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ABSTRACT

Data are given from one source for the cells
of a two~dimensional table, and from another
source for the two margins of the table.

The two sets of data do no agree mutually.
One wants to reconcile them.

There are two cases. In one case, the margins
are given exactly. In the other case, the
margins are estimates just like the cells.

The problem can be formalized using the
concepts of parameter and estimator. Two
solutions emerge, one for either of the two
cases. Both solutions apply least-squares.

The approach proposed is intended to replace

the traditional approach by means of iterative
proportional fitting.

KEY WORDS

tables, margins, least-squares,
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1 The problem

Consider a two-dimensional table. For each cell of the table,
there is a true number. These true numbers are not known.

Assume that there are two statistical investigations giving
information on the table. The two investigations will be
called the cells investigation and the margins investigation.

The cells investigations provides one estimate for each
cell of the table. These estimates imply estimates of the
row sums, the column sums, and the total, of the table.

The margins investigation provides either of two kinds

of information on the margins of the table. Either it provides
exact information on each row sum and/or each column sum

and/or the total of the table. Or else it provides one estimate
of each row sum and/or each column sum and/or the total

of the table.

Usually, the information on the margins provided by the
margins investigation is more precise than that implied
by the cells investigation.

There are thus two sets of data relating to the table. Except
by accident, these two sets of data are not consistent with
each other. The row and column sums, and the total, implied
by the cells investigation, do not agree with those given

by the margins investigation.

We should use all the information from both investigations.
We should use it to provide better estimates of the cells.
If the margins are known exactly, the new estimates of the
cells should be consistent with them. If the margins are
not known exactly, there should be new estimates of the
margins consistent with the new estimates of the cells.



The classical formulation of this problem was given by Deming
and Stephan [ 1940 |. The solution usually applied is to

use an algorithm called Iterative Proportional Fitting (IPF).
A recent development in this direction is the Structure
Preserving Estimates (SPREE) of Purcell [1979].

Here, another solution will be proposed. It uses Teast-squares.
It does not call for iterative computations. It gives minimum
variance linear unbiased estimators for any sample size.

The solu tion proposed is not new, but it seems to be little
used in practice. A paper giving an application of it, which
is at once more general and much more specific than the present

paper, is van der Ploeg [ 1982 .



2 The solution in outline

Let the rows and the columns of the table be indexed
h=1,...,r and k = 1,...,c, respectively.

Associated with each cell of the table there is a parameter
Bhk’ the unknown true value of the cell.

The information on the (hk)'th cell given by the cells
investigation is denoted Yk It is assumed that Ypk c€an
be regarded as an outcome of an unbiased estimator of the

corresponding parameter Bhk'

Let us assume that the margins investigation does provide
information on the row sums of the table. What will be said
applies equally to column sums and total, if information

is provided on those.

The information on the h'th row sum provided by the margins
investigation will be denoted Zpp If this information is
exact, it gives the true value of the corresponding row
sum Bh1 + ...+ th of parameters. If it is not exact, it
is assumed that Zpy, Can be regarded as an outcome of an
unbiased estimator of this row sum of parameters.

In the case of exact information on the margins, the situation

is as follows. There are unbiased estimates for each of

rc known {trivial) linear combinations of the rc unknown
parameters. There is exact information on each of a number

of known linear combinations of the parameters. This is
precisely the situation where least-squares with exact linear
restrictions is applicable. The solution proposed is, therefore,
to apply least-squares with exact linear restrictions. The
suggestion to do so was given already by Deming and Stephan

[_ 1940 ] but not pursued by them due to mathematical and computa-
tional difficuities. Matrix algebra and the electronic computer

‘have now eliminated these difficulties.



In the case where the information given by the margins
investigation is not exact, the situation is as follows.

From the cells investigation, there are unbiased estimates

for each of rc known (trivial) linear combinations of the

rc unknown parameters. From the margins investigation,

there are unbiased estimates for each of a number of known

linear combinations of the parameters. (In the case where

the margins investigation provides information on the row

sums only, there are r such estimates.) There are thus two

sets of unbiased estimates for known linear combinations

of the same set of parameters. This is precisely the situation
where least-squares is applicable. Preferably, the least-

squares analysis should be weighted so as to take into account
any difference in precision within and between the cells investi-
gation and the margins investigation. The solution proposed is,
therefore, to apply weighted least-squares. If the weights are not
known axactly, they should be estimated or even guessed.

In the case where the information given by fthe margins in-
vestigation is not exact, the solution propcsed produces
new estimates not only of the cells, but of the margins

too.

For simplicity, we assume that any two estimates, whether

from the cells investigation or from the margins investigation,
are mutually uncorrelated. Very likely, this is not exactly
true. But at least it may often be true that the covariances
are of a smaller order of magnitude than the variances,

so that the assumption is acceptable as an approximation.

The solution proposed is based on one fundamental and critical
assumption. This assumption is as follows. Any information
given by the two investigations is, if not exact, an estimate
without bias. If this assumption is not reasonable, the

new solution proposed here is not applicable.

The solution proposed has one practical drawback. It calls

c
for inversion of a matrix the ovrder of which increases
with v and/or ¢. If the number of cells is large, there

is risk of numerical inaccuracy.



3 Some matrix notation
3.1 General matrix notation

Matrices will be denoted by capital letters. Vectors will be
denoted by lower-case letters. Throughout, any vector symbol
written without a transpose sign denotes a column vector.

The orders of vectors and matrices are indicated as follows.
An n-vector is a (column) vector of n elements. A pxg matrix

is a matrix of p rows and g columns.

The matrix In is the nxn unit matrix, i.e. a diagonal matrix,
each diagonal element of which is 1.

The vector jn is an n-vector, each element of which is 1.

Let A be an mxn matrix and L a pxq matrix. Than AQ@QL is

the direct product of A and L, the mp x ng matrix defined
as follows, where 2k is the element in the h'th row and

k*th column of A.

( al Al e a, L
a21L aZZL ..... aan
ARL =
am1L amZL ..... aan )
Tne relation
(A@®L) =AQL

is an immediate consequence of the definition of the direct

product.



3.2 Matrix notation relating to least-squares

There are n units of analysis. The order of the design matrix
is nxp and it is denoted X. The n-vacior of obsarvations is danoted v,
fach row in x and vy is associated with one unit of analysis.

Any p-vector of regression coefficients is denoted b. Speciai
regression coefficient vectors are indicated by subscripts.

Let a diagonal matrix be called positive if and only if
each of its diagonal elements is strictly positive. Any
positive diagonal nxn matrix will be denoted Q with diagonal

elements q;> i=1,...,n.

Let Z be an sxp matrix and z an s-vector such that the rank

of Z is s. Then
/b = 2z

is a set of s linearly independent linear restrictions on

the regression coefficients.
3.3 Matrix notation relating to tables and margins

The subscripts G, R, C and T indicate the table without
margins (the Guts of the table), the Row sums, the Column
sums, and the Total of the table, respectively.

Data from the cells investigation are denoted by the letters
Y and y. Data from the margins investigation are denoted
by the letter z.

The table and its margins are regarded and treated as a

matrix and two vectors.



The table without margins given by the cells investigation
is the r x ¢ matrix Y. Its elements are Yk where h=1,...,r
is the row index and k=1,...,c is the column index.

Take all the elements of Y in the order in which you read
the letters of a printed page. Put m = rc. The m-vector
consisting of the elements of Y in the order mentioned is
denoted Yg- The elements of Yo keep their double-indexing
from Y.

The r x ¢ matrix of parameters corresponding to the table
without margins is denoted B (read capital beta). Its elements

are Bhk’ indexed like Yk

Take all the elements of B in the order in which you read
a printed page. The m-vector obtained is denoted 8. Its
elements keep their double-indexing from B.

The row sums implied by the cells investigation form the

column r-vector Yp = ch with elements Yan? h=1,...,r.

The column sums implied by the cells investigation form

the row c-vector y' = j. Y with elements y.. , k=1,...,C.
€ r Ck

The total implied by the cells investigation is the scalar
yo = 3.9

The row sums given by the margins investigation (if any)
form the column r-vector Zn with elements Zoh? h=1,...,r.

The column sums given by the margins investigation (if any)
form the row c-vector Ze with elements Zeys k=1,...,cC.

If a unique total is given or implied by the margins investiga-

tion, it is denoted Z7.
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4 Regression with exact Tinear restrictions

Throughout this section, weighted least-squares (WLS) is
considered. Everything said is conditional upon a fixed
set of weights given by the positive diagonal matrix Q.

4.1 Unrestricted descriptive least-squares

Consider a given n x p design matrix X of rank p and a given
n-vector of observations y. Any p-vector b defines an approxi-
mation vector y = Xb and a vector of approximation errors

e =y - Xb.

The weighted sum of squares of the approximation errors

is the following function of b.

(4.1) f(b) = (y-Xb)'Q{y-Xb).

It is minimized by the p-vector

(4.2) by = (X0 %0y,

whose elements are called the WLS regression coefficients.

The subscript 0 on bO is a zero intended to indicate that
there are no restrictions of the kind to be introduced below.

That bO minimizes the approximation error sum of squares
is well known. The minimum is called the residual sum of

squares.
4.2 Unrestricted Teast-squares estimation

The classical full rank Linear Model is as follows. The

design matrix X is non-stochastic and known. Itsrank is

equal to its number of columns. The vector of observations

y actually observed is regarded as an outcome of a corresponding
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stochastic vector, which is usually also denoted y. There is
a non-stochastic and unknown p-vector of parameters 8. There
is a non-stochastic and unknown average disturbance variance
62. There is a known non-stochastic positive-definite n x n

matrix W.

The Linear Model states that the vector of observations
has the expected values.

(4.3) E(y) = X8

(4.4) V(y) = o°W.

Throughout this paper, the matrix W will be assumed to be
positive diagonal. This gives a subclass of the general
Linear Model, the heteroscedastic linear model.

Consider the WLS regression coefficients

1

1 )—1X'W_ y

(4.5) bw = (X'W

1

obtained by using the weights Q = W '. These waights are invercely

nronortional to the variances of the units of analysis.

The following theorem is given without proof: The elements
of bw are the minimum variance Tinear unbiased estimators
of the corresponding elements of the parameter vector R.

This is a variant of the well-known Gauss-Markov theorem

of least-squares theory. It is proved in many text-books.

It can be derived as a simplified special case of the theorem
stated and proved later in this section.
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4.3 Rastricted descrintive least-squares

Consider a given n x p design matrix X of rank p and a given
n-vector of observations y. Consider a given s x p matrix
Z of rank s and a given s-vector z jointly defining the

Tinear restrictions
(4.6) b = z

on the regression coefficients. Assume a given positive

diagonal weight matrix Q.

The weighted sum of squares of the approximation errors
is (4.1) as above. It is minimized by the p-vector.

(4.7) b, = by - (xe) 'z [z(xee0) 127 T zbye2),

where bO is as in {(4.2). The elements of bZ are called the

restricted WLS regression coefficients.

The restricted least squares regression coefficients are
equal to their unrestricted counterparts, minus a correction
“proportional to" the amounts by which the unrestricted

coefficients fail to satisfy the restrictions.

For the special case Q = In, the restricted regression coefficients
were derived by Theil [[1961 .

A simple demonstration that bZ minimizes the weighted sum
of squares of the approximation errors will now be sketched.

Consider any p-vector bZ + d of regression coefficients
satisfying the restrictions (4.6). Then Zd = O.
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The approximation error sum of squares is

f(bz+d) = [y-X(bZ+dX|'Q[y—X(bZ+dXL=
= (y-Xb;)'Q(y-Xbs) + d’X'Qxd
- d'X'Q(y—XbZ) - (y—XbZ)'QXd.
Because Zd = 0 it can be shown that
d'X'Q(y-XbZ) =0

(just substitute (4.7) and develop!), so that

f(b,+d) = f(b;) + d'X'Qxd
Now d'X'QXd > 0 with d'X'QXd = 0 if and only if d = O.
4.4 Restricted least-squares estimation

Assume the heteroscedastic Linear Model consisting of (4.3)
and (4.4).

Assume that the parameter vector is known to satisfy the

s linear restrictions
(4.8) 8 = 2
analogous to (4.6).

1

Choose Q = W .

Consider the restricted WLS regression coefficients bZ defined
in (4.7).
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The elements of bZ are the minimum variance linear unbiased
estimators of the corresponding elements of the parameter

vector g.
Proof.

For convenience, define M = (X'QX)'1.

The restricted least-squares regression coefficients are

o
1}

Ay + Hz,
where A is the p x n matrix
A = [M - MZ'(ZMZ')'1ZM:]X'Q,

while H is the p x s matrix

o= Mz(zmz ')l
The restricted least-squares regression coefficients are

linear in y and z. Consider any other estimator which is
Tinear in the same sense.

Let D be any p x n matrix and K any p x s matrix. Consider
the p-vector

b = (A+D)y + (H+K)z
of alternative linear estimators of 8.

A necessary condition for b to be unbiased estimators of
e is that DXp+ Kz = 0, which by (4.8) implies that (DX + KZ)p
This equation must hold identically in 2, so
DX + KZ =0
is a necessary condition for unbiasedness.

0.
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Consider any vector of Tinear unbiased estimators of R. Its covariance matrix is

VI (A+D)y + (H+K)z = V[ (A+D)y =

= GZAWA' + czAWD' + cZDWA' + GZDWD'.

Now, since QW = I and DX = -KZ, AWD' = 0.

Consequently,

V(b) = V(b 2

Z) + o DWD'.
Since W is positive-definite, any diagonal element of cZDWD'
is non-negative. A1l the diagonal elements are 0 if and

oniy if D = 0. Thus

is a necessary condition for minimum variances.

Now, if D = 0, then KZ = 0 and then, because the rank of
Z iss, K = 0.

We have shown that the equations

D=0and K =0

are, together, necessary conditions for the general restricted
1inear estimators b to be unbiased and have minimum variances.

That they are also, together, sufficient, is evident.

End of proof

A theoram rmuch more general than ours, which includes ours as
a special case, is stated and proved by Theil [[1971 .
We include a proof here, because it is not quite trivial to

derive our theorem from that of Theil.
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Finally, a word of explanation. The unrestricted least-squares
estimators bo have minimum variances in the class of unbiased
estimators linear in y. The restricted least-squares estimators
bZ have minimum variances in the class of unbiased estimators
linear in y and z. The latter class contains the former

class as a subset. Thus, the latter minimum may be lower

than the earlier one.
In fact, it is easy to show that
V(bo) - V(bz) =
2

= oMz (ZMZ' )" Zm,

where M is as defined above. The difference matrix is positive-

semidefinite, so its diagonal elements are non-negative.
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5 The case of exact margins

The cells investigation provides an m-vector of estimates
Yq of the cell parameters 8 of the table.

The margins investigation provides exact knowledge of the
r-vector of row sums ZR and/or the c-vector of column sums ZC
and/or the total ZT of the r x ¢ parameter matrix B.

Corresponding to the cells investigation there is the linear
model obtained by putting X = Im and y = Yg in (4.3). The

model is
E(yG) = 3,

V(yG) = g W.
In the estimator formulas, choose Q = W'T.

The unrestricted least-squares estimators (4.5)

are
bo = yG s

i.e. each cell parameter is estimated by the corresponding

cell value from the cells investigation.

The estimators to be used are the restricted least-squares
estimators (4.7), It remains to determine the restrictions
(4.6) to be applied.
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5.1 Only row sums given

The margins investigation gives the restrictions obtained

by putting

in (4.6).

Some additional notation is now needed. Associated with

each cell of the table there is a variance czwhk,

h=1, ..., rand k =1, ..., c. These variances form an analogous
r x ¢ variance matrix, say c@v. These variances, taken in the
order in which you read the letters of a printed page, are the

main diagonal elements of the positive diagonal m x m matrix

GZW.

Let the h'th row vector of the r x ¢ matrix of variances V be
denoted wﬁ, h=1, ..., r. Define the m x r block-diagonal matrix

/ ~N
Wy 0 0 0
w o ..
x 2
wR = G Wy 0

Let the h'th row sum of the matrix of variancesV be denoted

th, h=1, ..., r. Define the r x r positive diagonal matrix
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g Wy O 0 ...0 |
0 Wpo 0 ...0
WR = 0 0 Wog-
q 0 0 0 Yoy

So far for additional notation.

Now, apply the formula (4.7) for the restricted least-squares
estimators bZ‘ We get

(5.1) bZ =Yg - W(Ir ® jc) .
L(IL® JOWI. ® i) ] LI ® 3y -z ]
It can be seen that
W(Ir C) jc) = Nﬁ
and that
(Ir ® jé) W§ = wR.

Further,
(I, ® 3)yg = Y-

Thus, (5.1) simplifies into
(5.2) bZ =Yg - Nﬁ wR (yR - zR).

This is the matrix expression for the restricted least-squares

estimators.
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Re-written in scalar notation, our result (5.2) is as follows.
For any h and k,

-1

C
(5:3) By = vy = ¥l L ) Oy = Zp)-

This is the restricted least-squares estimator for the (hk)'th

cell.

The estimate given by the estimator can be described verbally
as follows. For any cell in the h'th row of the table, con-

sider the difference YR~ Zrn between
the h'th row sum of the cells investigatieon and the h'th row

sum of the margins investigation. Subtract a suitable fraction
of this differ=nc2 from tha call valu2 Yhk given by the cells
invastigation. What fraction? The difference is shared out among

the cells of the h'th row in proportion to the cell variances

czw
hk*
By the theorem of section 4, this very simple estimate is

the minimum variance linear unbiased estimate when the margins
investigation gives only the row sums, but gives them exactly.

5.2 Only column sums given

The margins investigation gives the restrictions obtained
by putting

Z = j;\@Ica

Z =z
in (4.6)

This case is entirely analogous to the case of given row
sums. It will not be developed here.
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5.3 Row and column sums given

The margins investigation gives the r row sum restrictions
above plus the c column sum restrictions above. But consistency
requires that the sum of the row sums is equal to the sum

of the column sums. There are thus only s =r + ¢ - 1 Tlinearly
independent Tlinear restrictions on 8.

In order to get a formula to compute from, the simplest
way is to drop the last column sum restriction. As a preliminary

step, put
I @3
Z*:
GO
R
Z*:
e

Then drop the last row of Z* and z*, and substitute the
remaining s x m matrix Z and s-vector z into (4.7).

The actual computation of a solution must be left to an
electronic computer. The programming needed is easy, because
of the simple structure of Z.

The result is again, by the theorem of section 4, minimum
variance linear unbiased estimates.
5.4 A note
In the case of exact margins, the general linearly restricted least-
squares estimator (4.7) is simplified as follows. First, b0=yG.
Second, (X'QX)'1 = W. Hence,

- \ 1 1-1 _
b, = yg - WZ [ZWZ'] (ZyG z).
It may be noted that this is analogous to the linearly restricted
minimum modified chi square estimator given, in the context of

contingency tables, be Grizzle and Williams [ 1972 ].



22

6 The case of estimated margins

The cells investigation provides an m-vector of estimates
Yg of the cell parameters R of the table.

The margins investigation provides an r-vector of estimates
Zp of the row sums, and/or a c-vector of estimates e of
the column sums, and/or an estimate Z; of the total, of

the r x ¢ parameter matrix B.

In the linear models below, we use a common average variance

02. This is not a limitation.

Corresponding to the cells investigation there is the linear

model.
E(yg) = &,
Viyg) = o'Wg .
where WG is a known positive diagonal m x m matrix.

Corresponding to the margins investigation, there are one,
two or three additional analogous linear models.

If the margins investigation provides estimates of the row

sums, there is the model

Flzg) = (I, ® 30) 6

= 02 WR.
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If the margins investigation provides estimates of the column
sums, there is the model

E(ze) = (3 ® 1) 7,

02 W

c

If the margins investigation provides an independent estimate
of the total, there is also the model

where wT is a1l x 1 matrix.

The models that there are, are (one may say) concatenated
into a single heteroscedastic Linear Model involving the
parameter vector g. For example, if the margins investigation
provides estimates of the row and column sums, the joint
model of the cells and margins data is as follows.

Ya Im )
E |z | =| I,® ¢ B >
ZC J;,.@IC
~
Yo ) WG 0 O}
V zZ = O R O'
z 0 0 wc}
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If the margins investigation is such that the sum of the

row sums is always equal to the sum of the column sums,

one should, for theoretical correctness, drop the last column
sum observation and the last row of the model. But there

is probably Tittle harm in keeping them, so as to preserve

symmetry.

The estimators to use are the weighted Teast-squares estimators
(4.5) corresponding to the joint model. Here, cells data
and margins data are given weight in inverse proportion

to their variances.

The cells estimates bhk obtained are linear in the cells
and margins observations. By the Gauss-Markov theorem, they
are minimum variance linear unbiased estimates.

The row and column sum estimates obtained are the row and
column sums of the cells estimates. By a well-known general-
isation of the Gauss-Markov theorem, they too are minimum

variance linear unbiased estimates.
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7 An historical note

In 1940, Deming and Stephan formulated what has been called
here the case of exact margins of the problem of reconciling
tables and margins; Deming and Stephan | 1940 .

Deming and Stephan applied least-squares with exact linear
restrictions, without the convenient matrix algebra nowadays
customary. They considered a two-dimensional table, and
proceeded first to treat the situation where the margins
investigation gives the row sums only.

Deming and Stephan assumed a heteroscedastic linear model,
but a very particular one. They assumed that the variance
of the (hk)'th cell observation Ypi Was proportional to

the value observed. In our notation, their assumption was

that w forh=1, ..., rand k =1, ..., c.

hk = Yhk
Under this special assumption only, Deming and Stephan derived
the restricted least-squares estimators of the cell parameters
th .
Let us substitute Deming's and Stephan's special assumption
into our more general expression (5.3). The outcome is

b )~ 1

hk = YhkYRn)  ZRee

which is Deming's and Stephan's result too.

The expression found says the following. Take the (hk)'th
cell observation. Adjust it by a multiplicative factor.
The factor to be used is the ratio between the h'th row
sum given by the margins investigation and that given by

the cells investigation.
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This Tooks very much like a multiplicative correction of
the cells observation. But as our more general expression
shows, it is in fact a very particular case of an additive
(or "subtractive") correction, where two terms cancel.

The Interative Proportional Fitting algorithm is much used in attempts to solve the
problem of reconciling tables and margins. The IPF algorithm

may be characterized as essentially multiplicative. From

Deming and Stephan [ 1940 |, it seems that the IPF algorithm

was originally inspired by the simple estimator formula

derived above for a very special case.

The theoretical basis for the IPF algorithm is perhaps some-
what slender. The theoretical basis for least-squares with linear
restrictions seems more firm and adequate. The IPF algorithm

may however, be fitted into the new theoretical framework

as a numerical device for computing the restricted regression
coefficients in the case where the cell variances are assumed

to be proportional to the cell values.
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8 An artificial example

The table and the margins given are as follows.

102 51 191 350
205 68 86 350
250 112 53 450
297 302 413 | 1000
900 500 750

The variances of

all equal.

In the case of exact margins,

the reconciliation is as follows.

the cells are assumed to be

the outcome of

114 43 193 350
212 55 83 350
271 114 65 450
303 288 409 | 1000
900 500 750 [2150

In the case of estimated margins, the variance
of any row sum is assumed to be 507 of the
variance of a cell, and the variance of any

column sum is assumed to be 107 of that of a cell.

In this case, the reconciliation gives the

following result.

114 43 193 350
212 56 84 352
270 113 63 446
303 289 410 1002
899 501 750 | 2150
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The outcome of the reconciliation is not

a set of integers., In the tables above, the
numbers obtained are rounded off to the

nearest integer. This may cause minor problems,

but does not do so in the present example.
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APPENDIX

TWO COMPUTER PROGRAMMES

A1 An outline

Two computer programmes have been written, one
for the case of exact margins and one for the
case of estimated margins. The input and output
parts of the two programmes are very similar.

Both programmes are limited to the situation
where the margins investigation gives information
on the row sums and the column sums, no less,

no more.

Both programmes assume that the Y and z data
read in are integers, snd give results rounded
off to integers.

The programming was made inside the SAS procedure
MATRIX. When the programmes are to be run, there
must be a JCL card telling the computer that it
is a SAS programme that is coming.

A.2 The indata.

For the time being, the programmes accept at most
6 rows and at most 6 columns. This restriction is
imposed in order to get a convenient input
procedure via a telescreen terminal.

The indata are arranged into a 14 x 7 matrix.

Any element of this matrix not used for a number
must be filled in with a dot. SAS reads the
indata as if it were 14 observations on 7
variables, and accepts the dots as missing values.

The r x ¢ matrix Y given by the cells investigation
must be placed in rows 1 to r and columns 1 to c.

The row sum vector z, given by the margins in-
vestigation must be placed in rows 1 to r and
column c+ft.

The column sum c-vector z) given by the margins
investigation must be placed in row r+1 and
columns 1 to c.
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The r x ¢ matrix V of variances for the cells
investigation must be given and placed in rows
8 to 7+r and columns t to c.

In the case of estimated margins, there must
also be given variances for the row and column

sums zZp and ZC'

The r-vector of row sum variances must be
placed in rows 8 to 7+r and column c+1.

The c-vector of column sum variances must be
placed in row 8+r and columns 1 to c.

In short, the matrix Y begins in position (1,1)
and is bordered by the row and column sums.
Analogously, the matrix of cell variances V
begins in position (8,1) and is bordered by

the row and columns um variances if any.

Finally, the bottom right corner (14,7) of

the indata matrix is used to call in some
optional printing. If this element is a dot,
there is the standard output. If it is 1 or 2,
there is additional output, the result matrix
with 1 or 2 decimals, respectively.

The 14 x 7 indata are referred to in the pro-
grammes as "infile rtmdat". There must be a JCL
card telling the computer where to find the data
set "rtmdat".

A.3 The outdata,

The output consists of four tables, the last of
which is optional.

The first table is the matrix Y given by the
cells investigation, bordered by its row and
column sum vectors y_, and y', the whole again
bordered by the row and column sum vectors z
and zé given by the margins investigation.

In the case of exact margins, the first table

also gives the total of the table given by the
cells investigation, and the total of the row

sums given by the margins investigation. It is
assumed that the latter total is equal to the

total of the column sums given by the margins

investigation.
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In the case of estimated margins, the first
table also gives, instead, the total of the
table given by the cells investigation, the
total of the row sums given by the margins
investigation, and the total of the column sums
given by the margins investigation. It is not
necessary that the two latter sums are equal.

The second table is the matrix of variances V
for the cells investigation, in the case of
estimated margins bordered by the vectors of
variances for the row and column sums given by
the margins investigation.

The third table gives the results of the
reconciliation of table and margins. The numbers
printed are rounded off to integers.

The third table is the matrix of adjusted Y

values, bordered by their row and column sums.

In the case of exact margins, these sums should
agree with the row and columns sums given by

the margins investigation., In the case of

estimated margins, in general, they do not so agree.

The fourth table is optiomal. It is the third table
rounded off to one or two decimals.

A4 The case of exact margins.

1 * RECONCILING TABLES AND MARGINS USING LEAST-SQUARES;
2 * HARRY LUETJOHANN STATISTICS SWEDEN;
3 * THE CASE OF EXACT MARGINS;

4 DATA INDATA;

5 INFILE RTMDAT;

6 INPUT V1 V2 V3 V4 V5 V6 V7;

7 PROC MATRIX;

8 * READING IN DATA;

9 FETCH INMATR DATA=INDATA;

10 % DETERMINING ORDERS;

11 R=6;

12 IF INMATR(7,1)=. THEN R=5;
13 IF INMATR(6,1)=, THEN R=4;
14 IF INMATR(5,1)=. THEN R=3;
15 IF INMATR(4,1)=, THEN R=2;
16 C=6;

17 IF INMATR(1,7)=. THEN C=5;
18 IF INMATR(1,6)=. THEN C=4;
19 IF INMATR(1,5)=. THEN C=3;
20 IF INMATR(1,4)=. THEN C=2;

21 M=R*C;



22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

* DEFINING DATA MATRICES AND VECTORS;
YM=INMATR(1:R,1:C);
YR=YM*J(C,1,1);
YCT=J(1,R,1)*YM;

YC=YCT"';

YT=J(1,R,1)*YR;

YG=SHAPE (YM, 1) ;
ZR=INMATR(1:R,C+1);
ZCT=INMATR(R+1,1:C);

ZC=ZCT';

ZT=J(1,R,1)*ZR;

* DEFINING VARIANCES;
WM=INMATR(8:7+R,1:C);
WV=SHAPE (WM, 1) ;

W=DIAG(WV);

* ARRANGING INDATA FOR PRINTING;
A=,

INDA1=YM| |YR;

INDA2=INDA1]| |ZR;

INDA3=YCT||YT;

INDA4=INDA3 | {A;

INDA5=ZCT||A;

INDA6=INDAS5 {|ZT;
INDA7=INDA2//INDA4;
INDA8=INDA7//INDAG6;

INDAW=WM;

* DEFINING RESTRICTIONS (HB=2Z);
HR=I(R)@J(1,C,1);
HC=J(1,R,1)@RI(C);

H1=HR//HC;

H=H1(1:R+C-1,1:M);

Z1=ZR//ZC;

Z=Z21(1:R+C-1,);

* COMPUTING REGRESSION COEFFICIENTS;
WH=W*H"';

HWH=H*WH;

HWHI=INV(HWH) ;

DIF=H*YG-2Z3;

BZ=YG-WH*HWHI*DIF;

* ARRANGING OUTDATA FOR PRINTING;
YGH=SHAPE(BZ,C);
YRH=YGH*J(C,1,1);
YCHT=J(1,R,1)*YGH;
YTH=J(1,R,1)*YRH;
OUDA1=YGH | [YRH;
OUDA2=YCHT | | YTH;
OUDA3=0UDA1//OUDA2;

* PRINTING;

A.

04

TITLE1 RECONCILING TABLES AND MARGINS USI
TITLEZ2 HARRY LUETJOHANN STATISTICS SWEDEN;

TITLE3 THE CASE OF EXACT MARGINS;
PRINT INDA8 INDAW OUDA3 FORMAT=6.0;

(SQUARES ;
NG LEAST-

IF INMATR(14,7)=1 THEN PRINT OUDA3 FORMAT=8.1;
IF INMATR(14,7)=2 THEN PRINT OUDA3 FORMAT=9.2;
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The case of estimated margins.

* RECONCILING TABLES AND MARGINS USING LEAST-SQUARES;

* HARRY LUETJOHANN STATISTICS SWEDEN;
* THE CASE OF ESTIMATED MARGINS;

DATA INDATA;

INFILE RTMDAT;

INPUT V1 V2 V3 V4 V5 V6 V7;

PROC MATRIX;

* READING IN DATA;

FETCH INMATR DATA=INDATA;

* DETERMINING ORDERS;

R=6;

THEN

il
1]

IF INMATR(7,1)=. THEN R=5;
IF INMATR(6,1)=. THEN R=4;
IF INMATR(5,1)=. THEN R=3

1)=. R=2

we wo

IF INMATR(4,
C=6;

IF INMATR(1,7)=. THEN
IF INMATR(1,6)=. THEN
IF INMATR(1,5)=. THEN
IF INMATR(1,4)=. THEN
M=R*C;

* DEFINING DATA MATRICES AND VECTORS;
YM=INMATR(1:R,1:C);

YR=YM*J(C,1,1);

YCT=J(1,R, 1) *YM;

YC=YCT"';

YT=J(1,R,1)*YR;

YG=SHAPE(YM,1);

ZR=INMATR(1:R,C+1);

ZCT=INMATR(R+1,1:C);

ZC=ZCT";

ZTR=J(1,R, 1) *ZR;

ZTC=ZCT*J(C,1,1);

* DEFINING WEIGHT (INVERSE VARIANCE) MATRICES;
WM=INMATR(8:7+R,1:C);

WV=SHAPE (WM, 1)

WGD=DIAG(WV);

QG=INV(WGD) ;

WR=INMATR(8:7+R,C+1);

WRD=DIAG(WR);

QR=INV(WRD) ;

WCT=INMATR(8+R,1:C);

WC=WCT";

WCD=DIAG(WC);

QC=INV(WCD) ;

* ARRANGING INDATA FOR PRINTING;

A=,

INDA1=YM||YR;

INDA2=INDA1 | |ZR;

INDA3=YCT} |YT;

INDA4=INDA3 | | ZTR;

INDA5=ZCTI | ZTC;

INDA6=INDAS | ]A;

INDA7=INDA2//INDA4;

INDA8=INDA7//INDAG6;

INDAW=INMATR(8:8+R,1:C+1);

[eEeNeNe!
on 4
N W~



57 * DEFINING DESIGN MATRICES (H);
58 HR=I(RW®@J(1,C,1);

59 HC=J(1,R,1)@I(C);

60 * COMPUTING RECGRESSION COEFFICIENTS;
61 XQXG=QG;

62 XQXR=HR'#*QR*HR;

63 XQXC=HC'*QC*HC;

64 XQX=XQXG+XQXR+XQXC;

65 XQYG=QG*YG;

66 XQYR=HR'*QR*ZR;

67 XQYC=HC'*QC*ZC;

68 XQY=XQYG+XQYR+XQYC;

69 B=SOLVE(XQX,XQY);

70 % ARRANGING OUTDATA FOR PRINTING;
71 YGH=SHAPE(B,C);

72 YRH=YGH*J(C,1,1);

73 YCHT=J(1,R,1)*YGH;

74 YTH=J(1,R,1)*YRH;

75 OUDA1=YCH||[YRH;

76 OUDA2=YCHT{|YTH;

77 OUDA3=0UDA1//0UDA2;

78 % PRINTING; (SQUARES ;
79 TITLE1 RECONCILING TABLES AND MARGINS USING LEAST-

80 TITLE2Z HARRY LUETJOHANN STATISTICS SWEDEN;

81 TITLE3 THE CASE OF ESTIMATED MARGINS;

82 PRINT INDAS8 INDAW OUDA3 FORMAT=6.0;

83 IF INMATR(14,7)=1 THEN PRINT OUDA3 FORMAT=8.1;
84 IF INMATR(14,7)=2 THEN PRINT OUDA3 FORMAT=9.2;

A.6 A reference.

SAS USER'S GUIDE
1979 EDITION
SAS Institute Inc., Raleigh NC 27605.

A.7 On matrix inversion.
Both programmes call for inversion of matrices.

In the programme for the case of exact margins,
the order of the matrix inverted is r+c-1. (See
line 98 of the programme.)

In the programme for the case of estimated margins,
the order of the matrix inverted is m=rc. (See

line 69 of the programme.) In addition, this pro-
gramme inverts three diagonal matrices of the same
order m. (See lines 38, 41 and 45.)

The matrices to be inverted are in neither case
functions of the really observed data Y and z.
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ts.

An artificial example:
Exact margins,

the output.

RECONCILING TABLES AND MARGINS USING LEAST-SQUARES
HARRY LUETJOHANN STATISTICS SWEDEN
THE CASE OF EXACY MARGINS

INDAS

ROW1
ROW2
ROW3
ROW4

ROWS
ROW6

INDAW

ROW1
ROW2
ROW3
ROWS

OUDA3

ROW1L
ROW2
ROW3
ROW4
ROWS

coLl
102
205
250
257

854
500

coLl

100
100
100
100

coLl

114
212
271
303
S00

coLe

51
68
112
302
533
500

coLe

100
100
100
100

coLe

43
55
114
288
500

coLs

191
86
53

413

743

750

CcoL3

100
100
100
100

coL3

193
83
65

409

750

coLs

346
359
415

1012

2130

coLs

350
350
450
1000
2150

CoLs

350
350
450
1000

2150

the variances given

1



A.10 An artificial example:
Estimated margins, the output.

RECONCILING TABLES AND MARGINS USING LEAST-SQUARES
HARRY LUETJOHANN STATISTICS SHWEDEN
THE CASE OF ESTIMATED MARGINS

INDAS coLl  coLz COL3 COL4  COLS
ROWI 102 51 191 3464 350
ROW2 205 68 86 359 350
ROW3 250 112 53 415 450
ROWG 297 302 413 1012 1000
ROMWS 854 533 743 2130 2150
ROMWb 900 500 750 2150 .
INDAW COLl  COLz COL3  COL4

ROW1 100 100 100 50

ROMW2 100 100 100 0

ROM3 100 100 100 0

ROW4 100 100 100 55

ROWS 10 10 10 .

OUDA3 ColLl  COL2  COL3  COoLG

ROW1 1164 43 193 350

ROW2 212 56 84 152

ROW3 270 113 63 446

ROWG 303 289 410 1002

ROW5 899 501 750 2150

OUDA3 coLl cot2 coLs coLs
ROW1 113.5 43.2 193.0 349.8
ROW2 212.2 56.0 83.7 351.9
ROW3 265.8 112’5 63.3  445.5
ROWG 303.4  289.1 409.9  1002.3
ROWS 893.9  500.8  769.9  2149.%

In this case, there are no rounding-off problems.
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