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ABSTRACT 

Data are given from one source for the cells 
of a two-dimensional table, and from another 
source for the two margins of the table. 
The two sets of data do no agree mutually. 
One wants to reconcile them. 

There are two cases. In one case, the margins 
are given exactly. In the other case, the 
margins are estimates just like the cells. 

The problem can be formalized using the 
concepts of parameter and estimator. Two 
solutions emerge, one for either of the two 
cases. Both solutions apply least-squares. 

The approach proposed is intended to replace 
the traditional approach by means of iterative 
proportional fitting. 

KEY WORDS 

tables, margins, least-squares, 
iterative proportional fitting 
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1 The problem 

Consider a two-dimensional table. For each cell of the table, 

there is a true number. These true numbers are not known. 

Assume that there are two statistical investigations giving 

information on the table. The two investigations will be 

called the cells investigation and the margins investigation. 

The cells investigations provides one estimate for each 

cell of the table. These estimates imply estimates of the 

row sums, the column sums, and the total, of the table. 

The margins investigation provides either of two kinds 

of information on the margins of the table. Either it provides 

exact information on each row sum and/or each column sum 

and/or the total of the table. Or else it provides one estimate 

of each row sum and/or each column sum and/or the total 

of the table. 

Usually, the information on the margins provided by the 

margins investigation is more precise than that implied 

by the cells investigation. 

There are thus two sets of data relating to the table. Except 

by accident, these two sets of data are not consistent with 

each other. The row and column sums, and the total, implied 

by the cells investigation, do not agree with those given 

by the margins investigation. 

We should use all the information from both investigations. 

We should use it to provide better estimates of the cells. 

If the margins are known exactly, the new estimates of the 

cells should be consistent with them. If the margins are 

not known exactly, there should be new estimates of the 

margins consistent with the new estimates of the cells. 
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The classical formulation of this problem was given by Deming 

and Stephan |~1940~|. The solution usually applied is to 

use an algorithm called Iterative Proportional Fitting (IPF). 

A recent development in this direction is the Structure 

Preserving Estimates (SPREE) of Puree! 1 [1979]. 

Here,another solution will be proposed. It uses least-squares. 

It does not call for iterative computations. It gives minimum 

variance linear unbiased estimators for any sample size. 

The solu tion proposed is not new, but it seems to be little 

used in practice. A paper giving an application of it, which 

is at once more general and much more specific than the present 

paper, is van der Ploeg |~1982~|. 
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2 The solution in outline 

Let the rows and the columns of the table be indexed 

h = 1,...,r and k = 1,...,c, respectively. 

Associated with each cell of the table there is a parameter 

p.. , the unknown true value of the cell. 

The information on the (hk)'th cell given by the cells 

investigation is denoted y., . It is assumed that y.. can 

be regarded as an outcome of an unbiased estimator of the 

corresponding parameter p.. . 

Let us assume that the margins investigation does provide 

information on the row sums of the table. What will be said 

applies equally to column sums and total, if information 

is provided on those. 

The information on the h'th row sum provided by the margins 

investigation will be denoted zR h. If this information is 

exact, it gives the true value of the corresponding row 

sum p.-, + ... + p. of parameters. If it is not exact, it 

is assumed that zR. can be regarded as an outcome of an 

unbiased estimator of this row sum of parameters. 

In the case of exact information on the margins, the situation 

is as follows. There are unbiased estimates for each of 

re known (trivial) linear combinations of the re unknown 

parameters. There is exact information on each of a number 

of known linear combinations of the parameters. This is 

precisely the situation where least-squares with exact linear 

restrictions is applicable. The solution proposed is, therefore, 

to apply least-squares with exact linear restrictions. The 

suggestion to do so was given already by Deming and Stephan 

|" 1940 J but not pursued by them due to mathematical and computa­

tional difficulties. Matrix algebra and the electronic computer 

have now eliminated these difficulties. 
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In the case where the information given by the margins 

investigation is not exact, the situation is as follows. 

From the ceils investigation, there are unbiased estimates 

for each of re known (trivial) linear combinations of the 

re unknown parameters. From the margins investigation, 

there are unbiased estimates for each of a number of known 

linear combinations of the parameters. (In the case where 

the margins investigation provides information on the row 

sums only, there are r such estimates.) There are thus two 

sets of unbiased estimates for known linear combinations 

of the same set of parameters. This is precisely the situation 

where least-squares is applicable. Preferably, the least-

squares analysis should be weighted so as to take into account 

any difference in precision within and between the cells investi­

gation and the margins investigation. The solution proposed is, 

therefore, to apply weighted least-squares. If the weights are not 

known exactly, they should be estimated or even guessed. 

In the case where the information given by the margins in­

vestigation is not exact, the solution proposed produces 

new estimates not only of the cells, but of the margins 

too. 

For simplicity, we assume that any two estimates, whether 

from the cells investigation or from the margins investigation, 

are mutually uncorrelated. ^ery likely, this is not exactly 

true. But at least it may often be true that the covariances 

are of a smaller order of magnitude than the variances, 

so that the assumption is acceptable as an approximation. 

The solution proposed is based on one fundamental and critical 

assumption. This assumption is as follows. Any information 

given by the two investigations is, if not exact, an estimate 

without bias. If this assumption is not reasonable, the 

new solution proposed here is not applicable. 

The solution proposed has one practical drawback. It calls 

for inversion of a matrix the order of which increases 

with r and/or c. If the number of cells is large, there 

is risk of numerical inaccuracy. 
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3 Some matrix notation 

3.1 General matrix notation 

Matrices will be denoted by capital letters. Vectors will be 

denoted by lower-case letters. Throughout, any vector symbol 

written without a transpose sign denotes a column vector. 

The orders of vectors and matrices are indicated as follows. 

An n-vector is a (column) vector of n elements. A pxq matrix 

is a matrix of p rows and q columns. 

The matrix I is the nxn unit matrix, i.e. a diagonal matrix, 

each diagonal element of which is 1. 

The vector j is an n-vector, each element of which is 1. 

Let A be an mxn matrix and L a pxq matrix. Than A(J)L is 

the direct product of A and L, the mp x nq matrix defined 

as follows, where a,, is the element in the h'th row and 

k'th column of A. 

The relation 

is an immediate consequence of the definition of the direct 

product. 
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3.2 Matrix notation relating to least-squares 

There are n units of analysis. The order of the design matrix 

is nxp and it is denoted X. The n-vector of observations is denoted y. 

Each row in x and y is associated with one unit of analysis. 

Any p-vector of regression coefficients is denoted b. Special 

regression coefficient vectors are indicated by subscripts. 

Let a diagonal matrix be called positive if and only if 

each of its diagonal elements is strictly positive. Any 

positive diagonal nxn matrix will be denoted Q with diagonal 

elements q., i=1,...,n. 

Let Z be an sxp matrix and z an s-vector such that the rank 

of Z is s. Then 

is a set of s linearly independent linear restrictions on 

the regression coefficients, 

3.3 Matrix notation relating to tables and margins 

The subscripts G, R, C and T indicate the table without 

margins (the Guts of the table), the Row sums, the Column 

sums, and the Total of the table, respectively. 

Data from the cells investigation are denoted by the letters 

Y and y. Data from the margins investigation are denoted 

by the letter z. 

The table and its margins are regarded and treated as a 

matrix and two vectors. 
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The table without margins given by the cells investigation 

is the r x c matrix Y. Its elements are y.. , where h=1,...,r 

is the row index and k=1,...,c is the column index. 

Take all the elements of Y in the order in which you read 

the letters of a printed page. Put m = re. The m-vector 

consisting of the elements of Y in the order mentioned is 

denoted y~. The elements of y~ keep their double-indexing 

from Y. 

The r x c matrix of parameters corresponding to the table 

without margins is denoted B (read capital beta). Its elements 

are ph k, indexed like yh|<. 

Take all the elements of B in the order in which you read 

a printed page. The m-vector obtained is denoted p. Its 

elements keep their double-indexing from B. 

The row sums implied by the cells investigation form the 

column r-vector yR = Yj with elements yR. , h=1,...,r. 

The column sums implied by the cells investigation form 

the row c-vector y„ = j Y with elements y~. , k=1,...,c. 

The total implied by the cells investigation is the scalar 

yT = J X . 

The row sums given by the margins investigation (if any) 

form the column r-\/ector zR with elements zR. , h=1,...,r. 

The column sums given by the margins investigation (if any) 

form the row c-vector z~ with elements z~. , k=1,...,c. 

If a unique total is given or implied by the margins investiga­

tion, it is denoted Zj. 
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4 Regression with exact linear restrictions 

Throughout this section, weighted least-squares (WLS) is 

considered. Everything said is conditional upon a fixed 

set of weights given by the positive diagonal matrix Q. 

4.1 Unrestricted descriptive least-squares 

Consider a given n x p design matrix X of rank p and a given 

n-vector of observations y. Any p-vector b defines an approxi­

mation vector y = Xb and a vector of approximation errors 

e = y - Xb. 

The weighted sum of squares of the approximation errors 

is the following function of b. 

(4.1) 

It is minimized by the p-vector 

(4.2) 

whose elements are called the WLS regression coefficients. 

The subscript 0 on b~ is a zero intended to indicate that 

there are no restrictions of the kind to be introduced below. 

That b~ minimizes the approximation error sum of squares 

is well known. The minimum is called the residual sum of 

squares. 

4.2 Unrestricted least-squares estimation 

The classical full rank Linear Model is as follows. The 

design matrix X is non-stochastic and known. Its rank is 

equal to its number of columns. The vector of observations 

y actually observed is regarded as an outcome of a corresponding 
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stochastic vector, which is usually also denoted y. There is 

a non-stochastic and unknown p-vector of parameters 8. There 

is a non-stochastic and unknown average disturbance variance 
2 

a . There is a known non-stochastic positive-definite n x n 

matrix W. 

The Linear Model states that the vector of observations 

has the expected values. 

(4.3) 

and the covariance matrix 

(4.4) 

Throughout this paper, the matrix W will be assumed to be 

positive diagonal. This gives a subclass of the general 

Linear Model, the heteroscedastic linear model. 

Consider the WIS regression coefficients 

(4.5) 

obtained by using the weights Q = W . These weights are inversely 

proportional to the »ariances of the units of analysis. 

The following theorem is given without proof: The elements 

of b., are the minimum variance linear unbiased estimators 

of the corresponding elements of the parameter vector fl. 

This is a variant of the well-known Gauss-Markov theorem 

of least-squares theory. It is proved in many text-books. 

It can be derived as a simplified special case of the theorem 

stated and proved later in this section. 
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4.3 Restricted descriptive least-squares 

Consider a given n x p design matrix X of rank p and a given 

n-vector of observations y. Consider a given s x p matrix 

Z of rank s and a given s-vector z jointly defining the 

linear restrictions 

(4.6) 

on the regression coefficients. Assume a given positive 

diagonal weight matrix Q. 

The weighted sum of squares of the approximation errors 

is (4.1) as above. It is minimized by the p-vector. 

(4.7) 

where bn is as in (4.2). The elements of b-, are called the 

restricted WLS regression coefficients. 

The restricted least squares regression coefficients are 

equal to their unrestricted counterparts, minus a correction 

"proportional to" the amounts by which the unrestricted 

coefficients fail to satisfy the restrictions. 

For the special case Q = I , the restricted regression coefficients 

were derived by Theil |~1961 "[. 

A simple demonstration that b7 minimizes the weighted sum 

of squares of the approximation errors will now be sketched. 

Consider any p-vector b-, + d of regression coefficients 

satisfying the restrictions (4.6). Then Zd = 0. 
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The approximation error sum of squares is 

Because Zd = 0 it can be shown that 

(just substitute (4.7) and develop!), so that 

4.4 Restricted least-squares estimation 

Assume the heteroscedastic Linear Model consisting of (4.3) 

and (4.4). 

Assume that the parameter vector is known to satisfy the 

s linear restrictions 

(4.8) 

analogous to (4.6). 

Consider the restricted WLS regression coefficients b, defined 

in (4.7). 
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Theorem 

The elements of fcu are the minimum variance linear unbiased 

estimators of the corresponding elements of the parameter 

vector p. 

Proof. 

_1 
For convenience, define M = (X'QX) 

The restricted least-squares regression coefficients are 

where A is the p x n matrix 

while H is the p x s matrix 

The restricted least-squares regression coefficients are 

linear in y and z. Consider any other estimator which is 

linear in the same sense. 

Let D be any p x n matrix and K any p x s matrix. Consider 

the p-vector 

of alternative linear estimators of p. 

A necessary condition for b to be unbiased estimators of 

p is that D X R + KZ = 0, which by (4.8) implies that (DX + KZ)p = 0. 

This equation must hold identically in p, so 

DX + KZ = 0 

is a necessary condition for unbiasedness. 



15 

Consider any vector of linear unbiased estimators of R. Its covariance matrix is 

Now, s ince QW = I and DX = -KZ, AWD' = 0. 

Consequently, 

Since W is positive-definite, any diagonal element of a DWD' 

is non-negative. All the diagonal elements are 0 if and 

only if D = 0. Thus 

is a necessary condition for minimum variances. 

Now, if D = 0, then KZ = 0 and then, because the rank of 

Z iss, K = 0. 

VJe have shown that the equations 

are, together, necessary conditions for the general restricted 

linear estimators b to be unbiased and have minimum variances. 

That they are also, together, sufficient, is evident. 

End of proof 

A theorem much more general than ours, which includes ours as 

a special case, is stated and proved by Theil £1971 "|. 

We include a proof here, because it is not quite trivial to 

derive our theorem from that of Theil. 
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Finally, a word of explanation. The unrestricted least-squares 

estimators b~ have minimum variances in the class of unbiased 

estimators linear in y. The restricted least-squares estimator 

bj have minimum variances in the class of unbiased estimators 

linear in y and z. The latter class contains the former 

class as a subset. Thus, the latter minimum may be lower 

than the earlier one. 

In fact, it is easy to show that 

where M is as defined above. The difference matrix is positive-

semidefinite, so its diagonal elements are non-negative. 
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5 The case of exact margins 

The cells investigation provides an m-vector of estimates 

y~ of the cell parameters 6 of the table. 

The margins investigation provides exact knowledge of the 

r-vector of row sums ZR and/or the c-vector of column sums Z 

and/or the total Zj of the r x c parameter matrix B. 

Corresponding to the cells investigation there is the linear 

model obtained by putting X = I and y = y~ in (4.3). The 

model is 

In the estimator formulas, choose Q = W . 

The unrestricted least-squares estimators (4.5) 

are 

i.e. each cell parameter is estimated by the corresponding 

cell value from the cells investigation. 

The estimators to be used are the restricted least-squares 

estimators (4.7), It remains to determine the restrictions 

(4.6) to be applied. 
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5.1 Only row sums given 

The margins investigation gives the restrictions obtained 

by putting 

Some additional notation is now needed. Associated with 
2 

each cell of the table there is a variance a whk, 

h = 1, ..., r and k = 1, ..., c. These variances form an analogous 

r x c variance matrix, say o V. These variances, taken in the 

order in which you read the letters of a printed page, are the 

main diagonal elements of the positive diagonal m x m matrix 

G 2 W . 

Let the h'th row vector of the r x c matrix of variances V be 

denoted w/, h = 1, ..., r. Define the m x r block-diagonal matrix 

Let the h'th row sum of the matrix of variance^ be denoted 

wR,, h = 1, ..., r. Define the r x r positive diagonal matrix 
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So far for additional notation. 

Now, apply the formula (4.7) for the restricted least-squares 

estimators b,. We get 

(5.1) 

It can be seen that 

and that 

Further, 

Thus, (5.1) simplifies into 

This is the matrix expression for the restricted least-squares 

estimators. 
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Re-written in scalar notation, our result (5.2) is as follows. 

For any h and k, 

(5.3) 

This is the restricted least-squares estimator for the (hk)'th 

cell. 

The estimate given by the estimator can be described verbally 

as follows. For any cell in the h'th row of the table, con­

sider the difference yR,- zR, between 

the h'th row sum of the cells investigation and the h'th row 

sum of the margins investigation. Subtract a suitable fraction 

of this difference from the cell value y.. given by the cells 

investigation. What fraction? The difference is shared out among 

the cells of the h'th row in proportion to the cell variances 

a%ik-

By the theorem of section 4, this very simple estimate is 

the minimum variance linear unbiased estimate when the margins 

investigation gives only the row sums, but gives them exactly. 

5.2 Only column sums given 

The margins investigation gives the restrictions obtained 

by putting 

in (4.6) 

This case is entirely analogous to the case of given row 

sums. It will not be developed here. 
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5.3 Row and column sums given 

The margins investigation gives the r row sum restrictions 

above plus the c column sum restrictions above. But consistency 

requires that the sum of the row sums is equal to the sum 

of the column sums. There are thus only s = r + c - 1 linearly 

independent linear restrictions on p. 

In order to get a formula to compute from, the simplest 

way is to drop the last column sum restriction. As a preliminary 

step, put 

Then drop the last row of Z* and z*, and substitute the 

remaining s x m matrix Z and s-vector z into (4.7). 

The actual computation of a solution must be left to an 

electronic computer. The programming needed is easy, because 

of the simple structure of Z. 

The result is again, by the theorem of section 4, minimum 

variance linear unbiased estimates. 

5.4 A note 

In the case of exact margins, the general linearly restricted least-

squares estimator (4'.7) is simplified as follows. First, bQ=yG. 

Second, (X'QX)"1 = W. Hence, 

It may be noted that this is analogous to the linearly restricted 

minimum modified chi square estimator given, in the context of 

contingency tables, be Grizzle and Williams £ 1 9 7 2 ] . 



22 

6 The case of estimated margins 

The cells investigation provides an m-vector of estimates 

yr of the cell parameters P of the table. 

The margins investigation provides an r-vector of estimates 

zR of the row sums, and/or a c-vector of estimates z~ of 

the column sums, and/or an estimate zT of the total, of 

the r x c parameter matrix B. 

In the linear models below, we use a common average variance 
2 

a . This is not a limitation. 

Corresponding to the cells investigation there is the linear 

model. 

where W~ is a known positive diagonal m x m matrix. 

Corresponding to the margins investigation, there are one, 

two or three additional analogous linear models. 

If the margins investigation provides estimates of the row 

sums, there is the model 
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If the margins investigation provides estimates of the column 

sums, there is the model 

If the margins investigation provides an independent estimate 

of the total, there is also the model 

The models that there are, are (one may say) concatenated 

into a single heterosc^tfastir Linear Model involving the 

parameter vector p. For example, if the margins investigation 

provides estimates of the row and column sums, the joint 

model of the cells and margins data is as follows. 
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If the margins investigation is such that the sum of the 

row sums is always equal to the sum of the column sums, 

one should, for theoretical correctness, drop the last column 

sum observation and the last row of the model. But there 

is probably little harm in keeping them, so as to preserve 

symmetry. 

The estimators to use are the weighted least-squares estimators 

(4.5) corresponding to the joint model. Here, cells data 

and margins data are given weight in inverse proportion 

to their variances. 

The cells estimates b.. obtained are linear in the cells 

and margins observations. By the Gauss-Markov theorem, they 

are minimum variance linear unbiased estimates. 

The row and column sum estimates obtained are the row and 

column sums of the cells estimates. By a well-known general­

isation of the Gauss-Markov theorem, they too are minimum 

variance linear unbiased estimates. 
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7 An historical note 

In 1940, Deming and Stephan formulated what has been called 

here the case of exact margins of the problem of reconciling 

tables and margins; Deming and Stephan j~ 1940 ~|. 

Deming and Stephan applied least-squares with exact linear 

restrictions, without the convenient matrix algebra nowadays 

customary. They considered a two-dimensional table, and 

proceeded first to treat the situation where the margins 

investigation gives the row sums only. 

Deming and Stephan assumed a heteroscedastic linear model, 

but a very particular one. They assumed that the variance 

of the (hk)'th cell observation y., was proportional to 

the value observed. In our notation, their assumption was 

that w,, = y.. for h = 1, ..., r and k = 1, ..., c. 

Under this special assumption only, Deming and Stephan derived 

the restricted least-squares estimators of the cell parameters 

hk 

Let us substitute Deming1s and Stephan's special assumption 

into our more general expression (5.3). The outcome is 

which is Deming's and Stephan's result too. 

The expression found says the following. Take the (hk)'th 

cell observation. Adjust it by a multiplicative factor. 

The factor to be used is the ratio between the h'th row 

sum given by the margins investigation and that given by 

the cells investigation. 
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This looks very much like a multiplicative correction of 

the cells observation. But as our more general expression 

shows, it is in fact a very particular case of an additive 

(or "subtractive") correction, where two terms cancel. 

The I-nterative Proportional Fitting algorithm is much used in attempts to solve the 

problem of reconciling tables and margins. The IPF algorithm 

may be characterized as essentially multiplicative. From 

Deming and Stephan [1940], it seems that the IPF algorithm 

was originally inspired by the simple estimator formula 

derived above for a very special case. 

The theoretical basis for the IPF algorithm is perhaps some­

what slender. The theoretical basis for least-squares with linear 

restrictions seems more firm and adequate. The IPF algorithm 

may however, be fitted into the new theoretical framework 

as a numerical device for computing the restricted regression 

coefficients in the case where the cell variances are assumed 

to be proportional to the cell values. 
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8 An artificial example 

The table and the margins given are as follows. 

The variances of the cells are assumed to be 

all equal. 

In the case of exact margins, the outcome of 

the reconciliation is as follows. 

In the case of estimated margins, the variance 

of any row sum is assumed to be 50% of the 

variance of a cell, and the variance of any 

column sum is assumed to be 10% of that of a cell. 

In this case, the reconciliation gives the 

following result. 
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The outcome of the reconciliation is not 

a set of integers. In the tables above, the 

numbers obtained are rounded off to the 

nearest integer. This may cause minor problems, 

but does not do so in the present example. 
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A.01 

APPENDIX 

TWO COMPUTER PROGRAMMES 

A.1 An outline 

Two computer programmes have been written, one 
for the case of exact margins and one for the 
case of estimated margins. The input and output 
parts of the two programmes are very similar. 

Both programmes are limited to the situation 
where the margins investigation gives information 
on the row sums and the column sums, no less, 
no more. 

Both programmes assume that the Y and z data 
read in are integers, snd give results rounded 
off to integers. 

The programming was made inside the SAS procedure 
MATRIX. When the programmes are to be run, there 
must be a JCL card telling the computer that it 
is a SAS programme that is coming. 

A . 2 The indata. 

For the time being, the programmes accept at most 
6 rows and at most 6 columns. This restriction is 
imposed in order to get a convenient input 
procedure via a telescreen terminal. 

The indata are arranged into a 14 x 7 matrix. 
Any element of this matrix not used for a number 
must be filled in with a dot. SAS reads the 
indata as if it were 14 observations on 7 
variables, and accepts the dots as missing values. 

The r x c matrix Y given by the cells investigation 
must be placed in rows 1 to r and columns 1 to c. 

The row sum vector zR given by the margins in­
vestigation must be placed in rows 1 to r and 
column c + T. 

The column sum c-vector z' given by the margins 
investigation must be placed in row r+1 and 
columns 1 t o e . 
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The r x c matrix V of variances for the cells 
investigation must be given and placed in rows 
8 to 7+r and columns 1 to c. 

In the case of estimated margins, there must 
also be given variances for the row and column 
sums zR and z„. 

The r-vector of row sum variances must be 
placed in rows 8 to 7+r and column c+1. 

The c-vector of column sum variances must be 
placed in row 8+r and columns 1 to c. 

In short, the matrix Y begins in position (1,1) 
and is bordered by the row and column sums. 
Analogously, the matrix of cell variances V 
begins in position (8,1) and is bordered by 
the row and columns um variances if any. 

Finally, the bottom right corner (14,7) of 
the indata matrix is used to call in some 
optional printing. If this element is a dot, 
there is the standard output. If it is 1 or 2, 
there is additional output, the result matrix 
with 1 or 2 decimals, respectively. 

The 1 4 x 7 indata are referred to in the pro­
grammes as "infile rtmdat". There must be a JCL 
card telling the computer where to find the data 
set "rtmdat". 

A.3 The outdata. 

The output consists of four tables, the last of 
which is optional. 

The first table is the matrix Y given by the 
cells investigation, bordered by its row and 
column sum vectors yR and y!,, the whole again 
bordered by the row and column sum vectors zR 

and z' given by the margins investigation. 

In the case of exact margins, the first table 
also gives the total of the table given by the 
cells investigation, and the total of the row 
sums given by the margins investigation. It is 
assumed that the latter total is equal to the 
total of the column sums given by the margins 
invest igation. 
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In the case of estimated margins, the first 
table also gives, instead, the total of the 
table given by the cells investigation, the 
total of the row sums given by the margins 
investigation, and the total of the column sums 
given by the margins investigation. It is not 
necessary that the two latter sums are equal. 

The second table is the matrix of variances V 
for the cells investigation, in the case of 
estimated margins bordered by the vectors of 
variances for the row and column sums given by 
the margins investigation. 

The third table gives the results of the 
reconciliation of table and margins. The numbers 
printed are rounded off to integers. 

The third table is the matrix of adjusted Y 
values, bordered by their row and column sums. 
In the case of exact margins, these sums should 
agree with the row and columns sums given by 
the margins investigation. In the case of 
estimated margins, in general, they do not so agree. 

The fourth table is optional. It is the third table 
rounded off to one or two decimals. 

A.4 The case of exact margins. 

1 * RECONCILING TABLES AND MARGINS USING LEAST-SQUARES; 
2 * HARRY LUETJOHANN STATISTICS SWEDEN; 
3 * THE CASE OF EXACT MARGINS; 
4 DATA INDATA; 
5 INFILE RTMDAT; 
6 INPUT VI V2 V3 V4 V5 V6 V7; 
7 PROC MATRIX; 
8 * READING IN DATA; 
9 FETCH INMATR DATA=INDATA; 
10 * DETERMINING ORDERS; 
11 R=6; 
12 IF INMATR(7,1)=. THEN R=5; 
13 IF INMATR(6,1)=. THEN R=4; 
14 IF INMATR(5,1)=. THEN R=3; 
15 IF INMATR(4, D = . THEN R=2 ; 
16 C=6; 
17 IF INMATRd,7)=. THEN C=5; 
18 IF INMATRd ,6) = . THEN C = 4 ; 
19 IF INMATRd,5)=. THEN C=3; 
20 IF INMATRd ,4) = . THEN C = 2 ; 
21 M=R*C; 
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22 * DEFINING DATA MATRICES AND VECTORS; 
23 YM=INMATR(1:R,1:C); 
2 4 YR=YM*J(C,1,1); 
25 YCT=J(1,R,1)*YM; 
26 YC=YCT'; 
27 YT=J(1,R,1)*YR; 
28 YG=SHAPE(YM,1); 
29 ZR=INMATR(1:R,C+1); 
30 ZCT=INMATR(R+1,1:C); 
31 ZC=ZCT'; 
32 ZT=J(1,R,1)*ZR; 
33 * DEFINING VARIANCES; 
34 WM=INMATR(8:7+R,1:C); 
35 WV=SHAPE(WM,1); 
36 W=DIAG(WV); 
37 * ARRANGING INDATA FOR PRINTING; 
38 A=.; 
39 INDA1=YM| |YR; 
40 INDA2=INDA1||ZR; 
41 INDA3=YCT(lYT; 
42 INDA4 = INDA3 I JA; 
43 INDA5=ZCT|j A; 
44 INDA6 = INDA5 j JZT; 
45 INDA7=INDA2//INDA4; 
46 INDA8=INDA7//INDA6; 
4 7 INDAW=WM; 
48 * DEFINING RESTRICTIONS (HB=Z); 
49 HR=I(R)(S5J(1 ,C, 1) ; 
50 HC=J(1,R,1)(S>I(C); 
51 H1=HR//HC; 
52 H=H1(1:R+C-1,1:M); 
53 Z1=ZR//ZC; 
54 Z = Z1(1 :R + C-1 ,) ; 
55 * COMPUTING REGRESSION COEFFICIENTS; 
56 WH=W*H'; 
57 HWH=H*WH; 
58 HWHI = INV(HWH) ; 
59 DIF=H*YG-Z; 
60 BZ=YG-WH*HWHI*DIF; 
61 * ARRANGING OUTDATA FOR PRINTING; 
62 YGH=SHAPE(BZ,C); 
63 YRH=YGH*J(C,1,1); 
64 YCHT=J(1,R,1)*YGH; 
65 YTH=J(1,R,1)*YRH; 
66 0UDA1=YGH||YRH; 
67 0UDA2=YCHT | [YTH; 
68 0UDA3=0UDA1//0UDA2; 
69 * PRINTING; (^SQUARES; 
70 TITLE1 RECONCILING TABLES AND MARGINS USING LEAST^ 
71 TITLE2 HARRY LUETJOHANN STATISTICS SWEDEN; 
72 TITLE3 THE CASE OF EXACT MARGINS; 
73 PRINT INDA8 INDAW 0UDA3 FORMAT=6.0; 
74 IF INMATR(14,7) = 1 THEN PRINT OUDA3 FORMAT = 8.1 ; 
75 IF INMATR(14,7)=2 THEN PRINT 0UDA3 FORMAT=9.2; 
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A.5 The case of estimated margins. 

1 * RECONCILING TABLES AND MARGINS USING LEAST-SQUARES; 
2 * HARRY LUETJOHANN STATISTICS SWEDEN; 
3 * THE CASE OF ESTIMATED MARGINS; 
4 DATA INDATA; 
5 INFILE RTMDAT; 
6 INPUT V1 V2 V3 V4 V5 V6 V7; 
7 PROC MATRIX; 
8 * READING IN DATA; 
9 FETCH INMATR DATA=INDATA; 
10 * DETERMINING ORDERS; 
11 R=6; 
12 IF INMATR(7,1)=. THEN R=5; 
13 IF INMATR(6,1)=. THEN R=4; 
14 IF INMATR(5,1)=. THEN R=3; 
15 IF INMATR(4,1)=. THEN R=2; 
16 C=6; 
17 IF INMATRO,7)=. THEN C=5; 
18 IF INMATRO,6)=, THEN C=4; 
19 IF INMATRO,5) = . THEN C = 3 ; 
20 IF INMATRO,4)=. THEN C=2; 
2 1 M=R*C; 
22 * DEFINING DATA MATRICES AND VECTORS; 
23 YM=INMATR(1:R,1:C); 
24 YR=YM*J(C,1 ,1 )I; 
25 YCT=J(1,R,1)*YM; 
26 YC=YCTr; 
2 7 YT=J(1,R,1)*YR; 
28 YG=SHAPE(YM,1); 
29 ZR=INMATR(1:R,C+1); 
30 ZCT=INMATR(R+1,1:C); 
31 ZC=ZCTr; 
32 ZTR=J(1,R,1)*ZR; 
33 ZTC=ZCT*J(C,1,1); 
34 * DEFINING WEIGHT (INVERSE VARIANCE) MATRICES; 
35 WM=INMATR(8:7+R,Î:C); 
36 WV=SHAPE(WM,1); 
37 WGD=DIAG(WV); 
38 QG=INV(WGD); 
39 WR=INMATR(8:7+R,C+1); 
40 WRD=DIAG(WR); 
41 QR=INV(WRD); 
42 WCT=INMATR(8+R,1:C); 
43 WC=WCTr; 
44 WCD=DIAG(WC); 
45 QC=INV(WCD); 
46 * ARRANGING INDATA FOR PRINTING; 
47 A=.; 
48 INDA1=YM||YR; 
49 INDA2=INDA1\ ÎZR; 
50 INDA3=YCT|)YT; 
51 INDA4 = INDA3 \ JZTR; 
52 INDA5 = ZCTi i ZTC; 
53 INDA6=INDA5I(A; 
54 INDA7=INDA2//INDA4; 
55 INDA8=INDA7//INDA6; 
56 INDAW=INMATR(8:8+R,1 :C + 1) ; 
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57 * DEFINING DESIGN MATRICES (H); 
58 HR=I(R)0 J(1 ,C,1); 
59 HC=J(1,R,1)®I(C); 
60 * COMPUTING REGRESSION COEFFICIENTS; 
61 XQXG=QG; 
62 XQXR=HR'*QR*HR; 
63 XQXC=HC'*QC*HC; 
64 XQX=XQXG+XQXR+XQXC; 
65 XQYG=QG*YG; 
66 XQYR=HR'*QR*ZR; 
67 XQYC=HC'*QC*ZC; 
68 XQY=XQYG+XQYR+XQYC; 
69 B=SOLVE(XQX,XQY); 
70 * ARRANGING OUTDATA FOR PRINTING; 
71 YGH=SHAPE(B,C); 
72 YRH=YGH*J(C,1,1); 
73 YCHT=J(1,R,1)*YGH; 
74 YTH=J(1,R,1)*YRH; 
75 OUDA1=YGH|(YRH; 
76 OUDA2=YCHTI|YTH; 
77 OUDA3=OUDA1//0UDA2; 
78 * PRINTING; SOUARES; 
79 TITLE1 RECONCILING TABLES AND MARGINS USINGLEAST-) 
80 TITLE2 HARRY LUETJOHANN STATISTICS SWEDEN; 
81 TITLE3 THE CASE OF ESTIMATED MARGINS; 
82 PRINT INDA8 INDAW OUDA3 FORMAT=6.0; 
83 IF INMATR(14,7) = 1 THEN PRINT OUDA3 FORMAT = 8.1 ; 
84 IF INMATR(14,7)=2 THEN PRINT OUDA3 FORMAT=9.2; 

A.6 A reference. 

SAS USER'S GUIDE 
1979 EDITION 
SAS Institute Inc., Raleigh NC 27605. 

A.7 On matrix inversion. 

Both programmes call for inversion of matrices. 

In the programme for the case of exact margins, 
the order of the matrix inverted is r+c-1. (See 
line 33 of the programme.) 

In the programme for the case of estimated margins, 
the order of the matrix inverted is m=rc. (See 
line 69 of the programme.) In addition, this pro­
gramme inverts three diagonal matrices of the same 
order m. (See lines 38, 41 and 45.) 

The matrices to be inverted are in neither case 
functions of the really observed data Y and z. 
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A.8 An artificial example: 
The indata "rtmdat". 

In the case of exact margins, the variances given 
for margins data are not used. 

When the case of estimated margins was run, 
element (14,7) of the indata was put equal to 1 
so as to get information on the rounding-off 
effects . 

A.9 An artificial example: 
Exact margins, the output. 

RECONCILING TABLES AND MARGINS USING LEAST-SQUARES 
HARRY LUETJOHANN STATISTICS SWEOEN 

THE CASE OF EXACT MARGINS 
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A.10 An artificial example: 
Estimated margins, the output. 

RECONCILING TABLES AND MARGINS USING LEAST-SQUARES 
HARRY LUETJOHANN STATISTICS SWEDEN 
THE CASE OF ESTIMATED MARGINS 

In t h i s c a s e , t t i e r e a r e no r o u n d i n g - o f f p r o b l e m s . 
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