relation R=G/(2 ) is obvious.

This relation between R and G, and the fact that the numerator TJ(F) in(2.1)
is a parameter corresponding to an L-statistic, have both influenced the devel-
opment of the large-sample results of the statistic corresponding to the para-

meter R.
3. A REVIEW OF SAMPLING PROPERTIES

The early discussion by Lorenz and Gini was in terms of non-negative quanti-
ties, and it was not until the work by Wold (1935) that the LC and the Gini
coefficient were defined for quantities taking on values on the whole real axis.

Let Y1,Y2,...,Yn be independent and identically distributed (iid) as the ran-
dom variable Y with df F(y) and the Lorenz curve L(p). Wold (op.cit.) showed
that the saple LC, Ln(p), converges uniformly 10 L(p) as r+=and that the sample LA converges
to the LA based on F. Let Gn = n'zzizjlyi-yil be Gini's mean difference, based
on a random sample of size n. The sample variance, Var(Gn),was first given by

Nair (1936) and later corrected and proved in a simpler way by Lomnicki (1952).



Glasser (1962) gave an alternative expression of Var(Gn) and used a first-order
Taylor approximation to estimate both Var(Gn) and Var(Rn), where Rn is the sam-
ple Gini coefficient. Using another method of estimation, based on expressing the
variable as aseries of polynomials in F, Sillitto (1969) was able to estimate
Var(Gn) from a sample.

Hoeffding (1948) showed that Gn belongs to the class of U-statistics and hen-
ce is asymptotically normal. It was also shown that if ye[0,=[, then Rn is
asymptotically normal as well.

To obtain the large-sample properties of Rn = Gn/(ZVn), where Vn is the
sample mean, one usually uses the first-order Taylor approximation of Rn about
G and p. The resulting approximation is

(R, - R) =u"'t5 6, - RV}, (3-1)

where the right-hand side of (3.1) is a linear combination of two asymptotical-
ly normally distributed statistics.

G can also be written as T.(F) in (2.1) with J(p) = 2(2p-1). Let the empiri-
cal df Fn(y) be defined as n'fzil{Y1<y}, where 1{*} 1is an indicator function.
Changing F for Fn in TJ(F), defined by (2.1), we obtain

_ o -1
J(Fp) = [gd(p)F_“(p) dp. (3.2)
In the case of the Gini coefficient, (2.1) and (3.2) imply that Rn = (2/n2§n)~

3 iyi:n —1-n'1, where Y Yo €Yy In a similar way we have Tp(Fn) =

T.(F

In © n-1ziy1'
Jung (1955) showed that if J is bounded and has at least four bounded deriv-
atives, then E(TJ(Fn)) = TJ(F) + O(n'1)and nVar(TJ(F)) = of +0(n'2), where
1.1 . - -
63 = [l (min(p,a) - pay 3(p)d(@)dF " (p)dF ™" (q) . (3.3)

If J(+) is continuous in [0,1] then the theorem on uniform convergence of
the Bernstein polynomial, see e.g. Feller (1966,p.221), may be applied to show
that E(TJ(Fn))—* TJ(F) uniformly in probability.

The asymptotic normality of the L-estimate (3.2) has been proved by several
authors with various methods and restrictions on the J-function, see e.g. Serf-
ling (1980) and David (1981) for reviews: A first proof was given by Chernhoff,
Gastwirth and Johns (1967) using a transformation and characteristic functions.
Moore (1968) Taylor-expanded J to obtain normality, and Stigler (1974) used
Hajek's projection lemma. Shorack (1972) used an invariance principle for the
empirical process to prove normality, and Sendler (1979) used Shorack's approach
and the Taylor approximation (3.1) to obtain asymptotic normality for Rn, i.e.



/MR- R) % U~ N(O, u'zog), (3.4)

where ag corresponds to (3.3) with the J-function changed for J1(p)= {3(p)-R}

in accordance with the approximation (3.1). A strongly consistent variance es-
timator, see Sendler (1979), is obtained if we write u %% = Tu(F)'ZTV(F), i.e.
as a product of two statistical functionals, and change F for Fn’ Boos (1979)
proved the asymptotic normality of TJ(Fn) by use of a stochastic Frechet differ
ential and Yang (1977, 1981) extended the results of Stigler. Yang proved that,
if h(y,x) is a real function of y and x and is of bounded variation, then
T(Fn)=n-1zi J(i/n)h(yi:n’x[izn] :
concomitant to the order statistic Yi.n This result is useful, together with
the approximation (3.7), when considering decomposed Gini coefficients (ref. in
Section 7).Goldie (1977) discussed the convergence of the empirical LC and the
asymptotic normality of /ﬁKRn-R). Beach and Davidson (1983) derived the full
(asymptotic) variance-covariance structure of points on the empirical LC, based

) is asymptotically normal, where x iin is the

on simple random sampling /s=3).

Glasser (1962) used a simple random sample of the size n=15 from 163 resi-
dential properties to illustrate the Taylor approximation approach in estimat-
ing Var(Gn) and Var(Rn). As income surveys are usually based on sample surveys
that are more complex than srs, Love and Wolfson (1976) compared Glasser's
approach to a balanced repeated replication (brr) approach on Canadian income
data - a surveyusing a multistage, stratified, E]uster design - and estimated
Var(Rn). The design effects, as measured by {Varbrr(RnyV;rsrs(Rn)}1/2, were
between 1.0 to 1.8 in various subgroups. Nygdrd (1981) used Finnish income data and con-
structed a finite population from which a Monte Carlo study was conducted, cf.
also Nygérd and Sandstrom (1981). One thousand replicates of a srs design, with
sample sizes n=500 and n=1 000, were taken and the following results were ob-
tained for the Gini coefficient (=0.3258):

Sampling distribution of Rn (1 000 reptlicates)

n Mean Min Max Variance
500 0.3252  0.2856  0.4008  213x10°°
1 000 0.3259  0.3010  0.3686  112x107°

The Gini coefficient can algebraically be reformulated in several ways, see
Nygdrd and Sandstrom (1981). Two such expressions were used independently by
Brewer (1981) and Sandstrom (1982) to give explicit expressions of Rn based on
probability samples. Brewer used a jackknife procedure to estimate Var(Rn). To

take the sample design into account, Sandstrom (1983) used an auxiliary model
approach in estimating the finite population Gini coefficient and decomposed



Gini coefficients, and derived explicit variance expression. Nygdrd and Sand-
strom (1985) gave estimates of Var(Rn) both under a fixed population approach
and the auxiliary model approach. These variance estimates were compared in a
Monte Carlo study, under the srs design, both with and without replacement, in

Sandstrom, Wretman, and Waldén (1985).

4, SAMPLE SURVEYS

Surveys on size distribution of incomes are usually based on samples, i.e.
we select a part of a finite population of units on which to base statements
about a universe. The universe may either be (i) a fixed and finite population
or(ii) an infinite population of which the finite population is a random part.
If the purpose is to make inference about a finite population parameter then
the first approach is the common one, but if the purpose is to estimate the in-
equality parameter in some underlying process that generates the inequality
inherent in the finite population then the second approach is applicable. A
third approach is to use the infinite population as an auxiliary model in mak-
ing inference about a finite population (universe) parameter. In Figure 4.1
the three approaches are illustrated.

Assume a finite and identifiable population of size N. We uniquely label
the population units from 1 to N and assume that the label of each unit is
known, which implies that we can define a label set U={1,2,...,N} of the popu-
lation. With the jth unit, jeU, we associate some number, say yj, which can be
seen as a result of measuring unit j. In the fixed and finite population ap-
proach these numbers constitute a vector ¥N=(y1,y2,...,yN). In the infinite
population (model) approach and the auxiliary model approach this vector is
considered as a random outcome of a stochastic vector ZN=(Y1,Y2,...,YN), where
the Yi 's are, for example, assumed as independent and identically distributed
as Y with a continuous df F(y).

A sample s, of the fixed size n, is a subset of U, i.e. s={ji|jieU,
i=1,2,...,n}, and a sampling experiment will yield a sample scU according to a
probability distribution P(s), where P(s) denotes the probability with which s is
choosen. {P(s), scU} is called the sampling design. The stochastic element of
the fixed and finite population (FP) approach is the randomization of the sam-
ple s. In the model (M) and the auxiliary model (AM) approaches, s is assumed
to be fixed, and the stochastic element in these approaches is the randomiza-
tion of the finite population vector XN'

Below, let T(-) denote a statistical functional. In the FP approach, T(FN)
is the parameter under study and T(FN) is a stochastic variable, based on an



estimate ;N of Fy. wbi]e in both the M and the AM approaches T(F) is a parame-
ter and T(FN) and T(FN) are stochastic variables. It is notable that in the AM
approach we are interested in T(FN)r a stochastig variable, which means that
any confidence statements about T(FN) based on T(FN) is of Royall-type, cf.
Royall (1971), i.e. for a given sample s the probability of coverage means the
probability that the interval includes the stochastic variable T(FN) when the
generating of Y-values from the auxiliary model is "repeated".

The finite population df’FN(y) is by the FP approach defined as FN(y) =
N ZUI{yi<y} and by the M and AM approaches as FN(y) = N'1ZUI{Y1<y} , where
I1{*} is an indicator function. For a fixed y, I{-} is constant in the FP but a
stochastic variable in the M and AM, and if Y1, Y2""’Yn are iid so are
I{Y1<y}, I{Y2<y},..., I{Yn<y}. The inverse F&1(p) is defined analogously, cf.

-1

Section 2.

The Gini family of income inequality measures in the finite population is

. _ _ ‘I -1 -
d$f1ned as I(Fy) = TJ(FN)/Tu(FN)’ where T,(F\) = [43(p)F5'(p)dp, Tu(FN)
foFﬁl(p)dp, and FN is defined as above depending on the approach. As an example
. _ - _ _‘| . _ )
in the FP we have Tp(F =¥y = N gy, and in the M and AM, T“(FN) = VN
=N I Yi'

N
U
Figure 4.1 Illustrations of the three approaches in making inference about an

unknown inequality parameter based on a selected part of a finite
population (FP = finite population, M = model, AM = auxilijary

model).
(a) the FP approach (b) the M and AM approaches
universe universe in M
U design [s Y~F(y) T(F)
ZN Zn
T(Fy) T(Fy) ///
U
T(Fy) design
N '
universe
in AM

Before we give explicit point estimates of I(FN), we shall introduce some
useful notations and define two estimates of FN. Let I{ies} be the indicator
function with the expectation T o= P(ies), the inclusion probability of first

order of unit 1.



The following definition gives a Hajek estimator of the FP df FN‘

DEFINITION 4.1 A Hijek estimator of the FP df FN(y) is

N'1ZSI{yi<y}/n1. vy, (4.1)

o -1
where N = zsni .

The stochastic element in (4.1) is s, and the two sums may be rewritten as
ZSI{yi<y}/ni = ZUI{ies}I{yi<y}/ni and zsn;1 = ZUI{ies}/ni’ respectively. The
expectation of the numerator and the denominator are ZUI{yi<y} and N, respecti-
vely. Although both parts are unbiased, the ratio (4.1) is generally biased.

In simple random sampling ﬁ = N and hence (4.1) is unbiased in this case.

Under the M approach, where s is assumed fixed, the design is usually ig-
nored. It has been shown, see e.g. Hoem and Funck-Jensen (1982), that if the
design is non- 1nformat1ve then the outcomes of the sample may be regarded as
iid and hence FN(y) =n z I{Y <y}, Vy. On the other hand, in the AM approach
we will take account for the des1gn to have estimates at the same level as in
the FP approach. To do this we consider a sequence of populations Ut={1,2,..,Nt}
such that Nt+w as t»=. For a fixed t we denote the sample of size nt by st and
assume that ny>e as t>» and that the sampling fraction ft=nt/NE’f’ 0<f<1. When
t increases we get new subsets of Ut such that St is not necessarily a subset

Fy ()

Table 4.1 Point estimates of the Gini coefficient, R.

Apnreoach Point estimaties

-1
- 2P. + 4. o
FP and "M | R, = g i T )Y;/m P
NI y./m;

0
"

z I{yj < yi}/nj

jes
N = I nf1
Jes
" . z.(2Q5 + 1)y, »
n n2-
In
= 1
Q; = 21y, < y;}
- 1 ) -
Yo =N Ziyi if y1<y2< <y then Q. =i -1

Note: If the sampling design is srs the R in the FP and AM approaches is 1dent1ca1 with
Rn in the M approach.



of St+1° The first order inclusion probability is, in a similar way, denoted by
Ty The following definition gives an estimator of the AM df FN(y), correspond
ing to (4.1), cf. Koul (1970) and Sandstrom (1983).

DEFINITION 4.2 Let wit>0 be bounded (\/t) deterministic weights, ieUt, and
W, = n;1zswit # 0. A weighted empirical df is defined by
- -1 it
Fy (¥) = nizo — HY.<y), Wy, (4.2)
t W
t
where Y1,Y2,..,Yn are 1id as Y with continuous df F(y) and I{Yi<y} is

t
an iid indicator function.

If the weights equal some positive constant, then FNt(y) coincides with the

- n;l then (4.2) is similar to (4.1), the

is fixed and Yi is stochastic, while the

'ordinary' empirical df, and if Wit
only difference being that in (4.2) Sy
reverse relation is found in (4.1). The only assumption we make on the weights
is that maxs(wit/ﬁt)2<d2<m, Vt. 1f w,, = ngl,
that the design may not be sgch that minsn1t+o as t»=, see Sandstrom (1983).
In Table 4.1 point estimates I (FN) of the Gini coefficient are given.

Under the M approach the asymptotic normality of /ﬁ(Rn-R) is given by (3.4).
With the consistent variance estimator of Sendler (1979) we also have a base
for large sample estimation of R, under the FP approach when the design is srs.
This result is easily generalized to probability samples for the members of the

Gini family, as is done for the Gini coefficient in Sandstrom (1983), i.e.

then this assumption mainly statac

12,7 ¢

t < -22
(+ v§}1/2
2 _ 2,-2 2 _ -1 =~ \2 . . s
where vy =s /W;, s =n, zs(wit - wt) and w,, is given by Definition 4.2.

Especially when we have probability samples, then Wip T nfl, i.e. Wt = N/nt and
2 _ -1, -1 .2 . 2 . 1 ! .
Sy = Ny Zs(nit - N/nt) . The variance oy in (4.3) equals (3.3) with J{(p)
changed for J1(p) = {J(p) - I(F)}. A consistent variance estimator to u-zog,
based on the estimate FNt(y) in (4.2), is also given in the same paper.

In the AM approach, Sandstrom (1983) has shown that /ﬁ%(RNt-RNQ/(1-ft+V§)1/2
is asymptotically normal. This result is also easily generalized to all mem-

bers of the Gini family, i.e.
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n{/2(1(Fy )-1(Fy ))
22

Ny t L -
ot +7 177 U ~ N(O,P- 02), (4-4)

t

where cg is as in (4.3). Note that if the design is srs then vi = 0.

5. VARIANCE ESTIMATORS

According to (4.4) the asymptotic variance of the AM estimator I(FNt), based on
the weighted empirical df, is given by

2

2 -1 -2 2
ng (1-f, + vi) w%;5 (5.1)

OAM T
In the M case, in line with (3.4), the corresponding variance equals
2 -1 172
GM =n o) 62 (5.2)
Thus, in the M and AM approaches, the precision of the estimates depends cru-

cially on the magnitude of

2 -1

o5 = [ofg (min(p,q)-pa) (3(p)-1(F))(3(a)-1(F))dF ' (p)dF ™" (q).

-~ -

Cogsistent esEimates, ciM and cﬁ, are obtained by substituting the empirical
df's FNt(Y) and FN(y), respectively, for F(y) in the calculation of p = Tu(F)
and oy Explicit expressions for the resulting estimators in the case of
the Gini coefficient are given in Sandstrom (1983,p.181), and Nygdrd and Sand-
strom (1981, p.384).

In the FP approach,with a general sampling design, the variance of the point
estimator I(EN) may be derived by a Taylor approximation similar to (3.1) giving

-

ofp = 2 Var(Ty(Fy) - 1FT (Fy)) - (5.3)

In evaluating G§P it should be noted that T (FA) = [8 (p)F (p)dpis subject
to sample-dependent random variations both through the inverse FN1(p) and the
weight function J(p) (for details se Nygdrd and Sandstrom (1985)). As a con-
sequence, the explicit variance expressions are quite excessive and awkward to
adopt in practice without simplifying assumptions. The variance ogp and its

estimate cgp in the case of the Gini coefficient, for instance, involve inclu-
sion probabilities up to the fourth order, cf. Nygdrd and Sandstrom (1985).

An alternative method of obtaining variance estimates in the FP approach
is to use some subsampling technique involving systematic deletion of observa-



1

tions from the sample. As an illustration, consider the case of deleting one

observation at a time and let I(EN(i)) denote the point estimate based on n-1
observations, with the ith observation deleted. A variance estimator of jack-
knife type is then given by

o3 = (n-1n”" o, (1r{T) - 1(r()2, (5.4)
where I(;é')) denotes the mean of the estimates I(Eéi)).

6. EMPIRICAL RESULTS

The variances of the point estimates of the finite population parameter
I(FN) are in the M, AM, and FP approaches derived from first-order Taylor ap-
proximations. Consequently their accuracy depend on how well the approximations
succeed in capturing the true variance in the sampling distribution. Moreover,
g;en if the Taylor approximation is precise, the variance estimators ;ﬁ and
opM are based on asymptotic considerations, and it is not c]egr how they behave
in samples of small or moderate size. The variance estimator cgp escapes this
kind of objections, but is on the other hand difficult to calculate in practice
due to its dependence on higher-order inclusion probabilities. The jackknife
estimator ;3 is questionable, as it lacks sufficient theoretical justification.
As a consequence, the validity of the different variance estimators is in part
elusive.

To illustrate the case of simple random sampling without replacement from a
small population, Sandstrom, Wretman and Waldén (1985) considered two sets of
populations, one consisting of four symmetric, and one consisting of three
positively skewed populations. From the populations, all of the size N = 11 and
within the two sets differing only with respect to location, the sampling dis-
tribution of the estimated Gini coefficient, based on n = 5 observations, was
derived. A§ variance estimates ;iM’ ;EP’ and ;3 were used. A fourth variange
estimator OEP*’ derived from (5.3), was inc]gded in an attempt to simplify cgp.
It assumes that the random variation in TJ(FN) due to the weight function may
be ignored, imnlying that only inclusion probabilities up to the second order
matter. In Table 6.1 a summary of the results is given.

In the symmetric population set P1-P4 the precision of ﬁN decreases when the
population mean gets close to zero. The same holds for the skewed populations
P5-P7. In fact, four of the sampling distributions (P3, P4, P6, P7) are remark-
ably i1l-conditioned. In addition, the four variance estimators clearly tend to



Exact sampling distribution of RN and the variance estimates.
SRS (n=5) from seven small populations (N=11).

Table 6.1

P1 P2 P3 P4 P5 P6 P7
Sg; YN 50 15.1 10.1 0.1 35.91 11.01 0.21
*;*é Gy, 14.02 14.02 14.02 14.02 19.18 19.18 19.18
ag Ry 0.1402 0.4641 0.6939 70.08 0.2670 0.8708 45.85
£
E(R,) 0.1245 0.4606 0.9571 0.0915!| 0.2270 0.8211 -0.2265
V(Ry) 0.0029 0.0635 1.581 250.6 0.0036 1.418 287.3
S E(cgp) 0.0033 0.1678 148.6 990 850 0.0026 77.08 1 286 000
.g§§ E(OEP*) 0.0416 0.1188 145.0 990 760 0.0452 76.90 1 286 000
—~— -~
o E(oiM) 0.0026 0.1517 119.9 792 630 0.0012 61.71 1 029 000
Qe
o 'E(cg) 0.0049  0.1809 163.5 7 486 | 0.0087 12.45 1 245

exaggerate the dispersion in the sampling distribution. The deviating behavior
of ;gp* in P1 and P5, and of 83 in P4 and P7 is also quite startling.

In order to demonstrate the performance of the estimators in larger popula-
tions, Sandstrom, Wretman and Walden (1985) conducted a Monte Carlo study,
using logistic, uniform, normal, lognormal, Pareto, and standard Weibull parent
distributions to construct finite populations of the size N=10000. Adopting a
srs design with replacement and sample sizes of n=5, 10, 20, and 100, the samp-
ling distribution of ﬁN was approximated form 500 replicates. In Table 6.2
an excerpt from the case n=100 is given.

As compared with the small popultation case, the point estimates ﬁN are now
more well-behaved, even if a slight tendency to underestimation is apparent.
The relative precision of éN’ as measured by the coefficient of variation
among the 500 replicates, is however still quite poor, ranging from 0.048
gunifgrm parent population) to 0.213 (Pareto), Yet, the variance estimates
oﬁM, °§p’ and ;3 are on the average fairly close to the observed sampling
variances, and in this sense they seem to capture the dispersion. On the other
hand, the crude design estimates ;gp* are marked by huge overshooting, except

in the Pareto case.
To inspect the consequences of passing from the srs case to a somewhat more

complex sampling design, a simulation study was conducted. Using one panel
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Table 6.2 Approximated sampling distributions, based on 500 replicates, of RN
and the variance estimates. SRS (n=100) from six parent populations

(N=10 000).
UNIFORM |LOGISTIC |NORMAL |LOGNORMAL {WEIBULL | PARETO

Iy 5 5 5 204.7 | 2 3
£ o |oy 0.57 1.81 1 320.8 | 0.48 -
2o 6y 0.666 | 1.998 | 1.127 | 253.8 | 1.172 | 2.932
S® |R 0.0666 | 0.1998 | 0.1127| 0.5185 | 0.2929 | 0.4886
gz "
_Ewry) 0.0659 | 0.1994 | 0.1115| 0.5053 | 0.2907 | 0.4520
- V(R) ( 10 363 65 1390 404 9310
& E(ofp) 107 XJ 10 334 70 1332 381 4913
o c . -
22 [E2..) 3282 3152 3233 4073 | 3022 8844
e Fpx
£ 3 2 o2
< | E(cgy) 10 332 69 1235 383 4403
59 |2
25 | E@9) | 10 336 71 1547 390 10050

(N=5412 households) of the Swedish income distribution survey carried out by

Statistics Sweden in 1982 as the parent population, 500 replicates of a strati-

fied sample (srs within strata) were drawn. Based on a sample size of n=300

each sample was allocated among seven strata according to the relative size of

each stratum within the whole Swedish population. Due to its intractability,

the variance estimator ng was excluded. Table 6.3 summarizes the simulation

results.

Table 6.3 Approximated sampling distributions, based on 500 replicates, of RN
and variance estimates. Stratified sampling (n=300) form Swedish
1982 income data (N=5412).

Population Approximated sampling distribution
. . . sl o2
0.2925 0.2847 | 150 1432 152 163
\ —~— e
x107°
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The approximated sampling distribution of éN’ with a coefficient of skewness
equal to -0.074 and a kurtosis amounting to -0.019  turns out to be quite
close to a normal distribution. The rather large bias is a somewhat surprising
flaw in the sampling distribution, but may probably be-attribuzed to an abor-

tive allocation of the sample. The variance estimates °§M and 03 seem in this

case too to be successful in capturing the sampling dispersion, whereas ;gp*
once again results in large overestimates.

To get an idea of the sampling error involved in estimating the finite popu-
lation Gini coefficient from large samples, the variance estimates ;AM and ;g
were, in the light of the above results, applied to the income data of the
1982 Swedish income distribution survey. From this stratified sample, of the
size n=10234 households, poigt estimates were obtained as §N=O.3215 in the case
of disposable income and as RN=O.2099 in the case of disposableAincome per con-

sumption unit. Relying on the corresponding variance estimates GiM and gy, We
get the following approximate 95 % confidence intervals for RN:

Disposable Disposable
income/household income/consumption unit
AM 0.3215 + 0.0075 0.2099 + 0.0075
J 0.3215 + 0.0062 0.2099 + 0.0053

7. DECOMPOSITIONS

In many papers on income inequality, the determinants of inequality have
been discussed and the contribution of various components of total inequality
has been subjected to measuring efforts. One method of analysis is to decompose
income inequality by either income determining characteristics (subgroups) or by
income sources. A general question is then: How much of the total inequality is
attributable to the variability in various income determinants and how much to
various income sources?

This question produces two different types of decomposition rules. According
to the first, we have to subdivide the population into mutually exclusive sub-
groups and according to the second, we have to consider total income as a sum of
different income sources.

Decompositions of the Gini coefficient and some members of the Gini family
are discussed in e.g. Nygdrd and Sandstrom (1981) and in Sendstrom (1983) asymp-
totic results, similar to those above, are obtained.
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SUMMARY

By relating the Gini coefficient to a general family of inequality measures,
the Gini family, methods of estimating inequality parameters from samples are
reviewed. Three approaches to making inferences about unknown inequality para-
meters are discussed and some large-sample results are presented. Alternative
variance estimates are presented and compared in the case of the Gini coeffi-
cient. Two different ways of decomposing the members of the Gini family are

briefly discussed.

RESUME
En relatant le coefficient de GINI & une famille générale de measures
d'inégalité, la famille GINI, des méthodes d'estimation de paramétres

d'inégalité sont examinés.

Trois maniéres d'aborder 1'inférence concernant des paramétres d'inégalité
sont discutées et des résultats basés sur de grands échantillons sont présentés.
Plusieurs estimateurs de variance sont présentés et comparés dans le cas du
coefficient de GINI. Deux fagons différentes de décomposer les membres de la
famille GINI sont discutés briévement.
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