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1. INTRODUCTION 

The interest in the size distribution of income, its shape in different 

countries, and evolution over time has increased substantially during the last 

decades. One reason is that many political steps are taken to promote equality 

between individuals and/or households - steps which typically involve redistri­

bution of incomes by means of taxes and transfers. 

As a consequence the concept 'income inequality' has entered the public con­

sciousness, and the question of how to assess its magnitude properly has been 

much at issue in leading journals in economics and statistics. 

In rough outline, the research devoted to make the concept 'income inequali­

ty' operational has adhered to one of two optional approaches. According to one 

approach, a measure of income inequality(should be derived from a well-defined 

social welfare function, cf. e.g. Dalton (1920), Atkinson (1970), and Rothschild 

and Stiglitz (1970), whereas the other approach is to determine the properties 

an appropriate measure should possess and then derive its mathematical form,cf. 

e.g. Kolm (1976), Cowell (1980), and Shorrocks (1980, 1983). 

However, much less work has been done with respect to the sampling properties 

of inequality measures. In the vast majority of papers on this subject, income 

inequality is firmly regarded as a population characteristic (parameter), ignor­

ing the fact that this parameter frequently has to be estimated from sampled in­

come data. Even if occasional attention has been given this topic - Mendershau-

sen (1939) being one of the first - it was not until the 1970s it was brought 

to light more energetically. 

The aim of this paper is to point out that income inequality measures can be 

estimated from sample surveys. In doing this, we shall merely consider one fami­

ly of inequality parameters, and especially one of its members, and see how it 

can be estimated by some different approaches. The family under consideration 

is the Gini family, including the most well-known income inequality measure, 

viz.the Gini coefficient. 
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In Section 2 we define the Gini family of inequality parameters.A brief re­

view of its large-sample properties is given in Section 3. Section 4 contains a 

discussion of three approaches in estimating the finite population parameters, 

viz. the fixed population, the model, and the auxiliary model approaches.Various 

variance estimators are discussed in Section 5 and some empirical results are 

given in Section 6. Decompositions of the members of the Gini family, by sub­

groups and income sources, are brief1y pointed at in Section 7. 

2. THE GINI FAMILY 

The discussion in this paper will be confined to the Gini family of inequal­

ity measures. Before giving a formal definition of this family, we shall short­

ly review three related topics, viz. the Lorenz curve, Gini's mean difference, 

and the Gini coefficient. 

"Plot along one axis cumulated per cents, of the population from poorest to 

richest, and along the other the per cent, of the total wealth held by these 

per cents, of the population." In these words Lorenz (1905) introduced a graph­

ical method for displaying income data, today widely known as the Lorenz curve 

(LC). A main property of the LC is that, under quite reasonable assumptions (cf. 

Atkinson (1970)) it may be interpreted in terms of income inequality, viz. the 

closer the LC is to the diagonal in the Lorenz diagram, the lesser the inequal­

ity in the distribution. As a summary measure of this crucial distance we may 

use the area between the diagram and the LC, usually referred to as the 

Lorenz area (LA). 

Closely related to the LA is the dispersion measure suggested by Gini (1912), 

viz. GN = N £.,•£,• (y.--y.J , where y.,,...,yN denotes the incomes in a finite popu­

lation. Gini (1914) observed that GN, Gini's mean difference, is related to the 

- -1 

LA through G.,=4y..LA, where y,.=N I. y., and proposed as a measure of concentra­

tion the ratio, R.., between the LA and the largest possible LA, i.e. R.=2LA= 

G,,/(?y ). The Gini family of income inequality measures is basically a gener­

alization of the parameter R.,, the Gini coefficient. 

To give a formal representation of the ideas by use of the Lebesgue-Stiltjes 

integral, let F(y) denote the distribution function (df) of a variate Y with the 

finite mean n= /™œydF(y) f 0. Its first moment distribution, defined as F1(y)= 

v~ ^_tdF(t), represents the ordinate of the LC when plotted with the popula-

tion shares p=F(y) as abscissa. Using the inverse of the df, defined as F (p) = 

inf {y|F(y)^p}, 0<p<1, and F"1(0)= inf {y|F(y)>0}, the LC may be given the 
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single equation representation 

L(P) = u~1 /g F"1(t)dt. 

Thus, the Lorenz area is given by LA = L (p-L(p))dp, and more generally we may 

define weighted Lorenz areas (WLA) as 

WLA = /J W(p)(p-L(p))dp, 

where W(p) is a suitably chosen 'weight function'. The Gini coefficient, R, is 

now obtained as a special case of the WLA, by putting W(p)=2, Further, under 

mild regularity conditions, see Nygård and Sandström (1981,p.206), the WLA may 
-11 -1 

by rewritten as WLA = \i~ L J(p)F~ (p)dp, where the function J(p) is derived 

from W(p) through J(p)=U(p) - jju(p)dp with U(p)=/||w(t)dt. We will adopt this 

reformulation as the formal definition of the family of inequality parameters. 

DEFINITION 2.1 The Gini family of inequality parameters is defined as 

1(F) = V F J / y F ) , (2.1) 

where Tj(F) = fj J(p)F~1(p)dp, T (F)=n= jjF"1(p)dp, and J(p) is a smooth 

function. 

The traditional Gini coefficient is obtained from (2.1) by selecting J(p) = 

2p-1, i.e. R=n" \\ (2p-1)F (p)dp. By (2.1), the finite population Gini coeffi-
2- -1 

cient equals RN=(2/N y N) zi iyi;N - 1 - N , where y^ :N<y2:N<-•.<yN:Ndenote 
ranked incomes. Since fn(2p-1)F"^(p)dp may be rewritten as G/2, where G -= 
1 1 - 1 -1 

/ 0 / j F (p)-F (q) |dpdq denotes Gini 's mean difference in the general case, the 

relation R=G/(2|j) is obvious. 

This relation between R and G, and the fact that the numerator T,(F) in (2.1) 

is a parameter corresponding to an L-statistic, have both influenced the devel­

opment of the large-sample results of the statistic corresponding to the para­

meter R. 

3. A REVIEW OF SAMPLING PROPERTIES 

The early discussion by Lorenz and Gini was in terms of non-negative quanti­

ties, and it was not until the work by Wold (1935) that the LC and the Gini 

coefficient were defined for quantities taking on values on the whole real axis. 

Let Y1SY2,...,Y be independent and identically distributed (iid) as the ran­

dom variable Y with df F(y) and the Lorenz curve L(p). Wold (op.cit.) showed 

that the sarple LC, L (p), converges uniformly tö L(p) as r.-̂ »and that the sarple Ln, converges 
n 2 

to the LA based on F. Let G = n I^ljy^y-I be Gini's mean difference, based 

on a random sample of size n. The sample variance, Var(G ),was first given by 

Nair (1936) and later corrected and proved in a simpler way by Lomnicki (1952). 
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Glasser (1962) gave an alternative expression of Var(G ) and used a first-order 

Taylor approximation to estimate both Var(G ) and Var(R ), where R is the sam­

ple Gini coefficient. Using another method of estimation, based on expressing the 

variable as a series of polynomials in F, Sillitto (1969) was able to estimate 

Var(G ) from a sample, 
n 

Hoeffding (1948) showed that G belongs to the class of U-statistics and hen­

ce is asymptotically normal. It was also shown that if ye[0,»[, then R is 

asymptotically normal as well. 

To obtain the large-sample properties of R = G /(2Y ), where 7 is the 

sample mean, one usually uses the first-order Taylor approximation of R about 

G and p. The resulting approximation is 

where the right-hand side of (3.1) is a linear combination of two asymptotical­

ly normally distributed statistics. 

G can also be written as T,(F) in (2.1) with J(p) = 2(2p-1). Let the empiri-

cal df F (y) be defined as n" ' z^ l { Y.<y}, where l{-} is an indicator function. 

Changing F for F in T,(F), defined by (2.1), we obtain 

(3 .2 ) 

In the case of the Gini coefficient, (2.1) and (3.2) imply that R = (2/n y )< n n 
Si iyi:n -1-n" , where y1:n<y2:n<.'

,<yn:n' In a simi1ar wa-V we have T (Fn)
 = 

yn = n - i V i . 

Jung (1955) showed that if J is bounded and has at least four bounded deriv­

atives, then E(Tj(Fn)) = Tj(F) + 0(n"
1)and nVar(Tj(F)) = a\ +0(n"2), where 

a2 = /J/J {min(p,q) - pq} J(p)J(q)dF~1(p)dF_1(q). (3.3) 

If J(.) is continuous in [0,1] then the theorem on uniform convergence of 

the Bernstein polynomial, see e.g. Feller (1966,p.221), may be applied to show 

that E(Tj(F ) ) - Tj(F) uniformly in probability. 

The asymptotic normality of the L-estimate (3.2) has been proved by several 

authors with various methods and restrictions on the J-function, see e.g. Serf-

ling (1980) and David (1981) for reviews: A first proof was given by Chernhoff, 

Gastwirth and Johns (1967) using a transformation and characteristic functions. 

Moore (1968) Taylor-expanded J to obtain normality, and Stigler (1974) used 

Hajek's projection lemma. Shorack (1972) used an invariance principle for the 
empirical process to prove normality, and Sendler (1979) used Shorack's approach 

and the Taylor approximation (3.1) to obtain asymptotic normality for R , i.e. 
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(3.4) 

2 
where a~ corresponds to (3.3) with the J-function changed for J.,(p) = {J(p)-R} 

in accordance with the approximation (3.1). A strongly consistent variance es-

timator, see Sendler (1979), is obtained if we write u. c? = T (F) T..(F), i.e. 

as a product of two statistical functionals, and change F for F . Boos (1979) 

proved the asymptotic normality of T,(F ) by use of a stochastic Frechet différ­
ai n 

ential and Yang (1977, 1981) extended the results of Stigler. Yang proved that, 

if h(y,x) is a real function of y and x and is of bounded variation, then 

T(Fn)=n"
1Zi J(i/n)h(yi.n,Xri.n-,) is asymptotically normal, where x ̂  -. is the 

concomitant to the order statistic y.. . This result is useful, together with 

the approximation (3.1), when considering decomposed Gini coefficients (ref. in 

Section 7).Goldie (1977) discussed the convergence of the empirical LC and the 

asymptotic normality of /h"XR -R). Beach and Davidson (1983) derived the full 

(asymptotic) variance-covariance structure of points on the empirical LC, based 

on simple random sampling 'srr.). 

Glasser (1962) used a simple random sample of the size n=15 from 163 resi­

dential properties to illustrate the Taylor approximation approach in estimat­

ing Var(G ) and Var(R ). As income surveys are usually based on sample surveys 

that are more complex than srs, Love and Wolfson (1976) compared Glasser's 

approach to a balanced repeated replication (brr) approach on Canadian income 

data - a survey using a multistage, stratified, cluster design - and estimated 

Var(Rn). The design effects, as measured by (Varbrr(Rn)/Var (R )}1//2, were 

between 1.0 to 1.8 in various subgroups. Nygård (1981) used Finnish income data and con­

structed a finite population from which a Monte Carlo study was conducted, cf. 

also Nygård and Sandström (1981). One thousand replicates of a srs design, with 

sample sizes n=500 and n=1 000, were taken and the following results were ob­

tained for the Gini coefficient (=0.3258): 

The Gini coefficient can algebraically be reformulated in several ways, see 

Nygård and Sandström (1981). Two such expressions were used independently by 

Brewer (1981) and Sandström (1982) to give explicit expressions of R based on 

probability samples. Brewer used a jackknife procedure to estimate Var(R ). To 

take the sample design into account, Sandström (1983) used an auxiliary model 

approach in estimating the finite population Gini coefficient and decomposed 
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Gini coefficients, and derived explicit variance expression. Nygård and Sand­

ström (1985) gave estimates of Var(R ) both under a fixed population approach 

and the auxiliary model approach. These variance estimates were compared in a 

Monte Carlo study, under the srs design, both with and without replacement, in 

Sandström, Wretman, and Waldén (1985). 

4. SAMPLE SURVEYS 

Surveys on size distribution of incomes are usually based on samples, i.e. 

we select a part of a finite population of units on which to base statements 

about a universe. The universe may either be (i) a fixed and finite population 

or(ii) an infinite population of which the finite population is a random part. 

If the purpose is to make inference about a finite population parameter then 

the first approach is the common one, but if t+re,purpose is to estimate the in­

equality parameter in some underlying process that generates the inequality 

inherent in the finite population then the second approach is applicable. A 

third approach is to use the infinite population as an auxiliary model in mak­

ing inference about a finite population (universe) parameter. In Figure 4.1 

the three approaches are illustrated. 

Assume a finite and identifiable population of size N. We uniquely label 

the population units from 1 to N and assume that the label of each unit is 

known, which implies that we can define a label set U={1,2,...,N} of the popu­

lation. With the jth unit, jtU, we associate some number, say y., which can be 

seen as a result of measuring unit j. In the fixed and finite population ap­

proach these numbers constitute a vector y^(y.,y2,-• -»y^)• In the infinite 

population (model) approach and the auxiliary model approach this vector is 

considered as a random outcome of a stochastic vector Y,.= (Y..,Y2,... , Y N ) , where 

the Y. 's are, for example, assumed as independent and identically distributed 

as Y with a continuous df F(y). 

A sample s, of the fixed size n, is a subset of U, i.e. s={j.|j.eU, 

i=1,2,...,n}, and a sampling experiment will yield a sample sc(j according to a 

probability distribution P(s), where P(s) denotes the probability with which s is 

choosen. {P(s), scU} is called the sampling design. The stochastic element of 

the fixed and finite population (FP) approach is the randomization of the sam­

ple s. In the model (M) and the auxiliary model (AM) approaches, s is assumed 

to be fixed, and the stochastic element in these approaches is the randomiza­

tion of the finite population vector Y„. 

Below, let T(-) denote a statistical functional. In the FP approach, T(F ) 

is the parameter under study and T(FN) is a stochastic variable, based on an 
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estimate F., of FN, while in both the M and the AM approaches T(F) is a parame­

ter and T(FN) and T(F.J are stochastic variables. It is notable that in the AM 

approach we are interested in T(FN), a stochastic variable, which means that 

any confidence statements about T(FN) based on T(FN) is of Royall-type, cf. 

Royall (1971), i.e. for a given sample s the probability of coverage means the 

probability that the interval includes the stochastic variable T(FN) when the 

generating of Y-values from the auxiliary model is "repeated". 

The finite population df FN(y) is by the FP approach defined as F (y) = 
-1 -1 

N Z,jl{y-<y} and by the M and AM approaches as F.,(y) = N EyI{Y.<y} , where 

H'} is an indicator function. For a fixed y, l{-} is constant in the FP but a 

stochastic variable in the M and AM, and if Y.., Y,,,...,Y are i id so are 

HY.<y}, I(Yp<y},..., I{Y <y) • The inverse F~1(p) is defined analogously, cf. 

Section 2. 

The Gini family of income inequality measures in the finite population is 

defined as I(FN) = ^ ( F ^ / T ^ ) , where Tj(FN) = /Jj(p)F-1(p)dp, T ^ ) = 

rQF"
1(p)dp, and FN is defined as above depending on the approach. As an example, 

in the FP we have T (F..) = yM = N l..y. and in the M and AM, T (F..) = ?.. = 
= N Vi-
Figure 4.1 Illustrations of the three approaches in making inference about an 

unknown inequality parameter based on a selected part of a finite 
population (FP = finite population, M = model, AM = auxiliary 
model). 

(a) the FP approach (b) the M and AM approaches 

universe universe in M 

Before we give explicit point estimates of I(FN), we shall introduce some 

useful notations and define two estimates of F̂ ,. Let Hies} be the indicator 

function with the expectation n. = P(i€s), the inclusion probability of first 

order of unit i. 
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The following definition gives a Håjek estimator of the FP df F... 

DEFINITION 4.1 A Håjek estimator of the FP df FN(y) is 

(4.1) 

The stochastic element in (4.1) is s, and the two sums may be rewritten as 

IsI{yi<y}/iii = ZyKifes} Kyi<y}/Tti and z i^ = Zu H i t s } / ^ , respectively. The 

expectation of the numerator and the denominator are Z..I{y.<y} and N, respecti­

vely. Although both parts are unbiased, the ratio (4.1) is generally biased. 

In simple random sampling N = N and hence (4.1) is unbiased in this case. 

Under the M approach, where s is assumed fixed, the design is usually ig­

nored. It has been shown, see e.g. Hoem and Funck-Jensen (1982), that if the 

design is non-informative then the outcomes of the sample may be regarded as 

i id and hence F..(y) = n z HY.<y},Vy. On the other hand, in the AM approach 

we will take account for the design to have estimates at the same level as in 

the FP approach. To do this we consider a sequence of populations U ={1,2,..,N} 

such that N.-» as t-=°. For a fixed t we denote the sample of size n by s. and 

assume that n.-» as t-» and that the sampling fraction f+=n./Nrf, 0<f<1. When 

t increases we get new subsets of U. such that s. is not necessarily a subset 

Table 4.1 Point estimates of the Gini coefficient, R. 

Note: If the sampling design is srs the RN in the FP and AM approaches is identical with 
Rp in the M approach. 
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of st+.j. The first order inclusion probability is, in a similar way, denoted by 

7tit. The following definition gives an estimator of the AM df F..(y), correspond­

ing to (4.1), cf. Koul (1970) and Sandström (1983). 

DEFINITION 4.2 Let w..>0 be bounded (\/t) deterministic weights, i«U., and 
1 

wt = nt swit °' A w e i 9 n t e d empirical df is defined by 

(4.2) 

where Y..,Y?,..,Y are iid as Y with continuous df F(y) and I{Y.<y} is 
1 c nt 1 

an iid indicator function. 

If the weights equal some positive constant, then FN (y) coincides with the 
-1 ^ 

'ordinary' empirical df, and if w.. = it., then (4.2) is similar to (4.1), the 

only difference being that in (4.2) s. is fixed and Y. is stochastic, while the 

reverse relation is found in (4.1). The only assumption we make on the weights 
-77 -1 

is that max (w../w.) <d O , \/t. If w.. = it" then this assumption mainly states 

that the design may not be such that min it. .-K) as t-», see Sandström (1983). 

In Table 4.1 point estimates I (F.J of the Gini coefficient are given. 

Under the M approach the asymptotic normality of /n(R -R) is given by (3.4). 

With the consistent variance estimator of Sendler (1979) we also have a base 

for large sample estimation of R,. under the FP approach when the design is srs. 

This result is easily generalized to probability samples for the members of the 

Gini family, as is done for the Gini coefficient in Sandström (1983), i.e. 

(4.3) 

2 2 - 2 2 - 1 2 
where v. = s /w., s = n. Zc(w.. - w.) and w. is given by Definition 4.2. 

L W X W L S > I L L I I <y •• 

Especially when we have probability samples, then w.. = itT., i.e. w. = N/n. and 

sui = n" EC(TIT - N/n.) . The variance ai in (4.3) equals (3.3) with J(p) 

changed for J.,(p) = {J(p) - 1(F)}. A consistent variance estimator to n" a2, 

based on the estimate Fw (y) in (4.2), is also given in the same paper. 
"t A ? i io 

In the AM approach, Sandström (1983) has shown that ^ A \ - \ )/(1-ft+v£) 

is asymptotically normal. This result is also easily generalized to all mem­

bers of the Gini family, i.e. 
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(4.4) 

2 2 
where a? is as in (4.3). Note that if the design is srs then v. = 0. 

5. VARIANCE ESTIMATORS 

According to (4.4) the asymptotic variance of the AM estimator I(Ffjt), based on 

the weighted empirical df, is given by 

(5.1) 

In the M case, in line with (3.4), the corresponding variance equals 

(5.2) 

Thus, in the M and AM approaches, the precision of the estimates depends cru­

cially on the magnitude of 

~2 ~2 
Consistent estimates, c«M and aM, are obtained by substituting the empirical 

df's FN (y) and FN(y), respectively, for F(y) in the calculation of \i = T (F) 

and 0?. Explicit expressions for the resulting estimators in the case of 

the Gini coefficient are given in Sandström (1983,p.181), and Nygård and Sand­

ström (1981, p.384). 

In the FP approach, with a general sampling design, the variance of the point 

estimator I(F,.) may be derived by a Taylor approximation similar to (3.1) giving 

(5.3) 

2 " 1 -1 

In evaluating orp it should be noted that T,(FN) = L J(p)FN (p)dpis subject 

to sample-dependent random variations both through the inverse FT (p) and the 

weight function J(p) (for details se Nygård and Sandström (1985)). As a con­

sequence, the explicit variance expressions are quite excessive and awkward to 
2 

adopt in practice without simplifying assumptions. The variance app and its 
"2 

estimate opp in the case of the Gini coefficient, for instance, involve inclu­
sion probabilities up to the fourth order, ef. Nygård and Sandström (1985). 

An alternative method of obtaining variance estimates in the FP approach 

is to use some subsampling technique involving systematic deletion of observa-
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tions from the sample. As an illustration, consider the case of deleting one 

observation at a time and let I(FN^)) denote the point estimate based on n-1 

observations, with the ith observation deleted. A variance estimator of jack-

knife type is then given by 

(5.4) 

where I(F^'') denotes the mean of the estimates IfFA1^). 

6. EMPIRICAL RESULTS 

The variances of the point estimates of the finite population parameter 

I(FN) are in the M, AM, and FP approaches derived from first-order Taylor ap­

proximations. Consequently their accuracy depend on how well the approximations 

succeed in capturing the true variance in the sampling distribution. Moreover, 
~2 

even if the Taylor approximation is precise, the variance estimators aM and 

a«M are based on asymptotic considerations, and it is not clear how they behave 

in samples of small or moderate size. The variance estimator oFp escapes this 

kind of objections, but is on the other hand difficult to calculate in practice 

due to its dependence on higher-order inclusion probabilities. The jackknife 
~2 

estimator a-, is questionable, as it lacks sufficient theoretical justification. 

As a consequence, the validity of the different variance estimators is in part 

elusive. 

To illustrate the case of simple random sampling without replacement from a 

small population, Sandström, Wretman and Waldén (1985) considered two sets of 

populations, one consisting of four symmetric, and one consisting of three 

positively skewed populations. From the populations, all of the size N = 11 and 

within the two sets differing only with respect to location, the sampling dis­

tribution of the estimated Gini coefficient, based on n = 5 observations, was 
~? "2 "2 

derived. As variance estimates a.M, aFP, and a, were used. A fourth variance 

estimator O p p , derived from (5.3), was included in an attempt to simplify Opp. 

It assumes that the random variation in T,(FN) due to the weight function may 

be ignored, implying that only inclusion probabilities up to the second order 

matter. In Table 6.1 a summary of the results is given. 

In the symmetric population set P1-P4 the precision of RN decreases when the 

population mean gets close to zero. The same holds for the skewed populations 

P5-P7. In fact, four of the sampling distributions (P3, P4, P6, P7) are remark­

ably ill-conditioned. In addition, the four variance estimators clearly tend to 
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Table 6.1 Exact sampling distribution of R.. and the variance estimates. 

SRS (n=5) from seven small populations (N=11). 

exaggerate the dispersion in the sampling distribution. The deviating behavior 

of a in P1 and P5, and of o in P4 and P7 is also quite startling. 

In order to demonstrate the performance of the estimators in larger popula­

tions, Sandström, Wretman and Walden (1985) conducted a Monte Carlo study, 

using logistic, uniform, normal, lognormal, Pareto, and standard Weibull parent 

distributions to construct finite populations of the size N=10000. Adopting a 

srs design with replacement and sample sizes of n=5, 10, 20, and 100, the samp­

ling distribution of R., was approximated form 500 replicates. In Table 6.2 

an excerpt from the case n=100 is given. 

As compared with the small population case, the point estimates RN are now 

more well-behaved, even if a slight tendency to underestimation is apparent. 

The relative precision of R.,, as measured by the coefficient of variation 

among the 500 replicates, is however still quite poor, ranging from 0.048 

(uniform parent population) to 0.213 (Pareto), Yet, the variance estimates 
~? "2 "2 
GAM' aFP' and al are on t h e a v e r a 9 e fairly close to the observed sampling 
variances, and in this sense they seem to capture the dispersion. On the other 

"2 
hand, the crude design estimates a_ are marked by huge overshooting, except 

in the Pareto case. 

To inspect the consequences of passing from the srs case to a somewhat more 

complex sampling design, a simulation study was conducted. Using one panel 
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Table 6.2 Approximated sampling distributions, based on 500 replicates, of R,. 

and the variance estimates. SRS (n=100) from six parent populations 

(N=10 000). 

(N=5412 households) of the Swedish income distribution survey carried out by 

Statistics Sweden in 1982 as the parent population, 500 replicates of a strati­

fied sample (srs within strata) were drawn. Based on a sample size of n=300 

each sample was allocated among seven strata according to the relative size of 

each stratum within the whole Swedish population. Due to its intractability, 
~2-

the variance estimator a_p was excluded. Table 6.3 summarizes the simulation 

results. 

Table 6.3 Approximated sampling distributions, based on 500 replicates, of Rw 

and variance estimates. Stratified sampling (n=300) form Swedish 

1982 income data (N=5412). 
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The approximated sampling distribution of RN, with a coefficient of skewness 

equal to -0.074 and a kurtosis amounting to -0.019 turns out to be quite 

close to a normal distribution. The rather large bias is a somewhat surprising 

flaw in the sampling distribution, but may probably be attributed to an abor-
~2 ~2 

tive allocation of the sample. The variance estimates o.M and o, seem in this 

case too to be successful in capturing the sampling dispersion, whereas aFp 

once again results in large overestimates. 

To get an idea of the sampling error involved in estimating the finite popu-
~2 "2 

lation Gini coefficient from large samples, the variance estimates a«M and a-, 

were, in the light of the above results, applied to the income data of the 

1982 Swedish income distribution survey. From this stratified sample, of the 

size n=10234 households, point estimates were obtained as RN=0.3215 in the case 

of disposable income and as RN=0.2099 in the case of disposable income per con-

sumption unit. Relying on the corresponding variance estimates a.M and a-,, we 

get the following approximate 95 % confidence intervals for R • 

Disposable Disposable 
income/household income/consumption unit 

7. DECOMPOSITIONS 

In many papers on income inequality, the determinants of inequality have 

been discussed and the contribution of various components of total inequality 

has been subjected to measuring efforts. One method of analysis is to decompose 

income inequality by either income determining characteristics (subgroups) or by 

income sources. A general question is then: How much of the total inequality is 

attributable to the variability in various income determinants and how much to 

various income sources? 

This question produces two different types of decomposition rules. According 

to the first, we have to subdivide the population into mutually exclusive sub­

groups and according to the second, we have to consider total income as a sum of 

different income sources. 

Decompositions of the Gini coefficient and some members of the Gini family 

are discussed in e.g. Nygård and Sandström (1981) and in Sandström (1983) asymp­

totic results, similar to those above, are obtained. 
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SUMMARY 

By relating the Gini coefficient to a general family of inequality measures, 

the Gini family, methods of estimating inequality parameters from samples are 

reviewed. Three approaches to making inferences about unknown inequality para­

meters are discussed and some large-sample results are presented. Alternative 

variance estimates are presented and compared in the case of the Gini coeffi­

cient. Two different ways of decomposing the members of the Gini family are 

briefly discussed. 

RESUME 

En relatant le coefficient de GINI à une famille générale de measures 

d'inégalité, la famille GINI, des méthodes d'estimation de paramètres 

d'inégalité sont examinés. 

Trois manières d'aborder 1'inference concernant des paramètres d'inégalité 

sont discutées et des résultats basés sur de grands échantillons sont présentés. 

Plusieurs estimateurs de variance sont présentés et comparés dans le cas du 

coefficient de GINI. Deux façons différentes de décomposer les membres de la 

famille GINI sont discutés brièvement. 
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