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SUMMARY 

In developing estimation methods for the nonresponse situation, survey 

samplers have largely failed to profit from a striking analogy of which most of them are 

nevertheless aware: the classical formulation of the two-phase sampling situation 

offers a near perfect basis for a methodology for the nonresponse situation. More 

precisely, in both cases, an initial sample, s , is drawn, certain information (but 

not the variable of interest) can be observed for the units in s , a subsample, r , 

is then realized (voluntarily in one situation, involuntarily in the other), and the 

variable of interest is measured for units in the ultimate sample r only. However, 

at closer look it is not surprising that the analogy has not been taken advantage of. 

The theory of two-phase sampling has been insufficiently developed, so far, to handle 

more complex sampling designs and estimators. In other words, while a perfect natural 

bridge exists between two situations, not much of value has been close at hand, so 

far, to transport over the bridge. In this paper we lay certain groundwork on the 

side that should first be developed: the first part of our work presents a more 

general two-phase sampling theory, allowing complex (arbitrary) sampling designs in 

each phase and/or more advanced (regression type) estimators, as well as variance 

estimators and confidence intervals computed from the ultimate sample r . The second 

part of the paper shows how these results fit into the nonresponse situation, more 

precisely, in the case where nonresponse is adjusted for by the often used model of 

homogeneous response probability within subgroups. The parallel with two-phase 

sampling produces the desired formulas for calculating estimated variances and con­

fidence intervals for estimates affected by nonresponse. Concluding Part II of the 

paper is a Monte Carlo study emphasizing that concomitant variables used to model 

the response mechanism must be distinguished from equally important (but conceptually 

different) concomitant variables whose immediate role is to be variance reducing. We 
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want to create awareness of the fact that two different types of variables are 

involved; their respective roles must not be confused. We study the validity (the 

empirical coverage rate) of our confidence statements, which is of particular 

interest when the response modelling breaks down (as is inevitably the case in 

practice, to a greater or smaller extent). We observe that the robustness of the 

confidence statements is very much improved by the presence in the estimator of 

the kind of concomitant variable that we call variance reducing. This type of 

variable therefore becomes important for the added reason of robustness. 
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A GENERAL VIEW OF ESTIMATION 

FOR TWO PHASES OF SELECTION 

PART I: RANDOMIZED SUBSAMPLE SELECTION (TWO-PHASE SAMPLING) 

by 

Carl-Erik Särndal 

Université de Montréal 

Bengt Swensson 

Statistics Sweden 

and 

University of Örebro 

1- INTRODUCTION 

It has been observed several times in the literature that a basic similar­

ity exists between "sampling with subsequent nonresponse" and "two-phase sampling": 

in each case, a sample, s , is initially drawn, but the "ultimate sample", r (that 

is, the sample for which we actually measure the variable(s) of study) is only a 

subset of s . Given this parallel, it should be possible, in the nonresponse sit­

uation, to profit directly from two-phase sampling theory. To date, this advantage 

has not been exploited to any great extent. One reason can perhaps be found in the 

present state of relative underdevelopment of two-phase sampling theory, for which 

the basic results were presented long ago. But there has been rather few extensions 

and refinements of two-phase sampling theory, which, consequently, has been insuffi­

ciently equipped to handle the practical problems of the nonresponse situation. Our 

paper may be seen as a step towards filling the gap. In Part I of the paper, we 

develop general principles for estimation in situations that involve two-phase sam­

pling. This term will be used with its standard meaning in survey sampling, that 

is to say that a controlled, randomized scheme is used for subsampling of an initial 

probability sample. In Part II, we transplant the results, with necessary minor 
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modifications, into the case of involuntary subsampling caused by nonresponse. We 

consider estimators constructed with special effort to control the nonresponse bias, 

so that confidence statements will not be severely distorted. This is obtained by 

weighting adjustment combined with the explicit use in the estimator of auxiliary 

variables. Considerable emphasis is put in this paper on estimation of the preci­

sion (for use in confidence intervals, for example) of estimators appropriate for 

the nonresponse situation. The variance estimators that we suggest for the non-

response case follow directly from our two-phase sampling theory. 

The standard two-phase sampling situation calls for the selection of a rath­

er large first phase sample, s , and the collection of some inexpensive information 

for the units k in s . More formally, say that this consists in recording the 

value x. of the vector x for k e s . The second phase sampling procedure con­

sists in drawing a subsample r from s . For the units k e r , one records the 

value y. of the study variable, y , more expensive to measure than x . 

Now x. can be used (a) to create a highly efficient design for drawing the second 

phase sample, and/or (b) to create a highly efficient (regression type) estimator 

of the characteristic of interest, say, the population total of y . Conforming to 

this description, we present in Section 2 a general view of two-phase sampling al­

lowing an arbitrary, possibly "complex" sampling design in each of the two phases. 

In particular, the first phase design may be a two- or multi-stage design. 

Let us compare with the nonresponse situation: An "intended sample", s , 

is drawn according to a given (but arbitrary) sampling design, which may be "complex", 

e..g., involving two or more stages of sampling. The sample s is affected by unit 

nonresponse, resulting in a measurement y. only for k e r , the subset of re­

sponding units (res) . It is common now to assume that r results from s through 

a probabilistic "response mechanism", corresponding to the second phase sampling 

design in the two-phase situation. The difference is that the response mechanism 
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is ordinari ly unknown, forcing the stat is t ic ian to make assumptions about i t , whereas 

in the two-phase si tuat ion, the second phase sampling obeys a known probability dis­

t r ibut ion, chosen and executed by the s ta t is t ic ian . 

2- THE TWO-PHASE SAMPLING SETUP 

Since its introduction by Neyman (1938), two-phase sampling (or double 

sampling) has been part of the standard repertoire of sampling techniques, as wit­

nessed by the fact that standard texts devote some space to the area. For example, 

Raj (1968, p. 139-152) considers topics such as two-phase sampling for difference 

estimation, for pps estimation, for (biased or unbiased) ratio estimation, for 

simple regression estimation, for stratification, etc. 

Whereas simple random sampling has often been assumed earlier in one or 

both of the phases, we admit, more generally, arbitrary designs, and we obtain a 

general approach to estimating the variance of the two-phase estimate. More recent 

work going in the direction of the generality that we have in mind includes Chaudhuri 

and Adhikary (1983). 

Consider a finite population U = {1 k,...,N} . Let y be the varia­

ble of study, and let y. be the value of y for the k:th unit. We seek to 

estimate the population total t = £(Jy, from a sample r , obtained through two 

phases of selection. (If A ç u is a set of units, we write Z-y^ for ^«y^ •) 

We allow a general sampling design in each phase, that is, the inclusion probabi­

lities in each phase are arbitrary. Our notation for the sampling designs will be 

as follows: 

(a) The first phase sample s (scU) of size n (not necessarily fixed) 

is drawn by a design denoted p.(') , such that pa(s) is the probability of choosing 
a a 

s . The inclusion probabilities are defined by 
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with akk = k . Set Aakl = W W a • We assume that "ak >0 for a11 k ' 
and (when it comes to variance estimation) that Trak^ > 0 for all k t . 

(b) Given s , the second phase sample r (res) of size ny (not neces­

sarily fixed) is drawn according to a sampling design p(#|s) , such that p(r|s) 

is the conditional probability of choosing r . The conditional inclusion proba­

bilities are defined by 

with "kkls = \|s ' Set Ak£|s = Vls'^kls^ls We assume that> f0r any S ' 
TT. i > 0 for all k e s , and that (in variance estimation) iïkois > 0 for all 

k I e S . 

For example, the first phase sample s may be selected by a two-stage 

sampling design in which geographical or administrative clusters of individuals 

are first drawn, followed by subsampling of individuals within drawn clusters. 

Certain information is gathered for individuals in the sample thus selected. Some 

of that information, say, concerning age/sex categories, may serve to divide the 

first phase sample into strata, whereupon stratified sampling is used in the second 

phase. The complication that the clusters used at the first stage of the first 

phase may cut across the strata used for the second phase sampling causes no con­

ceptual difficulty in our approach. 

In turning now to estimation, we note that the Horvitz-Thompson estimator, 

despite its great flexibility for unequal probability sampling designs, does not 

fit (except in some special cases) our general two phase sampling setup. The rea­

sons are as follows: 
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Let p(r) be the probability that the set r is realized by the proce­
dure defined by (a) and (b) above. If it were possible to determine the uncondi­
tional inclusion probabilities 

(2.1) 

we might consider the Horvitz-Thompson estimator of t = Z^. , that is, 

To determine the TT. , we must thus know TT.I for e^/ery s , knowledge often un­
available in an applied situation, since TT.I will often depend on information 
collected for the units in the particular first phase sample s actually drawn. 
Thus TT, i will be known only for this particular s . To stress this point still 
more: It is not until after s has been drawn and information has been gathered 
about the units in s (and no other units) that an exact specification of the 
second phase design p(.|s) can be given. Consequently the TT. (which may depend 
on all the other possible s) can not be determined in many real-life situations. 
The Horvitz-Thompson estimator is thus impractical. We shall construct a more 
useful design unbiased estimator. 

3. ESTIMATION BY π*-EXPANDED SUMS 

Define, fo r a l l k,£ e s , and any s , 

with TT. = TT£ . Set A£„ = 7ru/-'n'f7r/ • We also define expanded y-values and ex­

panded A-values by 
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The basic estimator in two phase sampling, which we call the π*es estimator 

(for π*-expanded sum), is described in the following result. (If Act ) is a set 

of units, ZZ» ck„ means . Z. „ZA c. » .) Despite a certain similarity, the Horvitz-

Thompson estimator is in general different from the Tres estimator. 

RESULT 0. In two-phase sampling, a design unbiased estimator of the po­

pulation total t = Zyy. is given by the *es estimator, 

(3.1) 

Its design variance is 

(3.2) 

where E (•) denotes expectation with respect to the sampling design in phase one. 
A design unbiased variance estimator is given by 

(3.3) 

Note that the second component of (3.2) must be left in the form of an ex­
pected value, since the Ay>is may depend on s . 

The following observation is pertinent to Result 0 as well as to other sim­
ilarly presented results below: The variance consists of a "first component" due to 
sampling in phase one, and a "second component" due to sampling in phase two. Cor­
respondingly, the variance estimator is composed of an "estimated first component" 
and an "estimated second component". Note that if no subsampling is carried out 
(so that only the first phase prevails), then the (estimated) second component van­
ishes. 

If. t stands for an estimator of t (t could be t , or any of the 
estimators presented later), it is understood that an approximately 100(l-ct)% 
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confidence interval for t is constructed as t ± z, /2{V(t)} , where the cons­

tant z-|_a/2
 is exceeded with probability a/2 by the unit normal random variable. 

To prove Result 0, express the error of the estimator as 

(3.4) 

Then use the rules E(«) = E_E(-|s) , V(«) = V_E(-|s) + E V M s ) , where the oper-

ators Ea and Va refer to phase one, and E(•|s) and V(•js) to phase two, 

given the outcome s of phase one. Now, E(A |s) = A. and E(Br|s) = 0 , so that 

E(t ) - t = Ea(As) = 0 . Moreover, V(A |s) = 0 and 

whereby the variance result follows. That (3.3) is an unbiased estimator of the 

variance (3.2) follows by noting that, for arbitrary constants c. » , 

(3.5) 

This equation establishes the unbiasedness of the estimated first component if we 

take c. » = ̂ k ^ k ^ / • As for the estimated second component, we use only the first 

equation of (3.5); the c.» may then depend on s , and the appropriate choice is 

4- APPLICATION: TWO-PHASE SAMPLING FOR STRATIFICATION 

As an application of the preceding, we consider stratified random sampling 

in phase two. However, more generally than in the usual sampling texts, we here 

permit an arbitrary design, pa(s) , for the first phase. Information is collected 

for the n units in s and used to partition s into Hg strata s. , 

h = 1.....H . Denote by n^ the size of sh . From sh , a subsample r^ of 
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size m. is drawn, h = 1 Hg . The complete second phase sample, r , is the 

union of the H sets r. . The size of r , mr , is the sum of the m. . We 

examine two stratified designs for the second phase: Case STSI (short for strat­

ified simple random sampling), where r. is drawn from s. by simple random sam­

pling (SI); Case STBE (for stratified Bernoulli sampling), where r. is drawn from 

s. by Bernoulli sampling. Here, STSI is of great practical interest for two-phase 

sampling; our interest in STBE is more motivated by the applications to non-response 

theory given in Part II of the paper. Sampling variance is interpreted via a re­

peated sampling process about which we assume, in both cases, that exactly the same 

second phase stratified design (same strata, same sampling fractions within the 

strata) would be used every time a specific first phase sample is realized. However, 

for two non-identical first phase samples, suitably different stratifications may 

be used. There may be differences in the number of strata, H , as well as in the 

principle used to demarcate the strata. 

Case STSI. Given the strata s. , the statistician specifies certain sub-

sample sizes nv . For units in s. , 

(4.1) 

while TT.^I = f . f . , when k and I belong to two different strata, s^ and sh, . 

The TT*es estimator (3.1) takes the form 

(4.2) 

The variance, obtained from (3.2), is 

(4.3) 

where S- is the variance of yk = yk/^ak in sh . (By the variance of certain 
y h _ 2 2 

numbers zk in a set A of nA units, we mean EA(zk-zA) /(nA~l) = Sz A , where 

z~A = £Az./nA • ) The variance estimator, obtained from (3.3), is (provided m ^ Z 

for all h) 
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(4.4) 
11 — i II 

2 
where S~ is the variance of y. in the set r. . The estimated second compo-

yrh K n 

nent is of a form that is familiar in the context of stratified sampling. 

EXAMPLE 1. Let the first phase design be simple random sampling (SI) with 

fixed sample size n = n , and let w. = n./n ; f = n/N . Then, with STSI in phase 

two, the iT*es estimator is 

(4.5) 

its design variance, from (4.3), is 

(4.6) 

From (4.4), the unbiased estimators of the two components are given by 
11 

with Q. = (n-n. )/(n-l )m. . Thus V(t) is estimated by V, + V~ , which can be 

expressed as 

(4.7) 

Note that these results do not require the same stratification principle for every 

s . D 

EXAMPLE 2. Conceptually different from Example 1 is the case where the 

same stratification principle applies to every conceivable first phase sample s . 

We can then say that there exists H "conceptual strata" U, U. U„ in the 
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population, for example, a fixed set of age-sex groups. Although not identified 

prior to drawing s , these groups (of unknown sizes) define the predetermined 

principle by which every possible s would be stratified, if selected. 

That is, s. = s n Uh , h = 1,...,H . Let nh be the size of sh . Further 

suppose that a subsample r. of size m. = v.n. is drawn from s, by SI , 

h = 1,...,H , where v, ,...,v„ are a priori fixed positive fractions. The results 

(4.5) and (4.7) will apply (although with Hs replaced by H , since the number 

of strata is now constant for all s .) The variance (4.6) can be stated on a more 

explicit form, see Rao (1973) and Cochran (1977, p. 328), 

(4.8) 

where W. = [i/N is the relative size of U. . Note that in this example, there 

is a non-zero probability that an empty set s. (n. =0) occurs for at least one 

h = 1,...,H . (In Example 2, this problem does not arise, since the strata are 

formed only after s has been realized, and every stratum is necessarily subsampled.) 

The estimator t = N y„ is undefined if s. is empty for some h . If the prob­

ability of this event were ignorable, (4.8) would be an exact variance; otherwise, 

it holds only approximately. D 

Case STBE. The subsample r. (from s. ) is realized as follows. The 

inclusion or non-inclusion in r. of a certain unit k in s. is decided by a 

Bernoulli experiment, the probability for inclusion being specified as 6^ for 

all k e s, . The experiments are independent. The notation 6. is chosen to 

indicate that the probability may differ from one stratum to another, and from one 

sample s to another. For the given stratification of s , the subsample size m. 

is random with the expected value 6. n. . Two alternatives emerge for the analysis: 

(a) the 6.s are treated as known; (b) the 6, are treated as unknown and estim­

ated from the sample. 'Even though the 6. are ordinarily known in two-phase 
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sampling, little is probably lost by always following (b).) Under the heading 

Case STBE, we shall only pursue alternative (b), the case of interest for the treat­

ment of nonresponse, where the 6. play the role of unknown response probabilities. 

It is convenient to condition on m = (m,, ...,m. ,...,mH ) , the vector of realized 
s 

counts. Define 

When s is fixed, so is n = (n, nH ) . If m is also fixed, then r. is a 
s 

SI sample of m. units from r\u . Thus, for units in s. , 

(4.9) 

while IT. 0\ - f.f. , if k and I belong to different strata, s. and s,, . k-t s,m n h n n 

Let A, be the event that m. > 1 for h = !,...,Hg . Supposing A, occurs, 

we can consider the "conditional Tr *es estimator" 

(4.10) 

with the variance expression 

(4.11) 

where E^(.) indicates expectation over all realizations m , given s and A^s . 

Further let A2's denote the event that mh > 2 for h = 1,...,HS . If A2s oc­

curs, a variance estimator is given by 
11 

(4.12) 

where Tk£is m is given by (4.9). 

REMARK 1. A comparison of Cases STSI and STBE reveals a useful analogy: 

The two estimators (4.2) and (4.10) agree formally, since TTJ. = ^us>m • The 

respective variances, (4.3) and (4.11), differ, since the two sampling designs gen­

erate two different sampling distributions for t . But coming to the estimated 
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variances, (4.4) and (4.12), the two cases again agree formally, since 

kl/s = \£ls m ' (Here' (4.12) is an approximation; see below.) This fortui­

tous identity of the two variance estimators will be used again later. • 

EXAMPLE 3. As in Example 1, let the first phase design be simple random 

sampling. If the design STBE is used in phase two, the estimator of t is given 

(as in the case of STSI) by (4.5). Moreover, the variance estimator is given by 

(4.7). • 

In Case STBE, the estimator (4.10) is approximately unbiased for t , and 

(4.11) is an approximate variance expression. Let us substantiate these claims. 

(This digression from the main theme of the paper can be skipped at first reading.) 

The estimator t * is undefined when A, = "not A, " occurs. This need not 

be of great concern in practice, for one would set up the groups to keep PK^-is) 

close to zero. But from the formal perspective, it is unsatisfactory that the es­

timator could possibly be undefined. Let us extend its definition to cover all 

possible outcomes. Set tu = £ yk , a quantity which we estimate (given s) by 
1 n -

t. = fÛ Er y. if m, > 0 and th = thQ if mh = 0 , where th is any given 
h 

constant (which may be taken as zero). We now estimate t = Z ^ K by 

which is always defined and equal to t * if A, occurs. Set 

(4.13) 

Now, E(t. |s,m. ) = t. if m, = 0 , E(th|s,m, ) = t. if m. > 0 , and it is easily 

seen that 

(4.14) 
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n. 
which is the bias of t . Under the STBE design, e. = (1-6. ) n . If the group 

count nh is large, and eh s not too near zero, e h Q will be near zero. If this 

is true for all groups (which implies that Ä~ls has near zero probability), then 

the bias will be negligible. 

A similarly detailed analysis can be carried out to see that the variance 

(4.11) is in effect the variance of the "extended" estimator t , in the limit as 

the eho approach zero. Finally, the proposed variance estimator (4.12) is natural, 

given the composition of the variance expression (4.11). Despite the approximative 

nature of the procedure summarized by (4.10) - (4.12), a confidence interval with 

essentially correct level will be obtained, for most practical situations, by 

means of t^* , with the variance estimator (4.12). 

5. REGRESSION ESTIMATION IN TWO-PHASE SAMPLING 

The π*es estimator can be described as a pure "weighting-type" estimator. 

For example, in double sampling for s t ra t i f ica t ion (Section 4) , the information 

recorded after phase one is used to form strata, and consequently the weights 

1/TT = V(mh/nh)ffak in the ir es estimator (4.2) ref lect the s t ra t i f ied sampling 

at the second phase. In the regression-type estimators now to be considered, recorded 

auxil iary variables enter exp l ic i t ly into the formula for the estimator. We d is t in ­

guish three situations depending on the nature of the auxiliary information. 

Situation 1. The value xk = (x1(<, . . .»xQ|<) ' of the auxil iary vector 

x = ( x , , . . . , x ) is recorded for the units k e s . 

Situation 2. The value x, is available for a l l units k in the entire 

population U . 
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Situation 3. (A combination of Situations 1 and 2). The value x. is 

recorded for k e s , and some other (perhaps "weaker") information z. = (z,. ,.. •»z k ) ' 

is known for all k e U . 

Let us first develop Situations 1 and 2, using extensions of the regression 

approach; Casse!, SaYndal and Wretman (1976); Särndal (1982). We assume the exist­

ence of a strong regression relationship between y. and xk . Then, although y. 

may be observed in a smallish second phase sample only, the relative scarcity of 

the y-information can to a large degree be compensated fpr by using a regression 

estimator. We model the relationship of y on x by assuming that the y. are 

independent (throughout) with Ep(yk) = x/6 » M y J = a. , where £ indicates 
2 

moments with respect to the model. Here, jB is unknown. The a. are known up to 

multiplicative constants that vanish in the calculation of the estimator b given 

below by (5.2). If the entire population were observed, one would estimate 3 

and form residuals according to 

(5.1) 

However, (yk»x.) is observed for k e r only, and the k:th unit carries the 

weight TT"1 . Let us therefore estimate B by 

(5.2) 

The estimator b w i l l serve to calculate the predicted values yk = x^b , k e s , 

(since x, is known for k e s) , and the residuals 
~k 

(5.3) 

(since yk is known for k e r only). In Situation 1, we can form the regression 

estimator described in Result 1 below, where the variance expression is approximate, 

therefore denoted AV. 
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RESULT 1. In two-phase sampling, when x. is recorded for k e s , an 

approximately design unbiased estimator of t = Z-p^ is given by 

(5.4) 

Let Ek be given by (5.1) and Ek = Ek/Tr . The approximate variance is 

(5.5) 

Let ek be given by (5.3) and e\ = ej/ï ï j . A variance estimator i s then given 

by 

(5.6) 

Without complete detail, let us justify Result 1. The bias and the var­

iance of (5.4) are complicated because of the nonlinear random variable b. Explicit 

expressions can only be had through approximation. Approximating b by its popu­

lation analogue B , a constant, we have 

where y. = x'B has replaced y. = x/b . The advantage gained is that t? R E G is 

extremely simple to analyze. Vie have 

(5.7) 

v 

where Ek = Ek/na|< ; Ek = Ek/-rr = Ëk/7rkjs . It follows that 
E^lREG^_ t '= E^?REG^~t = ° » s0 that ^IREG

 is aPProx1'mately unbiased. To obtain 

the variance, note the analogy between (5.7) and (3.4). The term Ag is present 

in both expressions. The terms Br and B^ differ only in that the latter is ex­

pressed in the residuals Ek , the former in the raw scores yk . The argument 

used in proving (3.2) leads directly to (5.5), which is in this case an approximate 

expression (because b was approximated by B ) . In obtaining an estimated variance, 
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E. = y. - x/B can not be used since it contains the unknown B . Instead, substi­

tute ek = yk - x.b .where b is calculated from the sample, and the formula (5.6) 

follows. 

The following Result 2 deals with Situation 2: 

RESULT 2. In two-phase sampling, when x. is recorded for all k e U , an 

approximately design unbiased estimator of t = Z ^ is given by 

(5.8) 

Let Ek be given by (5.1) , Ek = ^k/^ak and tk = E^TT . An approximate var­

iance expression is 

(5.9) 

Let ek be given by (5.3) , ek = ek/7Tak and ek = ek/-rr̂  . A variance estimator is 

(5.10) 

A justification of Result 2 can be produced along lines that resemble the 

argument used above for Result 1. We omit the details. 

Compare the three variance expressions (3.2), (5.5) and (5.9). They correspond 

to three different levels of x-information: None at all; x. known only for k e s ; 

and xk known for all k e U , respectively. The variance components reflect this 

progression: In (3.2), no regression residuals enter into the variance components. 

In (5.5), residuals enter in the second (but not the first) variance component, 

since the x-information extends only to the first phase sample. Finally, in (5.9), 

the residuals enter into both variance components, since xk is then known through­

out the population. Clearly, "residualization" of a variance component will normal­

ly reduce its numerical value. 



17 

Let us turn to Situation 3, where the auxiliary information comes from 

two sources: the vector x. is available for k e s , and another vector z. 

for k e U . In this case, one fitted regression will estimate the relation between 

xk and yk , another that between zk and yk . The first fit is, as in situa­

tions 1 and 2, summarized by formulas (5.1) to (5.3). 

As a model for the relationship between zk and yk , assume that the y. 
o 

are independent with E- (yk) = zkB-| ; V£ ( y j = at where &, is to be estimated 
2 1 1 2 2 

and the o-jk are new model variances ( in the simplest case, a,k = a , for a l l k) . 

I f a l l y. , k e U , were observed, the &•,-estimator ,and the residuals would be 

(5.11) 

But the information about yk is less extensive, so we must estimate B-| . To this 

end, consider two possibilities: 

The first method follows naturally from the fact that yk is available for 

the set r only: 

(5.12) 

The second method, s l ight ly more complicated, recognizes that the known xk-values 

for k e s makes i t possible to calculate "pseudo-observations", y£ , for k e s , 

although yk i.tself is known for k e r only. Let us define the pseudo-obser­

vations as 

Now, the second estimator of B, is taken as 
~i 

(5.13) 
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(Both (5.12) and (5.13) are in fact consistent estimators of B-j .) 

Whether (5.12) or (5.13) is used, we calculate predicted values as 

(since z. is known for all k e U) , and residuals according to 

(5.14) 

(since yk is available for k e r only). 

The regression estimator proposed for Situation 3 does in fact combine 

the principles used in Situations 1 and 2: 

RESULT 3. In two-phase sampling, when x, is recorded for k e s and 

for k e U , an approximately design unbiased estimator of t 

(5.15) 

Let E l k and Ek be given by (5.11) and (5.1), respectively; É,. = E-ik/^ak and 
v 

Ek = ̂ k^k An a P P r o x i m a t e variance expression is then 

(5.16) 

Let e,k and ek be given by (5.14) and (5.3), respectively; è\k = e,k/ïï . and 

e., = e . / i T . A variance estimator is then 

(5.17) 

Result 3 can be justified along lines similar to those reproduced in detail 

for Situation 1. 

Comparing the respective variances of the three regression estimators, 

(5.5), (5.9) and (5.16), we note that the second variance component, expressed in 

the residuals Ek , is common to the three regression estimators. Differences 
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occur in the first variance component, which is "residualized" in the case of 

^REG and ^REG ' but not in the case of 1REG . The first c o m P o n e n t wl11 

therefore ordinarily be smaller for t2REG and t3REG than for t1REG . 

EXAMPLE 4. Suppose that the first phase involves a two stage sampling 

design: classes of students (psu's) are selected at the first stage; individual 

students (ssu's) are then subsampled within selected classes. The students thus 

selected form the first phase sample, s , for which the inexpensive information 

\ (say, grade point average) is recorded. The sampling weights relevant to phase 

one are 1/^ k = V^T-TT. • where ir,. is the probability of including the i:th 

psu in the first stage sample, and ir, . the probability of choosing the k:th 

ssu of the i:th psu . A second phase sample, r , is subsampled from s 

by simple random selection of, say, m of the n ssu's in s . For k e r , the 

value y^ (a more expensive measure of performance) is recorded. 

Assume that y is fairly well explained by the ratio model 

(5.18) 

The slope estimator and the residuals arising from the fit of this model are 

(5.19) 

where the weight -l/ir = l/irT.ir, .(m /n ) is used for the calculation of 

In addition, Situation 3 requires a second model, which we take to be the 

"trivial" one with 

(5.20) 

(This corresponds to z. = 1 for all k . For estimation of t , this model does 
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require some additional information, namely, the knowledge of Z..Z. = N , the pop­

ulation size). Results 1, 2 and 3 yield the regression estimators 

with 

and b given by (5.19). We have used (5.13) in deriving t3REG . 

Both t1REG and t3REG require knowledge of the values x. for k e s . 

In addition, t3REG requires that N be known. In cases where two stage sampling 

must be resorted to, N is normally unknown; consequently, for estimating the total 

t , it is t-|Rrg rather than t3REG that will be used. However, if N were 

known, t3REG would be preferred because of a variance advantage. Now t2REG re­

quires the x-total for the entire population U ; correspondingly, this estimator 

will ordinarily have the smallest variance of the three. The estimated variances 

are obtained from Results 1 to 3, where ek = yk - bxk and e,. = y. - bx . 

The choice between t,REG and t3REG appears in a different perspective 

if an estimate is sought not of the total t but rather of the mean y = t/N . 

The estimators of y formed (by division by N) are 

^lREG = 1REG/N = H " ^ s x k ) b ; y3REG = 3REG/N = ̂ sb • 

The latter formula has two advantages: it does not depend on N , and the variance 

is usually smaller. Thus, in two stage sampling with N unknown, it is y 3 R E G 

rather than y1 Rc G that will be used. D 
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6- REGRESSION ESTIMATION IN TWO-PHASE SAMPLING FOR STRATIFICATION 

Let us examine Situations 1, 2 and 3 when phase two involves stratified 

sampling. The setup is that of Sections 4 and 5 combined: For units k in the 

first phase sample, the statistician collects information by means of which s is 

partioned into Hg sets sh , which serve as strata for phase two. In addition, 

assume that auxiliary values x. (and possibly zk) are available, so as to fit 

the respective descriptions of Situations 1, 2 and 3. Other notation will be as 

in Sections 4 and 5. We conclude the following: 

Case STSI. Results 1 to 3 apply straightforwardly, with TT.I and IT, »I 

determined by (4.1). That is, the k:th observation is given the weight 1/TT£ 

with Trj": = TTifu for k e s. , where ir . is the first phase inclusion probability 

and f, = m./n. is the sampling fraction used in s, . For example, the first re­

gression estimator is 

(6.1) 

reflecting the stratified nature of phase two. One notes that all three regression 

estimators share the same estimated second variance component, namely, 

(6.2) 

2 
a "stratified expression" in which Sv is the variance in the set r, of the ex-

h 
panded residuals ek = (yk-x^b)/7rak . 

Case STBE. The transition from Case STSI to Case STBE is done by condition­

ing on m as in Section 4: ir. . and TT. „. , defined by (4.9), will replace 
^ KI S j m K^-l S )lTl 

their unconditional counterparts IT., and T. ,,. in Results 1 to 3. Here, Remark 

1 in Section 4 is again relevant: in each of the three situations, the estimator 

and the corresponding estimated variance will be in formal agreement with Case STSI. 
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In Situation 1, for example, we obtain the following "conditional regression 

estimator", approximately unbiased for t = Z.,y. : 

(6.3) 

which is in form identical to (6.1) above. The variance estimator is given by 

Comparing this with its analogue (4.12) in the case of the conditional ir*es esti­

mator, we see that the important change is that the estimated second component has 

become "residualized". Ordinarily, t , R r G will yield a shorter confidence interval. 

EXAMPLE 5. We reconsider the situation outlined in Example 4. In phase 

one, a two-stage sample of students, s , is selected. Suppose that this first phase 

sample is stratified (on the basis of sex and/or age, say) and that stratified sam­

pling is used in phase two. Also, for k e s , the variable x. (grade point average) 

is recorded. The relation between y. (recorded for k e r only) and x. is again 

assumed to follow the ratio model (5.18). If the sampling fraction in stratum h is 

f. = mn/
n
n » tne slope estimate becomes 

(6.4) 

Also, for Situation 3, assume the simple model (5.20). With b determined by 

(6.4), the first and third regression estimators of t = l>fli. are given, in Case 

STSI, by 

(6.5) 

The residuals necessary for the variance estimation 

This leads to the estimated variances 
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(6.6) 

(6.7) 

where V? is given by (6.2), and (4.1). 

The results (6.5) to (6.7) apply without any formal change in Case STBE 

(although the notation should then be tlcREG , t3cRE G to indicate the conditional 

nature of the regression estimator). 0 

7- CONCLUSION 

In a practical situation, the approach to two-phase sampling presented in 

the preceding pages will clearly require certain judgements on the part of the sta­

tistician about the best way to utilise the available auxiliary information, notably 

the information gathered for the units k in the phase one sample s . Following 

phase one, the statistician must: 

1. Make a choice of a sampling design for phase two. 

2. Make a choice of an estimator, using the regression modeling approach. 

He may, for example, choose to use a very simple second phase design and instead 

utilize most or all of the gathered information directly in the regression estimator 

formula. Alternatively, he may use some (or all) of the gathered information to 

stratify or in other ways create a more efficient second phase design. It may still 

be advantageous (but somewhat less imperative) to use an estimator of the regression 

type. 

In many applications where two-phase sampling is likely to be used, there 

may be little auxiliary information available prior to phase one, that is, information 

about all units in the population U . In such cases, the first stage design will 

ordinarily be the simplest possible under the circumstances. 
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PART II: NON-RANDOMIZED SUBSAMPLE SELECTION (NONRESPONSE) 

1- INTRODUCTION TO PART II 

The bridge between the present Part II and the preceding Part I of this 

paper is the common feature of selection of a first set, s , from the population 

of U = {1,...,k,.. .,N} , followed by subselection of the set r from s , and 

observation of the variable of interest, y , in the set r only. 

More specifically, in Part II, the first set s , now to be called the 

intended sample, in drawn by some given (arbitrary) sampling design. For units 

k e s , certain information may be recorded. Subselection occurs by fact that the 

measurement y. is obtained for units k e r only, where r c s . We call r 

the response set; s - r is the nonresponse set. We invoke the assumption, com­

monly made in recent nonresponse literature, that r is realized, given s , 

through a probabilistic mechanism of unknown form, called the response mechanism. 

As far as possible we shall use the same notation in Parts I and II for 

concepts that directly correspond to each other. The response mechanism (which 

corresponds to the second phase sampling design in Part I) will thus be denoted 

p(r|s) . Here the statistician is forced to make an explicit assumption about the 

unknown form of p(r|s) . 
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A difference between Parts I and II should be signaled: In the two phase 

sampling situation, the first phase sample, s , is typically large, because inex­

pensive, and the more costly second phase sample, r , is often a small fraction, 

say, 20% or less of the first phase sample. The variance due to the second phase 

can then be considerable. In the nonresponse situation, the size of the intended 

sample s may still be large, but, by contrast, if the rate of nonresponse is not 

too pronounced, the ultimate sample r is, say, 80% or more of the intended sample 

s . The variance attributed to the nonresponse "phase" may thus be relatively mod­

est in comparison to the variance due to selection of s ; the main problem is in­

stead the bias due to the systematic (rather than random) manner in which the 

nonresponse decimates the intended sample s . 

Our discussion includes the "adjustment group technique", one of the widely 

used attempts to eliminate or reduce bias due to unit nonresponse. In this technique, 

one applies a weight, nh/m, , equaling the inverse of the response rate in the h:th 

group, to every respondent value y. from the group. In addition, the ordinary 

sampling weight is applied. Thus, if simple random sampling (of n out of N) is 

M 
used to draw the sample, the estimator of the population total t = S-i yk becomes 

(1.1) 

where H is the fixed number of adjustment groups, w, = n./n is the sample portion 

in the h:th group and y is the respondent mean of y in the h:th group. 
rh 

The estimator (1.1) has been analyzed, in different ways, by Thomsen (1973), Oh and 

Scheuren (1983) and others. Different points of departure may be used in the anal­

ysis of (1.1). An analysis that was standard up until recently used the "determin­

istic model" of a dichotomized population, as described by Cochran (1977, p. 359): 

"In the study of nonresponse it is convenient to think of the population as divided 

into two "strata", the first consisting of all units for which measurements would 

be obtained if the units happened to fall in the sample, the second of the units 
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for which no measurements -would be obtained". Under this model, units in the re­

sponse stratum respond with probability one, the other units with probability zero. 

This places the survey statistician in the uncomfortable position that valid con­

clusions from the sample data (which come from respondents only) can only be extend­

ed to the response stratum of the population. Cochran (1977, p. 360) is quick to 

admit the limitations of the deterministic model: "This division into two district 

strata is, of course, an oversimplification. Chance plays a part in determining 

whether a unit is found and measured in a given number of attempts. In a more 

complete specification of the problem we would attach to each unit a probability 

representing the chance that it would be measured by a given field method if it fell 

in the sample". In the direction hinted at by Cochran, more recent analyses of es­

timators for the nonresponse situation favour a framework where the response behav­

ior is considered stochastic rather than deterministic. For example, this spirit 

penetrates a number of the contributions to the recent and authoritative "Incomplete 

Data in Sample Surveys", volumes 1 to 3. Here we can distinguish two lines of rea­

soning: One of them extends the classical randomization theory. The set of (known) 

inclusion probabilities is supplemented with the set of (unknown but modelled) re­

sponse probabilities, to form the necessary material for a modified randomization 

theory that can address the nonresponse situation. In "Incomplete Data in Sample 

Surveys", this line of thought is emphasized in Platek and Gray (1983), Oh and 

Scheuren (1983), Cassel, Särndal and Wretman (1983), whereas the second line of 

reasoning, fully model based inference conditionally on the set r , is present in 

other contributions, such as Little (1983) and Rubin (1983). Here, we shall use 

the former approach. 

The estimator (1.1) can be justified through the assumption that the popu­

lation U is composed of fixed set of disjoint subpopulations such that all units 

within a subpopulation have the same réponse probability, and that units respond 
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independently of each other. This model is called a "uniform response mechanism 

within subpopulations" by Oh and Scheuren (1983), who fittingly describe the setup 

with probability sampling augmented with a response model as "quasi-randomization". 

Assuming simple random sampling and a uniform response mechanism within subpopula­

tions, they analyze the bias, variance and mean squared error of the estimator 

(1.1), conditionally on the n, and the m, , as well as unconditionally. In 

our opinion, a model for the response mechanism should be formulated given the sam­

ple s , with consideration given to the survey operations to which the units in 

the particular sample s are exposed (cf. Dalenius, 1983). Consider, for example, 

the case where a team of interviewers carry out the field work. The required number 

of interviewers may depend on the geographical spread of the particular sample s . 

Difference in interviewing skill, in age, sex and race of the interviewers will 

create differences in response rates. This should be reflected in the response 

model, for example, by partitioning the particular s into groups that correspond 

to the interviewers, or to interviewers crossed with respondent age-sex groups. 

(The model with fixed subpopulations may be adequate for a one-interviewer situa­

tion, or for a mail survey, where it may make sense to partition s according to 

an unchanging rule.) We shall therefore formulate a more general response model. 

2. THEORETICAL RESULTS 

We assume that the intended sample s , of size n , is drawn from the 

population U = {1,...,k,...,N} by the arbitrary design Pa(s) . The quantities 

ïïak ' ̂ a ^ and Aak£ associated with this design are defined as in Section 2 of 

part I. In particular, pa(.) may be a "complex" design in two or more stages. 

Once drawn, s is partitioned into H groups, s. , h = 1,...,H . Denote by n. 

the size of s. , by r. the responding subset of s, , and by m. the size of 

r, . The total set of respondents, r , is the union of the r. ; the size of r , 

m , is the sum the m. . We assume that the individual response probability is 



29 

the same for all units in sh , h = 1,...,H , which we call response homogeneity 

groups (Rhg's). Units are assumed to respond independently of each other. Thus 

we have the Rgh model : for h = 

(2.1) 

The number of groups, Hg , and their definition may change with s ; the principle 

for forming the groups is not necessarily the same for all samples s . The Rhg 

model is an exact copy of the randomization imposed under stratified Bernoulli 

sampling, Case STBE, in Sections 4 and 6 of Part I. (However, in contrast to Case 

STBE, the Rhg model is "only" an assumption, not an actually imposed randomization 

scheme.) Assuming that the Rgh model (2.1) holds, we can thus directly borrow the 

results reported in Part I, Sections 4 and 6, under the heading Case STBE. Note 

that m = (m,,...,m„ ) is now the vector of respondent counts, and f. = mh/n. 

is the response rate in the h:th group, s. . As in Part I, one can identify a 

"basic situation", which leads to a "conditional TT*es estimator", and Situations 

1, 2 and 3 (as defined in Section 5 of Part I), with different levels of auxiliary 

information and leading to three different "conditional regression estimators". 

For easy reference, we list the estimators for the four different situations: 

The conditional iT*es estimator becomes 

(2.2) 

The conditional regression estimators are given by 

(2.3) 

(2.4) 

(2.5) 
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The estimator (2.2), its variance and its estimated variance (see below) are discus­

sed, in the context of nonresponse, by Singh and Singh (1979). 

If the assumed Rhg model holds, these four estimators are at least approx­

imately unbiased for t . If t denotes one of these estimators, the estimated 

variance is of the form 

where V-,(t) estimates the variance contribution due to the randomized selection 

of the intended sample s , and V^(t) estimates the variance due to nonresponse 

under the Rhg model. If the response is complete (that is, r = s), then 

The estimated first component is of the form 

where the definition of the quantities ä. depends on the estimator. For 

and for we have 

The fitted values yk and ylk are as defined in Section 5 of Part I. The estimated 

second component is given by the "stratified form" 

(2.6) 

2 
where S- is the variance in the set r, of the quantities a. defined as fol-

; for the other three estimators, 

An approximately 100(l-a)% confidence interval is formed as 

t ± zi_a/2
v^(t) » where z-i_a/2

 1s exceeded with probability a/2 by the unit 

normal vari ate. This interval takes nonresponse into account and assumes that 

a correct Rhg model has been formulated. (Otherwise the estimator is more or less 

biased, and the interval tends to be off-center.) 
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Our frequentist interpretation of variance and confidence intervals appeals 

to an imagined two step process of repeated samples s and, for each s , repeated 

realizations r under the Rhg model (2.1). We assume that each time a given 

sample s is selected, the repeated realizations of the model (2.1) are always 

with the same number of groups, Hg , and by the same grouping principle, but that 

these factors may change with s . 

EXAMPLE 1. Alternative ways to use the sampling weights. Assume that a 

complex (non-self-weighting) design in two or more stages is used to draw the in­

tended sample s . Let the sampling weights associated with this design be 1/TT . , 

and y. = y./IT . . Information is obtained that permits s to be divided into 

Rhg's s. , h = 1,...,H ; no further information is gathered. In the h:th group, 

the responses y. are obtained for the set r. (r, ç s,) . The statistician used 

to working with sample weighted observations can now easily think of at least three 

different estimators that attempt to correct for nonresponse through the Rhg-groups: 

with fL = mu/n,_ . Which is the "correct" estimator? Note that if the design is 
h h h 

self-weighting (that is, TT . = constant for all k), there is no issue, since the 
a K 

three estimators will then agree. Let us analyse the origin of each formula. Here, 

t, is the conditional ir*es estimator (2.2); it is based purely on a weighting 

argument. By contrast, t~ and tL also require some modeling; they arise from 
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the t 1Rrp formula (2.3), for two different model formulations. The model that 

generates 

(2.7) 

The fit of this model yields 

(2.8) 

and y, = y for a l l k e s, . Inserting into (2.3) we obtain t ? , where 

is a "sample weighted response rate" ; see Platek and Gray 

(1983). 

2 
Underlying t, is the "trivial" model E(y. ) = B ; V(yk) = a for all 

k . Here 

and y. = y for all k . Inserting into (2.3), the estimator tg follows. 

Although the three estimators yield slightly different estimates of t for 

a given data set, they will be accompanied by the same estimated variance, so the 

width of the three confidence intervals will be the same. (The large sample efficien­

cy of the three methods is the same.) It is easy to see that the three estimators 

share the same estimated first component. The common estimated second component is 

(2.9) 

This follows since the respective quantities a. to use in (2.6) are 

(for t^, ak = (yk-yr )/TTak for k e rh (for t2) and ak = (yk-yr)/^a k for 

k e r (for t 3 ) ; all three cases lead to (2.9). 

Now, if the population size N were known, further alternatives to t, , 

include 
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These can be shown to derive from tc3REG given by (2.5). 

If the intended sample s is drawn by simple random sampling, then all 

five estimators, t, to tr , become 

the well known weighting class estimator. 

EXAMPLE 2. The case of known population group sizes. A standard estimator 

in the nonresponse literature is 

(2.10) 

where N-.,... ,NH are the known sizes of certain fixed population groups U-.,...,UH , 

and y the simple mean of y, in the set r. . Thomsen (1973) and Oh and Scheuren 
rh K n 

(1983) among others, have analyzed this estimator, which we can identify, in our ap­

proach, as the t-ORPG estimator for the ANOVA model (2.7). The fitted values are 

for k e s, , where y is given by (2.8). Insertion into (2.4) gives 
n rh 

In particular, (2.10) is the special case corresponding to a self-weighting design 

(TT̂  = f , say, for all k). D 

EXAMPLE 3. Two-stage sampling with nonresponse Suppose the 

psu's are large and cutting across the Rhg's. Assume that the SI design is used 

at each of the two stages: a sample s, of n clusters is drawn from Nj at 

the first stage (fj = nj/Nj) ; if the i:th psu is selected, a sample s. of n. 

units is drawn from N- at the second stage (f. = n./N.) . The resulting sample 

of ssu's (which is the union of the nj sets s.) is divided into Rhg's s, ; 
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is the response rate in the h:th group. The con­

dit ional *es estimator i s , from (2.2), 

(2.11) 

where r.. is the set of respondents in the crossclassification of the i:th psu 

with the h:th Rhg. Here three different inverted fractions, fZ , f". and f7 , 

intervene as weights. The weight due to the sample selection is TT". = f, f". for 

all ssu1s k in the i:th psu, whereas f7 is the weight associated with cor­

rection for nonresponse in the h:th group. 

Now suppose in addition that an auxiliary variable x. is recorded for 

k e s , and that a ratio model is a decent description of the x-to-y relationship: 

For this model, the regression estimator (2.3) becomes 

(2.12) 

where 

(Note that if x. = 1 for all k , the estimator (2.12) will still be different 

from (2.11).) The estimated variance follows easily from the general formulas, in 

observing that IT . = f,f. and that the required quantities are a. = y./TT . in 

the case of (2.11) and ak = (yk-bxk)/Trak in the case of (2.12). D 

It can not be enough emphasized that in practice we must always be conscious 

of the possibility of (not to say the high likelihood of) misspecification of the Rhg 
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model. For example, even if groups do exist within which the individual response 

probabilities are essentially equal, these "true" groups may not coincide with the 

groups assumed in formulating the Rhg model. 

In other words, the estimation procedure described here (and most other 

procedures for estimation when there is nonresponse) requires an assumed response 

model, to be abbreviated ARM. (Here we consider only models that involve Rhg's, 

but in a more general setting, the ARM may have a structure not involving the group 

assumption.) The ARM decision is crucial, for it will determine the estimator for­

mula, and thereby it determines the numerical value of the estimate as well as the 

confidence interval estimate of t ultimately released by the statistician. With 

some other ARM, (perhaps markedly) different point and interval estimates would 

be published by the statistical agency. 

In settling on a certain ARM, the statistician believes that, with due 

consideration given, point and interval estimates produced under his assumption 

will be reasonably well "nonresponse adjusted". But he would be naive to consider 

his ARM a "true response model". As Kalton (1983) puts it, "sampling practitioners 

do not believe that the nonresponse models on which their adjustments are based 

hold exactly: they simply hope that they are improvements on the model of data 

missing at random". 

If the assumed Rhg model is false, the estimators will be biased to an 

extent that depends on the degree of model breakdown. The Monte Carlo study in 

Section 3 illustrates that regression estimators (when based on strong concomitant 

variables) are more resistant to bias than the estimators of straight weighting 

( e s ) type. 
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3- A SIMULATION STUDY 

We carried out a small scale Monte Carlo experiment involving repeated 

draws of simple random samples of size n = 400 from a real population U of 

N = 1227 Swedish households, for which we have access to y. , the disposable in­

come of the household, and w. , the taxable income of the household, k = 1,...,N . 

We studied alternative estimators of t = T.^. , based on samples affected by non-

response. In our study, w. serves as a concomitant variable. We can pretend 

that wk is available from the tax returns and not affected by nonresponse and 

that y,, is obtained from a survey, for responding households only. (The fact 

that simple random sampling was used to select s is not seen as a limitation. 

The objective here is to study the effects of nonresponse, and our conclusions would 

have been similar under some other sampling design.) The program for the simulation 

study was written in APL (VSAPL) and run on an IBM 370/158. The authors are thank­

ful to Mr. Claes Andersson for his assistance with the simulation. 

Once selected, each sample s was exposed to simulated unit nonresponse. 

By the true response mechanism (TRM) we mean the random mechanism chosen by us to 

generate unit nonresponse. (Note that in this setting, a true mechanism does exist, 

since the experiment is fully controlled.) We studied two TRM's, each conforming 

to an Rhg model with four groups (which we may assume to correspond to four different 

household types). The assumed response model (ARM) is the Rhg model actually used 

in the calculation of estimator, variance estimator and confidence interval for t . 

Our objectives were (a) to see if the preceding theory (based partly on large sam­

ple approximations) holds fairly well for moderate sample sizes when the ARM is true 

(that is, equal to the TRM); (b) to study the bias and the validity of the confi­

dence statements when the ARM is false (that is, deviating from the TRM). The po­

pulation regression of y. on Vw7~ = xk is heteroscedastic and roughly linear 

through the origin; a decent (in no sense perfect) description is the ratio model 
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(3.1) 

The population correlation coefficient between xk and yk is r = 0.831 . Our 

scenario assumes that xk is observed for units k in the intended sample s , 

while yk is observed for k in the response set r only. 

The TRM was determined by dividing U into four subpopulations, Uh , 

h = 1 4 . These were created from the 1227 y.-values through a process that 

combined an element of random assignment with some deliberate steering to separate 

the four subpopulation y-means. We allowed considerable overlap between the groups, 

as far as the yk-values were concerned; the separation between the group means is 

consequently far from maximal. If N, denotes the number of units, y, the mean 

of y and x, the mean of x in U. , then the triple 

the following values; 

For h = 1.....4 , the TRM was given its final specification by attaching to each 

unit in U. the same fixed value, eh , used in the simulation as the true individ­

ual response probability of the unit. The 6h-values 0.45, 0.60, 0.75, 0.90 were 

used as follows to create two different TRM's: 

for IL : 64 = 0.90 . Consequently, there is a (moderate) tendency for the response 

probability to increase with the yk-value (and with the xk-value). We have 

r = 0.44 ; rA = 0.39 , where rQ (rQ ) is the correlation coefficient (calculat-
6y 6x 8y 0x 

ed over the N = 1227 units) between the individual response probability and the 

yk-value (xk-value). 

TRM 2. The same set of 0.-values were attached to the U. in the reverse 
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order: For U] : 6-, = -0.90 ; for U2 : 62 = 0.75 ; for U3 : 63 = 0.60 ; for 

IL : Q. = 0.45 . Here there is a moderate tendency for the response probability 

to decrease with the y.-value (and with the x.-value); we have r0 = -0.44 ; 

As a result of the considerable overlap allowed between the subpopulations, 

the individual response probability has a rather modest correlation with the y.-

value, and with the x,-value. (It was because we wanted to keep these correlations 

low that the groups were created with overlap.) Despite these modest correlations, 

large biases are created in the estimates of t , for both TRM's, unless effective 

corrective action is taken. 

For each of the two TRM's, we studied three different ARM'S (for all s , 

we used a fixed number of groups, H = 4) : Situation TRUE: The ARM is true, that 

is, stated in terms of H = 4 groups identical to the four Rhg's of the TRM; 

s. = s n IL ; h = 1 »...,4 . Situation FALSE 2: The ARM is falsely stated in terms 

of H = 2 groups, each formed by merging two neighbouring Rhg's of the TRM; s, 

with Sp ; s, with s. . Situation FALSE 1. The ARM is falsely stated in terms 

of H = 1 group, formed by merging all four Rhg's of the TRM; that is, the response 

probability is incorrectly assumed to be uniform throughout the population. 

Three estimators were studied: 

where 

Here, t« is the usual weighting class estimator, while tR and tç re­

sult from the regression estimator t , REG given by (2.3). t g is generated by 

the rat io model (3.1). In this model, the x-variable appears in i t s or ig ina l , 
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continuous form, but an a l te rna t i ve (with no appreciable information loss) is to 

group the x k -va lues . This gives r i se to "aux i l i a r y groups", which are concep­

t u a l l y d i f f e ren t from the Rhg's. More e x p l i c i t l y , f o r each real ized sample s , 

suppose that G equal-sized aux i l i a r y groups are formed by ordering the n values 

xk from the smallest to the la rges t , l e t t i n g the f i r s t group, s, , consist of 

100/G% of the sample wi th the smallest xk -va lues, the second group, So , of the 

next 100/G% of the x-ordered sample, e tc . 

A reasonably good a l te rna t i ve model fo r explaining the y-var iab le is then 

where s , g = 1, . . . ,G . The c rossc lass i f i ca t ion of the G aux i l i a ry groups with the 

H Rhg's of the ARM gives r i se to GH c e l l s . Let r , be the response set in the 

ce l l gh , m . the size of r . , and 

Also l e t n . be the size of the subset of the sample s that f a l l s in ce l l gh , 

and 

In our experiment, G = H = 4 . Thus, t f t uses only the Rhg's of the ASM, whereas 

t B and t c incorporate both the x- information and the Rhg's. As the empirical 

resul ts w i l l show, the presence o f the x-var iab le in t g and t~ serves as a var­

iance reducing device (whether the ARM is t rue or f a l s e ) , and, perhaps more impor­

t a n t l y , as a bias reducing device when the ARM is f a l s e . 

I f t is one of the studied estimators, the variance estimate is composed 

as 
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Observing that, in our experiment, ir . = n/N • for a l l k and -n . » = n(n-l )/N(N-l ) 

for a l l k = l , the general results in Section 2 lead us to conclude that t . , 

tg and t share the same f i r s t variance component, estimated by 

where f = 

The second variance component (the "nonresponse variance") is estimated by 

where Sav, is the variance in the set r. of the numbers a. such that, for 
ari n K 

1 -' h • ak = yk ; for { = B • ak = yk • bxk ; for l -- £C • ak = yk - bgxk when 

k is in group g ; g = 1 ,...,G . 

For each of our two TRM's, the simulation proceeded as follows: A first 

SI sample s of size n = 400 is drawn from U . For each unit k in s , the 

value x. and the Rhg membership (according to the TRM) are recorded. If k is 

found to belong to group h , a Bernoulli trial is carried out with the known prob­

ability 0. of "success" (= response) and 1-6. of "failure" (= nonresponse). 

The n independent trials generate a response set r . Then y. is recorded for 

each k e r , and t« , tR and t~ , as well as their respective variance estim­

ators and confidence intervals, are computed for each of the situations TRUE, FALSE 2 

and FALSE 1. The procedure is repeated for a total of K = 1000 generated response 

sets r . If tv denotes the value for the v:th response set of one of the three 

estimators, the following summary performance measures were computed: 

where MEAN ̂  , MEAN V2 and MEAN V are the means of and 
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respectively, over, the K = 1000 repetit ions. Finally, 

CVR90 is 100 times the proportion of the 1000 confidence intervals, with 

z0«950 = 1 ' 6 4 5 ' t h a t c o n t a i n t h e t r u e t o t a 1 t • F o r CVR95, 1 . 9 6 0 replaces 1.645. 

Table 1 . Performance measures for t - , t „ and t c under three ARM's: TRUE, 

FALSE 2 and FALSE 1. Upper portion of the table: TRM 1 ; lower portion of the 

table: TRM 2. True value to estimate: t = 74.05 . 

Table 1 shows the following: 

Situation TRUE: (1) Each estimator is approximately unbiased (BIAS = 0) ; 

(2) Each estimator has an approximately unbiased variance estimator (VAR is close 
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to MEAN V) ; (3) L and L (which use the x-variable) have considerably smaller 

MEAN V than tA (which ignores x) ; (4) the reason for (3) is that MEAN V2 is 

much smaller for L and t- than for tA , whereas MEAN V-| is the same for all 

three cases; (5) the coverage rate for each estimator is near the nominal rate 

(CVR 90 = 90%, CVR 95 = 95%). The conclusions confirm what theory leads us to except. 

Situations FALSE 1 and FALSE 2: (1) All three estimators are biased, 

although tg and t- are much less so than t. ; (2) all three variance estima­

tors are fairly insensitive to breakdown of the ARM , that is, VAR and MEAN V 

are still fairly close; (3) VAR is again considerably smaller for tR and t« 

than for t. , as a result of a greatly reduced second variance component; (4) the 

coverage rates CVR 90 and CVR 95 are much closer to nominal levels for t„ and 

tc than for t» . (Extremely poor CVR1s are recorded for t. in the case FALSE 1.) 

The primary explanation is the lower bias of L and tc . Here, point (1) confirms 

earlier work (for example, Sarndal and Hui, 1981) indicating that regression estima­

tors are more bias resistant. Additional work is needed to see if point (2) holds 

more generally. 

4- DISCUSSION 

Our ambition with the foregoing simulation and theory was partly to create 

increased awareness about the forces at play in the nonresponse situation. To il­

lustrate, let us examine a statement by Oh and Scheuren (1983), in which "subgroups" 

refers to our Rhg's : "A seemingly robust approach is to choose the subgroups such 

that for the variable(s) to be analyzed, the within-group variation for nonresDond-

ents is small (and the between-group mean differences are large); then, even if the 

response mechanism is postulated incorrectly, the bias impact will be small. ... 

A further difficulty with this prescription is that it is only for the respondents 

that within-group variability can be observed." A statement such as this reflects, 
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we believe, a not untypical hesitation and uncertainty that survey practitioners 

feel about the proper role of adjustment groups. Some of the confusion may have 

its roots in the old and crude dichotomy response stratum/nonresponse stratum. In 

our opinion, it is necessary to distinguish the role of the Rhg's from that of other 

information (the x-variables) recorded for k e s . Two very different concepts 

are involved. The sole criterion for the Rhg's should be that they eliminate bias, 

to the fullest extent possible. Every effort should be made, and all prior knowl­

edge used, to settle on groups likely to display response homogeneity. But in ad­

dition it is imperative to measure, for k e s , a concomitant vector, x. , that 

will yield variance reduction and added protection against bias. Groups that elim­

inate or reduce bias are not necessarily variance reducing, and, contrary to the 

cited statement, the criterion of maximizing between-to-within variation (in y) 

does not necessarily create groups that work well for removing bias. 

In summary, we find that (1) In order to eliminate bias due to nonresponse, 

it is vital to identify the true response model; as this is often impossible, bias 

can be greatly reduced if powerful explanatory x-variables can be found and incor­

porated in a regression-type estimator; (2) A second reason to incorporate such 

x-variables into the estimator is that the inevitable increase in variance caused 

by the nonresponse, "the second variance component", is kept at low levels. 

5- SOFTWARE AT STATISTICS SWEDEN FOR POINT ESTIMATES AND STANDARD ERRORS 

Statist ics Sweden can often rely, for i ts surveys, on good sampling frames 

with up-to-date addresses for most units in the population under study. Many sur­

veys involve mail inquiry, often with follow-ups by telephone, attempting to reach 

all (or a subsample of) nonrespondents. (Of course, not all attempts will result 

in a completed telephone interview, and therefore some nonresponse remains). In 

these situations, stratified sampling is efficient, especially since one can often 
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let some of the domains of study correspond to strata. Much of the auxiliary in­

formation in the frame is used for determining the sampling design, and a simple 

estimator (of the ir*es -cype) will often be efficient. TAB 68, developed at 

Statistics Sweden, is the principal software used by the agency in the production 

of statistical tables. An advantage of TAB 68 is great liberty to specify the fea­

tures of desired tables. One major draw-back is that to date, TAB 68 has been li­

mited to the calculation of point estimates. Statistics Sweden is in the process 

of implementing new software, SMED 83, which, while maintaining the flexibility of 

TAB 68 for producing tables, will make possible not only the calculation of point 

estimates of totals, means or ratios, but also their estimated standard errors (or 

coefficients of variation), all for presentation in the same table. Underlying 

SMED 83 is the theory that we have presented in this paper. 
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