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Statistical disclosure limitation techniques are designed to provide legitimate users with
access to useful data while simultaneously preventing disclosure of sensitive information.
Two techniques that can be used to limit disclosure of sensitive numerical data are multiple
imputation and data perturbation. While many studies have addressed the effectiveness of
perturbation and multiple imputation individually, no studies have directly compared the two
techniques. In this study, we compare the effectiveness of multiple imputation and data
perturbation for numerical microdata. The results indicate that, in the absence of missing data,
data perturbation performs better than multiple imputation. In addition, since only a single
perturbed data set is released (unlike the multiply-imputed data sets that are released), data
perturbation eases the burden on users of such data.
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1. Introduction

Statistical agencies that gather and release data have dual, conflicting responsibilities. On

the one hand, they must preserve the privacy and confidentiality of the individuals from

whom they have gathered data. On the other hand, they have to ensure that released data is

useful for analysis. The problem is particularly acute if the statistical agency releases

microdata. Yet, releasing summary data rather than microdata limits the types of analyses

that can be conducted on such data (Duncan and Pearson 1991; Citteur and Willenborg

1993). While there is no question that all types of microdata release are important, in this

study we focus on the release of numerical, confidential microdata values.

A variety of techniques have been proposed for releasing numerical, confidential

microdata useful for analysis, while preventing disclosure. Generally referred to as

“masking” techniques, they include data perturbation, micro-aggregation, multiple

imputation, swapping, rounding, etc. For a comprehensive review of these techniques,

please refer to Willenborg and de Waal (2001). Not all techniques are equally effective.

For example, it has been shown that data swapping can result in reduced data utility and

high disclosure risk (Moore 1996; Muralidhar and Sarathy 2003). Micro-aggregation has

been shown to result in dangerously high disclosure risk (Winkler 2002) and reduced data

utility. Only multiple imputation and data perturbation appear to provide high data utility

and low disclosure risk.
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Data perturbation for numerical variables has received considerable attention in the

literature. Beginning with the simple “noise addition” approach, data perturbation has

been enhanced in several ways (Kim 1986; Fuller 1993; Tendick 1991; Tendick and

Matloff 1994; Muralidhar et al. 1999, 2001).3 Originally developed as a methodology for

analysis with missing data, multiple imputation was first proposed for statistical disclosure

limitation by Rubin (1993) and has been addressed in greater detail recently by Reiter

(2002) and Raghunathan et al. (2003). In practice, data perturbation and multiple

imputation methodologies can be considered as alternative, competing techniques for

masking numerical microdata. When viewed from this perspective, it is desirable to

compare the two techniques in terms of data utility and disclosure risk requirements. The

objective of this study is to present such a comparison for numerical confidential variables.

The remainder of the article is organized as follows. In the next section, we briefly review

the theoretical and philosophical underpinnings of perturbation. In the third section, we

numerically illustrate the new perturbation approach. In the fourth section, we empirically

compare the new perturbation approach and multiple imputation. In the fifth section, we

discuss the limitations of each approach. The last section contains the conclusions.

2. A Sufficiency-Based Approach for Data Perturbation

The basis for data perturbation has been addressed by a variety of authors including Fuller

(1993), Fienberg et al. (1998) and, most recently, Muralidhar and Sarathy (2003). In their

paper, Muralidhar and Sarathy (2003) suggest generating the perturbed values of the

confidential variables from the conditional distribution of the confidential variables given

the nonconfidential variables. This provides high data utility and low disclosure risk, under

the assumption that the data set itself is the population.

Formally, we can describe the conditional distribution approach proposed by

Muralidhar and Sarathy (2003) as follows. Consider the data set as a finite population

consisting of a set of nonconfidential variables S and a set of confidential variables X. For

each observation, generate a vector yi from the conditional distribution fðXjS ¼ siÞ.

Muralidhar and Sarathy show that the collection of values (S and Y) has the same

distribution as the original values (S and X), thereby providing the highest possible level of

data utility. Dalenius (1977) and Duncan and Lambert (1986) define disclosure risk in

general terms as the improved predictive ability of a data intruder (snooper) when

provided access to the masked data (compared with the snooper’s predictive ability prior

to access to the masked data). The conditional distribution approach results in

fðXjS;YÞ ¼ fðXjSÞ. Thus, providing access to the masked microdata (Y) does not improve

the predictive ability of a snooper. Consequently, the conditional distribution approach

minimizes disclosure risk.

The conditional distribution approach, while appropriate for perturbing any confidential

variable, is difficult to implement for categorical variables (Fienberg et al. 1998). Even for

numerical variables, deriving the conditional density fðXjSÞ can be very difficult in the

general case. However, under specific assumptions regarding the underlying population

3 Please note that we focus on data perturbation for numerical data only. Several studies have addressed data
perturbation for categorical data (Fienberg et al. 1998).
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and/or depending on the specific characteristics of the data set to be preserved, it is possible to

implement the conditional distribution approach. One such case occurs when the underlying

population has a multivariate normal distribution and/or it is necessary to preserve the mean

vector and covariance matrix of the data set (Muralidhar et al. 1999, 2001).

The perturbation approach suggested by Muralidhar et al. (1999, 2001) generates the

values of yi using the linear model:

yi ¼ b0 þ b1si þ 1i ð1Þ

where b0 and b1 are computed by regressing X on S so that we have b1 ¼ SXSðSSSÞ
21

and b0 ¼ mX 2 SXSðSSSÞ
21mS; 1 , Nð0; SXjSÞ; SXjS ¼ SXX 2 SXSðSSSÞ

21 SSX; and

SXX;SSS; and SXS represent the covariance matrix of X, S, and (X and S). We can verify

that the random variable Y is distributed with mean vectormX, covariance matrixSXX, and

SYS ¼ SXS. We can also verify that the SXjS;Y ¼ SXjS, and hence providing access to

Y does not improve a snooper’s ability to predict confidential values using linear models.

In the above approach, themean and the covariancematrix of the perturbeddatawill not be

identical to those of the original data, but will approach the original values asymptotically.

This “sampling error” is likely to be a problem in situations where the user treats the data as a

sample from an unknown population and attempts inferences regarding a parameter of this

unknownpopulation. In otherwords, the observed valuesmX andSXX are themselves sample

statistics. If Y were used in place of X, inferences reached regarding unknown population

parameters using Y may be different from inferences using X (Rubin 1987).

Burridge (2003) suggests a simple modification to overcome this problem, relying on

the fact that the information contained in a data set about a population parameter can be

summarized by its sufficient statistics. If we can reproduce another data set having the

same sufficient statistics as the original data set, then “information has been preserved,”

and all inferences reached about the population parameter using the reproduced data

would be the same as inferences using the original data (Burridge 2003). An ideal solution

would be to maintain sufficient statistics for any statistical analysis in the perturbed data.

In practice, this would be very difficult to achieve. Fortunately, the mean vector and

covariance matrix of the sample are sufficient statistics for many statistical models that are

commonly used in practice. Examples include hypothesis testing of the mean (both

univariate and multivariate), ANOVA, MANOVA, multiple regression analysis,

multivariate multiple regression, factor analysis, canonical correlation analysis, etc.

Hence, maintaining these statistics in the masked data to be exactly the same as those in

the original data would ensure that the results of most statistical analyses performed using

the masked data would yield exactly the same results as the original data (Lehmann and

Casella 1998).

Burridge (2003) provides an approach for generating 1 such that, regardless of sample

size, the mean vector and covariance matrix of the masked data are exactly the same as

those of the original data. For small sample sizes, this approach could potentially increase

disclosure risk since it does not ensure that SXjS;Y ¼ SXjS. We modify Burridge’s

procedure to ensure that SXjS;Y ¼ SXjS as follows:

. Generate a(ny) matrix of random numbers A of size ðn £ kÞ where n is the number of

observations in the data set, and k is the number of confidential variables.
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. Regress A on(X and S) and compute the residuals R. Note that R is orthogonal to

(X and S) and has mean vector 0.

. Compute SRR the covariance matrix of R.

. Compute R* ¼ ðSRRÞ
20:5R. R* has mean vector 0 and covariance matrix I.

. Compute 1 ¼ ðSXjSÞ
0:5R*. 1 is orthogonal to X and S, has mean vector 0, and

covariance matrix ¼ SXjS.

. For each observation in the data set, compute yi ¼ b0 þ b1si þ 1i where b0 and b1

are derived by regressing X on S.

The difference between the above procedure and the one suggested in Burridge (2003) is

in Step (2) above. While Burridge regresses only A on S, the above procedure regresses A

on both (X and S). This ensures that X and A are orthogonal and SXjS;Y ¼ SXjS. This step

has important implications in assessing disclosure risk.

Our assessment of disclosure risk resulting from a masking procedure is based on an

incremental approach. Our approach is to isolate the disclosure risk that would result from

the masking procedure. Prior to the release of such data, we assume that the agency has

already provided the users with aggregate information and access to the nonconfidential

variables, S. Let us assume that the disclosure risk due to this information is PS. The only

objective of the data masking approach is to provide access to the masked microdata for

confidential variables. Hence, we assess the incremental disclosure risk resulting from the

masking procedure. Assume that the masked values are generated as

yi ¼ gðsi; 1iÞ ð2Þ

where the noise term 1 is independent of X and S, and g(.) is any mathematical function

(that is an approximation to fðXjSÞ). Equation (1) is a special case of Equation (2). Under

these conditions, we can show that

PðX # xijS # si;Y # yiÞ ¼ PðX # xijS # siÞ ð3Þ

Hence, it follows that the disclosure risk with access to both the nonconfidential variables

S and the masked microdata Y is also PS. In other words, providing access to the masked

microdata Y does not provide any additional information regarding the confidential

variable X, thereby minimizing disclosure risk as defined by Dalenius (1977). It is

important to note that we do not contend that release of the entire data set prevents

disclosure; we only contend that release of the masked microdata Y prevents additional

disclosure (over and above that resulting from the release of aggregate information and the

nonconfidential variables S). When the value of PS itself is considered too high, the

agency releasing the data may want to reconsider releasing information from this data set.

Thus, the sufficiency-based perturbation approach provides two distinct advantages.

First, many traditional types of statistical analyses using the masked microdata will yield

the same results as analyses using the original data, resulting in high data utility. Second,

access to the masked microdata will not provide additional information regarding the

confidential variables; thereby, disclosure risk from releasing the masked microdata is

minimized. When such data is disseminated, however, it is important that the agency

releasing the data inform the user that the data is best suited for statistical analyses where

the requisite sufficient statistics are the mean vector and the covariance matrix.
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Finally, note that the sufficiency-based perturbation approach can be implemented for

any data set regardless of its underlying characteristics. If the underlying distribution of

the data set is approximately multivariate normal, this procedure provides possibly the best

solution to the masking problem, since the results of any analysis using the perturbed data

will be identical to results using the original data. However, when the underlying data set

is not multivariate normal, the above approach will maintain the mean vector and

covariance matrix to be the same, but will not maintain the marginal distribution of

nonnormal confidential variables, nor will it maintain nonlinear relationships.

3. A Numerical Illustration

In this section, we provide a simple illustration using an empirical data set consisting of 50

observations with two categorical nonconfidential variables and two numerical

confidential variables. The data was masked using the sufficiency-based perturbation

approach described in the previous section. The entire data set (both the original and

masked values) is provided in Table 1.

In terms of usefulness of the released data, consider a user attempting to estimate the

relationship between the confidential variables. Table 2 provides the results of the

regression analysis to predict X2 using S1, S2, and X1 and the results of the same analysis

using the masked data. Table 2 shows that the results are identical for both data sets.

Hence, for this analysis, using Y in place of X results in no information loss. Similar results

will be observed for all analyses for which the mean vector and the covariance matrix are

sufficient statistics and can be verified using the data in Table 1.

We can assess disclosure risk by considering the information regarding the confidential

variables that is contained in the released data. Table 3 provides the results of the

regression analysis to predict the value of variable X1 using the nonconfidential variables

S. Even without access to the masked microdata Y, an intruder would be able to predict the

values of the confidential variables, and the results in Table 3 provide this baseline. Table 3

also provides the results of a regression analysis to predict X1 using both S and Y. The table

shows that the regression coefficients for the masked variables Y1 and Y2 are 0.0000. In

other words, the masking procedure does not provide the intruder with any additional

information regarding the confidential variables. At the same time all other measures of

effectiveness are maintained before and after the availability of the masked data Y. We can

easily show that these results hold for other variables and identity disclosure as well.

In conclusion, the results in this section show that the sufficiency-based data perturbation

approach provides a high level of data utility (or low information loss) and simultaneously

minimizes disclosure risk. It is easy to show that this approach performs better than all other

perturbation approaches for most types of statistical analysis. In the following section, we

compare the performance of the sufficiency-based perturbation approach with that of

multiple imputation.Asdiscussed in the introduction,multiple imputation has been proposed

as a technique for limiting disclosure of confidential, numerical microdata. One strength

claimed for multiple imputation is the ability to make valid inferences about population

parameters based onmultiply-imputed sample data.Based on its ability tomaintain sufficient

statistics in the perturbed data while minimizing disclosure risk, we show that the

sufficiency-based perturbation approach has advantages over multiple imputation.
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Table 1. Original and Perturbed Data

S1 S2 X1 X2 Y1 Y2

1 0 500.4600 1155.8300 482.6735 1424.7832
1 1 493.9200 1377.0200 359.0649 1071.8574
1 1 634.3200 1299.1300 624.4686 1301.0551
0 0 508.8400 1354.3300 434.0697 1335.2988
1 0 525.2200 1107.1000 665.4042 1929.2955
1 1 526.7600 1235.1200 371.3863 1102.3653
0 0 594.3600 1181.6300 491.9644 1294.8621
0 0 443.6900 1300.6100 497.0892 1271.2183
0 0 597.2000 1465.0700 555.7086 1341.8809
1 0 546.0100 1497.0500 476.3101 878.0547
1 0 480.4500 1316.3900 397.8660 1099.8688
0 1 378.6100 1219.5600 412.8643 950.9305
1 1 518.3300 1521.5600 561.0805 1121.9023
0 1 471.6900 1028.4900 587.6252 1093.2226
1 0 503.7900 1330.5200 509.7884 1093.1565
1 1 485.5200 872.8400 475.6626 1119.4988
0 1 368.5500 1252.7200 539.0616 1351.5073
1 0 676.1800 1652.2600 611.7734 1299.2261
1 0 528.1300 1318.2800 528.3772 1267.4939
0 1 454.8200 1223.0200 361.0217 765.5149
0 1 415.2200 1166.7200 340.2120 1128.0408
1 1 495.2000 1253.5000 507.4785 1427.8009
1 0 631.0800 1212.7100 648.9842 1353.4810
0 1 450.6300 883.6500 302.5341 1036.0298
1 1 515.6400 1038.3600 529.3986 1187.7625
0 0 339.3100 918.3800 580.4005 861.9066
1 0 467.4300 989.3000 537.7450 1193.0941
1 1 555.3500 1347.9100 460.9777 1277.1995
1 0 604.2600 1541.7800 468.5067 1419.7107
1 0 519.2400 1429.8500 561.6572 1266.0748
1 1 436.3900 733.3200 499.6173 1291.7136
1 1 408.3600 1211.0600 555.4182 914.2747
1 0 475.3800 921.5900 474.6856 1179.2390
1 0 686.9900 1629.1500 496.7289 1275.3090
1 0 431.8600 955.9400 527.3035 1261.7240
1 0 405.8100 1283.3900 500.5734 1274.2354
1 0 637.7700 1070.3400 418.3473 1114.4093
0 0 554.5700 1189.4900 634.0938 1273.2714
0 1 466.7700 862.2300 462.9712 1311.1441
1 0 419.4800 1349.0500 607.6823 1718.6883
1 0 430.4400 1147.7900 603.7399 1420.8918
1 0 478.8200 1519.4800 520.6576 1601.5956
1 0 463.5500 1424.8100 533.0257 1270.0153
1 0 643.9300 1512.4100 550.5419 892.2651
1 1 481.9900 1112.7500 607.2267 1187.1399
1 0 529.6700 1242.8000 461.4771 1526.3195
1 0 609.9600 1326.4100 478.3422 1326.5562
0 0 546.9800 1093.4500 422.6095 1070.7836
1 0 370.1500 1409.4600 503.8587 1258.2023
0 0 520.4600 949.6600 489.4743 1003.3982
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4. An Experimental Comparison of Multiple Imputation and Sufficient

Perturbation

In this section, we describe a simulation experiment conducted to evaluate the relative

performance of multiple imputation and the sufficiency-based perturbation approach.

First, we briefly describe multiple imputation. Assume that the data set is a finite

population of size N, consisting of two sets of variables S and X, where S represents the

design variables and is observed for the entire data set. X represents the survey variables of

interest. Let Xobs represent the observed portion of the n sampled units ðn ,, NÞ: Using

this information, the agency releasing the data imputes Xnobs, the missing values for the

N 2 n units using the posterior predictive distribution of ðXjS; YobsÞ, so that a complete

data set is created. A random sample (of size, say, n1) is then selected from the ðN 2 nÞ

imputed values. This process is repeated M times to generate M synthetic data sets. The

agency then releases the M data sets of size n1. The user analyzes each of the M data sets

using traditional complete data techniques and estimates the population parameter Q with

some estimator qi, and the variance of qi with some estimator vi. These values are then

aggregated as illustrated in Reiter (2002) and can be used for inferences. In addition, since

the masked values are generated in the manner described in Equation (2) and since the

imputed values are only generated for those observations for which the survey variables

are not observed, the imputed values are independent of the original values.

Table 3. Assessment of Disclosure Risk

Predict X1 using
S1 and S2

Predict X1 using S1, S2 and
masked data (Y1 and Y2)

Estimate of intercept 513.17625 513.17625
Estimate of coefficient of S1 28.46898 28.46898
Estimate of coefficient of S2 10.40958 10.40958
Estimate of coefficient of S1 £ S2 283.70625 283.70625
Estimate of coefficient of Y1 N/A 0.00000
Estimate of coefficient of Y2 N/A 0.00000

Table 2. Results of Regression Analysis to Predict X2 (Y2)

Original data Perturbed data

Regression statistics
R-Square 0.2370 0.2370
Standard error of model 192.6845 192.6845
Overall significance of model 0.0057 0.0057

Coefficient estimates
Estimate of intercept 767.8866 767.8866
(Standard error of estimate) (184.9393) (184.9393)
Estimate of coefficient of S1 78.3935 78.3935
(Standard error of estimate) (61.5696) (61.5696)
Estimate of coefficient of S2 278.2139 278.2139
(Standard error of estimate) (59.1628) (59.1628)
Estimate of coefficient of X1 ðY1Þ 0.8603 0.8603
(Standard error of estimate) (0.3572) (0.3572)
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In practice, the imputed values are often generated based on a linear model as in

Equation (1) (Reiter 2002; Raghunathan et al. 2003). In these cases, the imputed data have

similar characteristics to those using the sufficiency-based perturbation approach. Hence,

as in the case of perturbation approach, the imputed data set(s) allow the user to draw valid

inferences for those analyses for which the mean vector and the covariance matrix are

sufficient statistics. Just as with the perturbation approach, when the underlying data set is

not normal, multiple imputation will also not maintain the marginal distribution of the

variables, nor will it maintain nonlinear relationships among variables.

Note that the values of S must be observed for the entire set of N values (in order to

impute the values of Y for the N 2 n observations). This makes it difficult to use multiple

imputation for data sets such as those shown in Table 1. Hence, in this study we use two

experiments that lend themselves to multiple imputation. The first example involves

simple random sampling of a single variable and focuses on estimating the mean of this

sample. The second example involves multiple variables and focuses on the estimate of the

regression coefficient from this data. Reiter (2002) used the first example, and

Raghunathan et al. (2003) the second example, to illustrate the effectiveness of multiple

imputation in these situations. We show that the perturbation procedure suggested in this

study performs better than multiple imputation for the same examples.

4.1. Experiment 1

The first experiment involves the release of a single variable X and no nonconfidential

variables. The parameter of interest is the population mean (m) estimated by constructing a

95 percent confidence interval. The objective of the experiment is to evaluate the

effectiveness of the masking procedure in estimating the population mean. It is assumed

that the population is of size N and is of normal distribution with mean 0 and variance 100.

A simple random sample of size n ¼ 100 is drawn from this population and represents the

original confidential data (X). The mean ð�xÞ and variance ðŝ2Þ of the sample were

computed. The multiple imputation procedure was implemented as follows.

. Draw a random variable g from x2n21 and compute s 2
*
¼ ŝ2 ðn21Þ

g

. Generate m* from a multivariate normal distribution with mean �x and variance s 2
*
=n

. Generate N ¼ 1; 000 observations from a normal distribution with mean m* and

variance s 2
*
=n

. Obtain a simple random sample of size n ð¼ 100Þ from N

. Repeat steps 1-4 M times to obtain the M imputed samples

The parameter of interest in this case is the population mean m estimated through a 95

percent confidence interval. For each imputed sample l, the sample mean ðq ðl ÞÞ and the

variance of the sample mean (v ðl Þ ¼ imputed sample variance/n) are computed. Using this

information, the following quantities are computed:

qq�qn ¼
l

X q ðl Þ

M
; bM ¼

l

X ðq ðl Þ 2 �qMÞ
2

M 2 1
; �vM ¼

l

X v ðl Þ

M
; TS ¼ ð1þM21ÞbM 2 �vM
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Reiter (2002) indicates that TS could be negative, and in these cases, TS ¼ �vM : The 95

percent confidence interval for the mean is then computed as:

�qM ^ tvS ð0:025Þ
ffiffiffiffiffi
TS

p

where vs ¼ ð1þM21Þð12 r21
M Þ2; rM ¼ ð1þM21ÞbM=�vM; and tk represents the

t-distribution with k degrees of freedom.4

The implementation of the perturbation approach in this case is simplified since the data

consists of a single confidential variable and no nonconfidential variables. The

perturbation is implemented as follows:

. Generate n observations from a normal distribution with mean 0 and variance 1. Let

this be A.

. Regress A on X and compute the residuals A*.

. Normalize A* to have mean 0 and variance 1.

. For i ¼ 1 to n, compute yi ¼ a*
i ŝþ �x: Yð¼ y1; y2; : : : ; ynÞ represents the masked

values.

Once the masked values Ywere generated, the computation of the confidence intervals was

performed exactly as it would have been performed on the original data set.

The entire simulation was then repeated 1,000 times. The results of the simulation,

provided in Table 4, are self-explanatory. The average parameter estimate, the average

variance of the estimator, and the 95 percent confidence interval coverage for the original

data and the perturbed data are identical. The results for the perturbation approach are not

the results of “averaging” over the 1,000 replications as is the case with multiple

imputation. For each replication, the results obtained from perturbation are exactly the

same as those obtained from the original data. This is not true for multiple imputation. The

average standard error for the multiple imputation is slightly higher and the 95 percent

confidence interval coverage is also slightly higher.

Figure 1 shows the original sample estimates on the X-axis and the perturbed sample

estimates as well as the multiply-imputed sample estimates on the Y-axis. It is easy to see

that the original estimates and the perturbed estimates fall exactly on a 45-degree line. By

contrast, the estimates from the multiply-imputed sample are different from that of the

original mean, even with a large number of imputed samples (100).

In order to illustrate the effect of decreasing the number of imputed samples, Figure 2

provides the results of the same experiment above, but with M ¼ 10, instead of 100.

Comparing Figures 1 and 2, obviously the sample estimates show considerable increase in

variability when M ¼ 10, compared with when M ¼ 100. In practice however, analyzing

all 100 imputed samples would require more effort than analyzing only 10 imputed

samples. Figure 3 provides the results of a similar analysis performed for n ¼ 30 for

comparison purposes.

Table 5 provides the results of imputation and perturbation for several sample sizes and

several specifications for the number of imputed samples. In each case, we provide the

4Reiter (2002) uses two different estimation procedures and concludes that the procedure described here provides
more efficient results that the other procedure. Hence, we use only this procedure.
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estimate and its standard error for both the original sample and the multiply-imputed

samples averaged over 1,000 replications. The results in Table 5 indicate that it is necessary

for the number of imputed samples to be rather large in order for the estimates to be accurate.

If the number of imputed samples is small (say 3 or 5), the standard errors of the estimate

from using the multiply-imputed data are much higher than those of the original sample.

We also repeated this experiment by generating the confidential values from several

nonnormal populations. The results of the experiment for nonnormal data are similar to

those observed for normal data. This is not surprising: the confidence interval estimate for

the mean is unaffected by the characteristics of the underlying population. Further, both

imputation and perturbation use the same basic approach (linear models) to generate the

masked data. Hence, the results observed in the experiments above can be generalized to

all data sets.

4.2. Experiment 2

In this experiment, we consider a 5-variate data set having amultivariate normal distribution

with means equal to 0, variances equal to 1, and a common correlation equal to 0.5

(Raghunathan et al. 2003 (p. 5, Section 3.1). In this experiment, a 95 percent confidence

interval was constructed for the regression coefficient of X2 when regressing X1 on

Table 4. Results for Experiment 1 (n ¼ 100 and m ¼ 100)

Method Average parameter
estimate of mean

Average variance
of estimate

Confidence
interval coverage

Original data 20.00161 0.09976 94.30%
Perturbed data 20.00161 0.09976 94.30%
Multiply imputed data 0.00094 0.10059 94.70%

 

 

Fig. 1. Results for Example 1 for m ¼ 100
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(X2; X3; X4; and X5). First, a data set of size n was generated to represent the original data.

The mean vector ð�xÞ and covariance matrix ðŜÞ of this data set were computed.

In generating the masked values for imputation, it was assumed that the data was to

follow a multivariate normal distribution with mean m and covariance matrix S. The

multiple imputation procedure was implemented as described in Raghunathan et al.

(2003), as follows.

. Generate a random variate, W, from a Wishart distribution with n2 1 ¼ 99 degrees

of freedom and associated matrix Ŝ21ðn2 1Þ and let S* ¼ W21.

. Generate m* from a multivariate normal distribution with mean �x and covariance

matrix S*=n.

Fig. 2. Results for Example 1 for m ¼ 10

Fig. 3. Results for Example 1 for n ¼ 30, m ¼ 10
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Table 5. Results of Experiment 1 for Different Sample Sizes and Different Numbers of Imputed Samples

Perturbed Original Imputed

n Estimate Standard
error

Confidence
interval
coverage

Estimate Standard
error

Confidence
interval
coverage

Number of
imputed
samples (M)

Estimate Standard
error

Confidence
interval
coverage

30 20.00410 0.18100 94.7% 20.00410 0.18100 94.7% 3 20.00242 0.24243 97.4%
5 20.01089 0.23008 94.7%

10 20.01010 0.20118 92.4%
50 0.00045 0.18817 93.7%

100 0.00803 0.18879 93.4%
50 0.00044 0.14013 93.9% 0.00044 0.14013 93.9% 3 20.00306 0.18856 98.5%

5 20.01107 0.17297 94.0%
10 20.00465 0.15326 90.2%
50 0.00262 0.14508 92.7%

100 –0.00724 0.14325 93.3%
100 20.00161 0.09976 94.3% 20.00161 0.09976 94.3% 3 0.00053 0.13415 98.5%

5 20.00098 0.11841 94.1%
10 0.00392 0.11122 92.6%
50 0.00014 0.10169 92.5%

100 0.00094 0.10059 94.7%
500 0.00153 0.04472 94.1% 0.00153 0.04472 94.1% 3 0.00243 0.05861 98.3%

5 0.00103 0.05268 93.6%
10 20.00183 0.04742 93.9%
50 0.00129 0.04495 92.7%

100 0.00093 0.04499 95.6%

Jo
u
rn
a
l
o
f
O
ffi
cia

l
S
ta
tistics

5
1
8



. Generate N ¼ 1; 000 independent multivariate normal random vectors with mean m*

and covariance S*.

. Obtain a simple random sample of size nð¼ 100Þ from N.

. Repeat steps 1-4 M times to obtain the imputed samples.

For each imputed sample, the regression coefficient ðq ðl ÞÞ and the variance of the

regression coefficient ðv ðl ÞÞ were computed. From these computations, the average of the

estimates

�qM ¼
l

X q ðl Þ

M

was computed as the posterior mean of the parameter Q, and

TM ¼ ð1þM21ÞbM 2 �vM

where �vM ¼
l

P
v ðl Þ

M
and bM ¼

l

P ðq ðl Þ2�qMÞ
2

M21
as the approximate posterior variance.

The 95 percent confidence interval for the regression coefficient of X2 was then computed

as �qM ^ 1:96
ffiffiffiffiffiffiffi
TM

p
:

For the perturbation approach, the masked values were generated as follows:

. Generate n vectors each of size 5 from a(ny) multivariate normal distribution. Let this

be A (of dimension n £ k).

. Regress A on X and compute the residuals R. Note that R is orthogonal to X and has

mean vector 0.

. Compute SRR the covariance matrix of R.

. Compute R* ¼ ðSRRÞ
20:5R:R* has mean vector 0 and covariance matrix I.

. Compute Y ¼ Ŝ0:5R* þ �xT1 where 1 is an ðn £ 1Þ matrix of 1’s.

The mean vector and covariance matrix of the masked data set (Y) will be �x and Ŝ: Y1 was

regressed on the other four variables and the 95 percent confidence interval for the

regression coefficient of Y2 was computed using traditional regression analysis procedures.

Table 6 provides, for several sample sizes, the estimate of the regression coefficient

averaged over all (1,000) replications, the standard error of the estimate also averaged over

all replications, and the confidence interval coverage. In the case of multiple imputation,

the procedure was also performed for several specifications of M (the number of imputed

samples generated). These results for all values of M are provided. The results in Table 6

are very similar to those in Tables 4 and 5. It is clear that in all cases the confidence

interval estimates using the original and perturbed data are identical. For multiple

imputation, the estimate of the regression coefficient as well as that of the standard error is

very close to, but not the same as, the original data set. Not surprisingly, the performance

of the multiple imputation procedure improves (and approaches the estimate of the

original sample) as the sample size and/or the number of imputed samples increases.

We repeated the entire experiment using nonnormal populations to generate the original

data. We used the procedure suggested in Clemen and Reilly (2002) to generate data from

related multivariate nonnormal populations. The results observed for the nonnormal data

are very similar to those observed for the normal data. Since the parameter being estimated

is not affected by the characteristics of the underlying population, and since the imputed
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Table 6. Results of Experiment 2 for Different Sample Sizes and Different Numbers of Imputed Samples

Perturbed Original Imputed

n Estimate Standard
error

Confidence
interval
coverage

Estimate Standard
error

Confidence
interval
coverage

Number of
imputed
samples (M)

Estimate Standard
error

Confidence
interval
coverage

30 0.17292 0.19842 95.2% 0.17292 0.19842 95.2% 3 0.18374 0.26846 98.8%
5 0.15432 0.23281 92.8%

10 0.18679 0.20731 90.0%
50 0.18681 0.18591 93.6%

100 0.18408 0.18630 94.9%
50 0.18897 0.14664 94.2% 0.18897 0.14664 94.2% 3 0.19115 0.19318 98.1%

5 0.17928 0.17408 95.1%
10 0.18383 0.15427 90.0%
50 0.18721 0.14330 92.3%

100 0.18901 0.14381 92.4%
100 0.18196 0.10098 95.3% 0.18196 0.10098 95.3% 3 0.18621 0.13382 97.5%

5 0.18456 0.11954 93.2%
10 0.17956 0.10548 90.2%
50 0.18415 0.09990 92.4%

100 0.18181 0.10052 94.7%
500 0.17965 0.04411 94.5% 0.17965 0.04411 94.5% 3 0.18432 0.05829 97.9%

5 0.18294 0.05410 94.9%
10 0.18416 0.04737 92.0%
50 0.18173 0.04433 93.2%

100 0.17972 0.04350 93.5%

Jo
u
rn
a
l
o
f
O
ffi
cia

l
S
ta
tistics

5
2
0



and perturbed values are generated using the same model, it is not surprising that the

results observed for nonnormal data are the same as those for normal data. Hence, the

results observed in this experiment can be generalized to all data sets.

4.3. Summary of Experimental Results

The results of the experiments indicate that in all cases the sufficiency-based perturbation

approach provides estimates with standard errors exactly the same as those using the

original data.Multiple imputation always results in estimateswith standard error larger than

standard error using the original data. In addition, while the experiments above were limited

to estimating the mean and a regression coefficient, we can see from the numerical

illustration that for all inferential analyses for which the mean vector and covariance matrix

are sufficient statistics, the standard error of the perturbed data will be the same as that using

the original data, regardless of the characteristics of the underlying data set. Multiple

imputation does not offer this guarantee, even when the imputed samples are very large.

5. Why Multiple Imputation?

Rubin (1993, p. 463) provided two important reasons for using multiple imputation in

place of perturbation; namely, “that released microdata (1) should look like actual

individual microdata in the sense that they must be analyzable using the full range of

standard complete data statistical tools, and (2) valid inferences for legitimate estimands

should be easily obtainable.” He also argued that perturbation methods (at that time) did

not satisfy both of these requirements and hence suggested the use of multiple imputation.

We contend that the criticisms of perturbation are no longer valid. The perturbation

method described in this study provides users with microdata that can be analyzed using

standard complete-data statistical tools. The method also guarantees valid inferences

concerning any statistical model for which the mean vector and covariance matrix are

sufficient statistics. In addition, when this perturbation method is employed, the user must

analyze only a single data set, unlike the multiple data sets that must be analyzed for

multiple imputation. Furthermore, as shown above, the results from multiple imputation

only approach the results observed using the original data set. By contrast, the perturbed

data set provides exactly the same results as the original data set.

In his paper, Rubin (1993) states that users should be told:

Although valid inferences will be obtained, the standard errors will be larger than those

from actual microdata because there is a reduction in information relative to the actual

microdata, and this is reflected by the between imputation variability (page 463).

Note that for statistical models for which the mean vector and covariance matrix are

sufficient statistics, the standard errors of the perturbed data set will be exactly the same as

those of the original data set (see Tables 2 and 3) when sufficiency-based perturbation is

used. In other words, there is no reduction in information relative to the actual microdata.

The perturbation approach also provides the same disclosure risk characteristics as

multiple imputation. In both cases, the masked data set is generated independently of the

original data set. Consequently, an intruder would not be able to predict either the identity
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or the original value of a variable for a given individual using the masked data. In other

words, both procedures minimize disclosure risk.

It is also important to note that perturbation and multiple imputation share many

assumptions. Multiple imputation assumes that users will employ certain statistical models

and analyses. In practice, the assumption for generating the imputed values is the linear

model shown in (1). This same is true for the perturbation procedure. We assume that users

will employ linear models for analyzing the data and reproduce the sufficient statistics for

such analysis.

In addition, multiple imputation also assumes that the data set consists of a population of

size N, and that the administrative variables for all N observations are known, while the

survey variables for the n sampled observations are known. This is a critical assumption

for multiple imputation that allows for the generation of the “missing values” of the survey

variables for the N 2 n observations. The assumption involves both to advantages and

disadvantages. When satisfied, the assumption allows for the release of only the synthetic

data (i.e., none of the values of the original n survey variables are ever released).

Furthermore, since N .. n, it is possible to release a data set whose size is actually larger

than that of the original sample. However, this assumption also implies that when

administrative variables are not available for the nonsurveyed observations (such as for the

data presented in Table 1), it will not be possible to release imputed data. One of the key

aspects of multiple imputation is that, in order to minimize disclosure risk, only synthetic

data will be released, as evidenced by the statement, “Your data will be used to create only

synthetic data for public-use; none of your data values will ever be released” (Rubin 1993,

p. 463). Hence, if the administrative data for the nonsurveyed observations are not

available, it is not possible to generate the “synthetic” data set.

In summary:

. The perturbation approach guarantees that, for inferential analysis for which the

mean vector and covariance matrix are sufficient statistics, the results of the analysis

using the perturbed data would be identical to the results using the original data

(resulting in increased data utility). Multiple imputation does not offer this guarantee.

. With the perturbation approach, the user needs only to analyze a single data set. With

multiple imputation, this analysis must be repeated M times.

. The user who analyzes the perturbed data in exactly the same manner as the original

data reaches exactly the same inference using the masked data as the original data.

This is not true for multiple imputation.

. In terms of disclosure risk, perturbation performs as well as multiple imputation.

. In order to implement multiple imputation, it is necessary that administrative

variables be observed for a larger set N and that the survey variables be observed for a

smaller set n. This may not always be possible. By contrast, the perturbed data can be

generated using only the smaller data set n.

6. Limitations

The sufficiency-based perturbation approach represents the first step towards developing a

perturbation procedure capable of providing a complete solution to the masking problem

where the response to any arbitrary query using the masked data is identical to that using the
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original data. This approach cannot maintain the marginal distribution of nonnormal

confidential variables or relationships that are nonlinear. (For thatmatter, neither canmultiple

imputation.) There are other procedures that are capable of maintaining nonnormal marginal

distributions and monotonic relationships (Sarathy et al. 2002), but they do not maintain

sufficient statistics. In addition, in practice, the use of the perturbation procedure or multiple

imputationmay result in values that are unacceptably small, negative, or large. In these cases,

it may be necessary to modify the procedure to eliminate the occurrence of such values.

Further, for any model-based approach, complex sample designs could pose a problem in

generating perturbed values. Finally, this study focuses on the use of the perturbation

approach for linear models with continuous confidential variables, but this procedure cannot

be used for categorical data. The development of a perturbation procedure that overcomes all

these problems and is applicable to all types of data remains a future research challenge.

7. Conclusions

Rubin (1993) proposed multiple imputation as an alternative to perturbation approaches

since, at that time, perturbed data did not meet the requirements that “they must be

analyzable using the full range of standard complete-data statistical tools, and valid

inferences for legitimate estimands should be easily obtainable” (p. 463). In this study, we

provide a modified perturbation procedure that meets these requirements. This procedure

also minimizes disclosure risk.

Using empirical experiments, we show that the perturbation method performs better than

themultiple imputationmethod.We can further generalize these results to those cases where

multiple imputation uses linear models. In these cases, unlike multiple imputation, the

perturbation approach will provide results identical to those using the original. In addition,

the perturbed data requires the user to analyze a single data set, whereas multiple imputation

requires the user to analyze a large number of data sets (in some cases as many as 100). The

performance of themultiple imputation procedure is also shown to be related to both the size

of the original sample and to the number of imputed samples. When the original sample is

small and/or the imputed samples are small, multiple imputation performs unfavorably

compared with the perturbation method. In conclusion, for the specific purpose of masking

numerical confidential variables, the results of this study provide strong evidence that the

sufficiency-based perturbation approach is to be preferred to multiple imputation.
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