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A Functional Form Approach to Calibration

Victor M. Estevao and Carl-Erik Siirndal’

Calibration has become a widely used procedure for estimation in sample surveys. It uses
auxiliary information to produce efficient estimates. Calibration requires that we know popu-
lation totals (control totals) for one or more auxiliary variables (x-variables). The efficiency
of the calibration estimator depends on how well the auxiliary variables explain the variabil-
ity of y, the variable of interest. Traditionally, a distance minimization approach is used for
building calibration estimators. The distance measures that have been proposed produce
estimators that are nearly identical, so this approach does not provide much insight into the
properties of different calibration estimators. In this article, we note that distance minimiza-
tion is not the only possible starting point for calibration. We define and develop an alterna-
tive, the functional form approach. The calibrated weights are given a simple mathematical
form that depends on two parameters. This defines a family of calibration estimators denoted
by ¥carr. It includes the family of generalized regression (GREG) estimators Ygrpg. We dis-
cuss the role of the auxiliary variables in the calibration. To do this, we assume a linear rela-
tion between y and the x-variables. In most surveys, the x-variables in the calibration are not
the only ones that explain y. In the unlikely event that they do (except for random noise), we
say that the model is saturated by the calibration. This case is not generally of interest because
the resulting estimators have similar properties. Usually, other x-variables are significant in
explaining y but are excluded from the calibration because they are either not observed in
the sample or their control totals are unknown. In this case, the model is called unsaturated.
We look at the unsaturated model and show that for some sample designs, we can find a Yggpg
which has minimum Taylor variance among the estimators in Yearr- The Monte Carlo simu-
lations at the end of the article illustrate these results.

Key words: Calibration estimators; GREG estimator; calibrated weights; auxiliary
information.

1. Introduction

We denote the finite survey population as U = {1,...,k,...,N}. Let y be the variable of
interest with value y; for unit & in the population. We want to estimate the population total
Y = >y i using y; for the observed units k € s, where s is a sample drawn from U
according to a given sampling design. We write > 4 y; for the sum > c4 yi Where
A c U is a set of units from the population. The sampling weights under this design are
denoted by a; = 1/m;, where 7, = P(k € s) is the inclusion probability of unit k. Research
and practice in recent years have shown that it is fruitful to view estimation in surveys as a
problem in linear weighting. We want to replace a; with more efficient weights w; deter-
mined from the available auxiliary information. We refer to Alexander (1987), Lemaitre
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and Dufour (1987), Bethlehem and Keller (1987), Zieschang (1990), and to further refer-
ences in these articles. The book by Sérndal, Swensson and Wretman (1992) uses the
linear weighting approach. Methods for restricting the weights so as to avoid negative
or large values have been proposed by Huang and Fuller (1978), Bankier (1992), Deville
and Sérndal (1992), and Deville, Siarndal and Sautory (1993). The Generalized Estimation
System (GES) developed by Statistics Canada uses a computationally efficient algorithm
to restrict the weights. This is described by Estevao (1994). The principles behind GES are
presented in Estevao, Hidiroglou and Sarndal (1995). Here, we examine calibration esti-
mators of Y. These are linear weighting estimators given by

YoaL =Y wiv (1.1)

where {w; : k € s} is a calibrated weight system, determined from the auxiliary informa-
tion available for the survey. The auxiliary vector denoted by x has dimension J and its
value for unit k is X; = (x4, X, - - ., Xy) . The population vector total X = >, x; is
known. By definition, a weight system is calibrated if it satisfies the calibration equation

> owxe=Y % =X (1.2)
s U

A calibrated weight system is consistent in that it produces an exact estimate of the popu-
lation total of each of the J auxiliary variables. The known components of X, taken from a
reliable source, are often called control totals. In some surveys, this source is exterior to
the survey, for example, a census or one or more matched administrative registers. In other
surveys, the totals are computed from the survey frame itself, by adding the auxiliary
values of the units on the frame, as for example, when a size measure (number of employ-
ees, say) is available for each enterprise listed on a business survey frame. One of the sim-
plest and most frequently used applications occurs when the information consists of
known counts, N, j= 1,...,J, for a set of mutually exclusive and exhaustive population
groups. In this case, X = (N{,N,,... ,NJ)’ and we define the x; vector as x; =
(814> 02k» - - - » O1)'s where 0 = 1 if k belongs to group j, and é; = O otherwise. If the
groups are the strata, the calibration leads to the separate expansion estimator. If the
groups are not the strata, we obtain the poststratified estimator.

Many weight systems {w; : k € s} satisfy (1.2). Some lead to accurate estimators,
others give inefficient or implausible estimators. Clearly, we must restrict our attention
to those weight systems satisfying (1.2) that are in some sense ‘‘reasonable.”” With this
goal in mind, several authors have constructed calibrated weight systems by means of a
distance minimization approach. This approach has limited value in examining the
properties of different calibration estimators, since all of the proposed distance measures
lead to nearly identical estimators. In this article, we focus instead on a functional form
approach, which leads to a more meaningful examination of different calibration
estimators.

Before introducing the functional form approach, we recall the main steps of the dis-
tance minimization approach. First, we define a measure of distance between a given
set of initial weights and the required calibrated weights. Then we minimize this distance
subject to the calibration constraint (1.2) to obtain a set of calibrated weights. Here we use
the sampling weights {a; : k € s} as initial weights. Many distance measures are possible.
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The Generalized Least Squares distance defined by
(112)> " cxwi — ap)lay = (112) > cpap(wilay — 1) (1.3)

is particularly important, where {c; : k € s} is a specified (but arbitrary) set of positive
constants. Minimizing (1.3) subject to constraint (1.2) leads to the calibrated weights
Wi = Wk GREG» where

weores = a1+ X — X)'T; 'x /ey ) (1.4)

with T, = 3, a;xXi/c; and X = 3, a;x; is the Horvitz-Thompson (HT) estimator of X.
In the following sections, HT estimators are indicated by a superimposed ‘'’ and no
subscript.

The resulting calibration estimator Ygppg = > s Wr.GREG Y- 18 known to be asymptoti-
cally design unbiased (ADU). It is called the generalized regression estimator because it
can be derived by a regression argument and expressed by adding a regressmn adjustment
term to the HT estimator of ¥, ¥ = > s a yi. That is, we can write YoreG as

Yoreg =V + X =X)B (1.5)
where
B=T,") ax e (1.6)
s

In the distance measure approach, the c¢; values moderate the importance of the terms in
(1.3). A unit with a large value of ¢; will have a calibrated weight w;, close to the initial
design weight a,. The ¢, are relative in the sense that we can multiply them all by a posi-
tive constant without changing the resulting w;. In the functional form approach outlined
in Section 3, the ¢, values are also relative but they are parameters that we can specify
arbitrarily to define a GREG estimator. This allows us to create a family of regression esti-
mators Ygrpg corresponding to different choices of the values cy.

An alternative measure of closeness in the distance measure approach is the Raking
Ratio distance

Z crap{wilay) In(wilay) — wila, + 1} 1.7)

discussed by Zieschang (1990) and Deville and Sidrndal (1992). Minimizing this measure
subject to (1.2) also gives a family of calibrated weight systems. In general, to determine
the calibrated weights {w; : k € s} we must specify not only a distance measure but also
the quantities ¢, and the auxiliary variables we want to use for calibration. The sampling
design, the calibrated weights {w; : k € s} and the variable of interest y implicitly deter-
mine the estimator Yo, = > s Wi i and its properties.

In addition to (1.3) and (1.7), a number of other distance measures have been proposed
and studied in the distance minimization approach. Deville and Sérndal (1992) examined
the calibration estimators produced by a group of distance measures including (1.3) and
(1.7). Among these, Ygreg is a point of reference because of its simple, closed form
(1.5). The calibration estimators derived from all of these distance measures share the
same asymptotic variance, that of ¥gggg. This follows from the properties of the distance
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measures. For example, comparing (1.3) and (1.7), we note that when u;, = w;/a; is close
to L, upInuy, —uy + 1= ~1/2)(uy, — 1)?, which is why Raking Ratio distance and General-
ized Least Squares distance give asymptotically equivalent calibration estimators. Empiri-
cal studies have shown that even for modest sample sizes, there are only small differences
in the calibrated estimates derived from different distance measures; see Singh and Mohl
(1996); Stukel, Hidiroglou and Sérndal (1996). Therefore, the distance minimization
approach is not very useful for examining the properties of alternative calibration estima-
tors. In contrast, we discover some interesting differences between calibration estimators
in the functional form approach introduced in the next section.

The following result gives a useful expression for the difference between Yggpg and any
calibration estimator Y., with weights satisfying (1.2).

Result 1.1. For each sample s, we have the following relationship between Ygrpg and Yy .

Year = Yorec + Z (1.8)
with
Z, =) (Wi —ape (1.9)

where e, is the regression residual
e = v —X,B (1.10)

and B is given by (1.6). [

The result follows from the definitions of ¥, and Ygrpg given by (1.1), (1.5) and (1.6),
and by the calibration equation (1.2). We know that Yoppg is ADU, but ¥cap does not
necessarily have this property. In the rest of the article, we restrict the weights wy so
that Yoa. is also ADU. From (1.8), we have V(¥car) = V(¥greg) + V(Z)+
2Cov(Ygreg» Z,)- In general, the covariance can be positive, negative or zero. We are inter-
ested in finding conditions when the covariance is zero so we can make a statement on the
optimality of ¥qrpg. To do this, we introduce an important subset of ¥, denoted by the
functional form estimator ¥4, r. We show that the family of regression estimators Ygrpg
is part of ¥ and that for specific designs we can use Result 5.2 (in Section 5) to find one
f’GREG with minimum Taylor variance in f/c ALF-

The article is organized as follows. In Section 2, we review the properties we would like
to see in a system of calibrated weights. One of these is closeness to the sampling design
weights a;. In Section 3, we formulate our functional form approach. The calibrated
weights are dependent on the values of two parameters. This defines a family of calibration
estimators denoted by Yearr within Ycap. The Yoarr are shown to be asymptotically
design unbiased. We note that the GREG estimators Yggpq are part of ¥capp. Thus, for
a given set of auxiliary variables, we have three nested families of estimators,
Yoreg € Yearr € Year. In Section 4, we compare Yoarp with Ygreg. Section 5 shows
that for specific designs, we can find ¢, and x; that lead to an optimal estimator Yggpg
in Ycarp. In Section 6, we look at the difference (Yoarr — Ygreg) under different regres-
sions between y and the x-variables in the population. The distinction between saturated
and unsaturated models is useful in this discussion. Finally, Section 7 presents the results
of a Monte Carlo study that illustrate some aspects of the preceding theory.
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2. Why Calibrated Weights?

Many survey statisticians would agree on the following objectives for a calibrated weight
system:

1. Consistency. A weight system that satisfies (1.2) is appealing, because it reproduces
exactly the known population total for each auxiliary variable.

2. Closeness to the basic weights. The basic weights a;, = 1/m; have an attractive prop-
erty in that they yield design unbiased estimates. Therefore, any departure from these
weights should be small, to preserve the design unbiasedness, at least approximately
or asymptotically.

3. Control on auxiliary variable totals. The more auxiliary totals we use in the calibra-
tion, the ‘‘better’” we expect the resulting weight system to be. This intuitive state-
ment is supported by theory, as shown in Section 6. The variance of a calibrated
estimator tends to decrease as more variables and their known totals are brought
into the calibration.

A calibrated weight system satisfies (by definition) the consistency objective 1. If derived
by distance minimization, as described above, it also satisfies the closeness objective 2.
Since the dimension of the x; vector is arbitrary, the calibration can accommodate any
number of auxiliary variables to meet objective 3. The following example illustrates
how these objectives come into play in a simple case.

Example 2.1. Consider a survey involving a single, positive auxiliary variable x, with the
known population total X = >, x;. The calibration equation is > ; wx; = X. By substi-
tuting x; = x; and ¢, = x; in (1.5) and (1.6), we obtain the traditional ratio estimator
Yrar = Y(X/X) where X =3 ,ax,. In this case, the calibrated weights are
wi = ap(X/X) for all k € s.

From this example, it is easy to construct other weight systems. One possibility is
through the family of estimators,

with R, = qizi/ > qrziXy Where z;, = x’,zfl and p = 0 and ¢, > 0 are arbitrary constants.
All calibrated weight systems in this family respect consistency objective 1. If the close-
ness objective 2 is to be maintained, then only one weight system is admissible for all sam-
ple sizes. This is the one with g, = a; and p = 1, which gives the ratio estimator. For other
values of p, (2.1) produces a design biased estimator with a mean squared error (MSE) that
may greatly exceed that of the (unbiased) HT estimator, ¥ = > s a yy- Thus, the calibrated
weight systems produced by (2.1) are not generally suitable in the design-based perspec-
tive. Let us consider instead the family of estimators

we = a; + (X — X)R, (2.2)

This produces many weight systems depending on how we specify p and the constants g;.
All of these satisfy objectives 1 and 2 since (X — X) approaches zero in design probability
as the sample size increases. Now, if the population size is also known, it is generally pre-
ferable to use the calibration vector x;, = (1,x;)’, with known control total (N, X)". This
meets objective 3 of using as much auxiliary information as possible.
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Remark 2.1. In Example 2.1 and throughout the article, we work under the randomization
distribution — the distribution induced by the sampling design with its inclusion prob-
abilities ;. Thus the notation O,(-), used for the order in probability, applies to the
randomization distribution. We use the fact that a difference between an HT estimator
and its expected value divided by N is Op(rf”z) under standard conditions. For example,
Nfl(f( —X)is Op(rf”z). A discussion of asymptotics is found in Isaki and Fuller (1981).

3. Calibration Estimators Based on a Functional Form Approach

We now define a functional form approach for constructing calibration estimators. As

before, let X, = (X5, Xk - .., Xy) denote the auxiliary vector for unit k. The auxiliary
information consists of the vector total X = > X;, composed of the J known totals
> uxy for j=1,...,J. In addition, we define a positive constant g, and a vector

Z = (T4 22k - - - » 2gx) for every k € s, such that (a) dim(z;) = J = dim(x;), and (b) the
J x J matrix Y, g;z;X; is nonsingular.
We now generate calibrated weights {w; : k € s} by imposing the functional form

Wi = @ + Nz (3.1)

where the parameters g, and z, are chosen to satisfy (a) and (b), and the vector A, which
depends on s but not on k, is implicitly determined by the calibration constraint (1.2). This
yields Wi = Wi CALF> where

wiearr = a; + (X — X)'Ry (3.2)

with
1

R, = (Z CIkaX;c) qrZi (3.3)

We use the subscript CALF to identify the family of calibration estimators obtained by the
functional form (3.1). This family of estimators includes the GREG estimators because the
GREG weighting wy greg given by (1.4) is a special case of (3.2) when g, = a;/c; and
Z;, = X;.

The components of z, will usually be functions of the observed auxiliary data,
{x;:k€s}. When x; >0 for j=1,...,J, one possible choice is z = (x’f,jl,
xbt o xB7Y, where p is a positive constant. Taking p = 2 gives z; = X;. Another
possibility is z; = (xy — X)) ~! where X; is a weighted sample mean of the j th x-variable.
Requirement (b) eliminates some choices, such as z; = (1, 1,...,1). The g are arbitrary
positive coefficients. Multiplying all g; by a positive value leaves the calibrated weights
unchanged. In the simulations in Section 7, we consider ¢, =¢a, and ¢, =
ur ~ Uniform(0, 1). It is surprising that the choice of the g, has little effect on the variance
of the calibrated estimator. Assigning random values to the g, does not harm the efficiency
of the estimators.

A reason for using form (3.1) is that we can control the change from the initial weight a;
to the calibrated weight w; by appropriate choices of g, and z;. To illustrate, consider the
case J = 1 with x;, > 0. Let us take g, to be constant for k € s and z; = x’,fl , where p > 0.
When p > 1, the relative difference between the calibrated weights w, and the design
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weights a; is much greater for units with large values of x. The larger the value of p, the
stronger this tendency. At p = oo, the sample unit k = (n) with the largest value of x
(denoted by x,) has a calibrated weight of w,) = a, + (X —)A()/x(n). The remaining
sample units have the calibrated weight w;, = a;. Thus the calibration creates a new weight
for only one sample unit, the one with the largest value of x. Relatively large values of p
are not without interest. For two of the populations (K = —0.0001 and K = 0.0001) in
Simulation 1 of Section 7, the calibration estimator with p = 10 gives considerably lower
variance than those corresponding to p = 1 and p = 2. Even p = o gives lower variance
than p = 1.

The computation of the weights (3.2) requires as inputs: (i) the auxiliary information
X = >y X, and (ii) the parameters g and z;. Since N IX - X)'R,; is Op(nfm), the cali-
brated weights (3.2) respect objective 2. They are ‘‘asymptotically close.”” We have the
following result for the functional form calibration estimator determined by (3.1).

Result 3.1. The calibration estimator generated by the functional form (3.1) is

Year = E Wi CALFy,
5

where the weights wy capr are given by (3.2). It can be written as the sum of the HT esti-
mator ¥ = > s a v and an adjustment term,

Year =V + X =X)Q (3.4)

where

-1
Q= (Z ‘1ka"§<> Z qkZk Vi (3.5)

Its bias is given by

Bias(Yearr) = Edcap) — ¥ = —E{(X = X)(Q - Q)} =0(n™") (3.6)

where Q is the population analogue of Q, obtained by replacing the two sums in (3.5) by
their respective expected values. That is,

-1
Q= (Z WkaZkX;c> > mamy O (3.7
U U

Note that despite a certain similarity, ¥ca;r is not a regression estimator. The expression
(3.5) for Q reminds us of an instrumental variables regression, as also noted by Deville
(1998).

Proof of Result 3.1. Expression (3.4) for Ycap follows easily from (3.2). To verify
expression (3.6) for the bias, we note that

Voar— Y=V -7 -X-XQ-X-X)(Q-Q) (3.8)

Now take the expected value of both sides of (3.8) to find the bias of ¥ca;p. Since Q is a
population quantity, ¥ — ¥ and —(X — X)Q have expected value zero. The bias expres-
sion (3.6) follows because Nfl(f( —X)' and Nfl((A) —Q) are Op(nillz), so the product
N'X-X)'Q-Q is O,(n".
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Although the calibration estimator ¥c4; r is not exactly unbiased, its bias is O(n ™~ 1, which
is usually small even for modest sample sizes. The squared bias is O(n~?) and as n increases,
it rapidly becomes negligible compared to the design-based variance, which is O(n™").

Several questions arise about the functional form approach used to produce Ycarp. In
Sections 4 to 6, we examine the following:

1. Since we are free to choose the parameters ¢ and z; of Y1 r, how do the basic sta-
tistical properties of ¥y, such as the bias and variance, depend on these choices?
Is the variance, for example, highly sensitive to the choice of ¢, and z,?

2. The GREG estimators Y are an important subset of the calibration estimators in
Yearr. Can we find conditions that allow us to identify one Yoppg as a best estimator
in Ycarp?

Remark 3.1. Weight system (3.2) may produce negative weights for some sample units.
This causes no problem from a theoretical point of view. However, some users considers
the occurrence of negative weights counterintuitive and a practical drawback.

Remark 3.2. We obtain an alternative calibrated weight system {w : k € s} by imposing
the functional form

W = QN (3.9)
We determine A, to satisfy constraint (1.2). This generates the calibrated weight system
we = X'R; (3.10)
where R, is given by (3.3). The weights (2.1) in Example 2.1 have this form. For any
choice of ¢, and z,, the calibrated weight system (3.10) satisfies the consistency objective
1 but not necessarily the closeness objective 2. The estimators built on the weights (3.10)

ordinarily have a large design bias and hence large MSE. Therefore we ignore weight
systems such as those given by (3.10).

4. Comparing the GREG Estimator with the CALF Estimator

Our objective is to compare Ygreg With any other calibration estimator in the family
Yoarr = > s WkCALF Yi» Where the weights wy carp are given by (3.2). From (1.5) and
(3.4), the difference Z, = Ycarr — Yoreg can be written as

Z,=X-X)B-Q 4.1)

where B and Q are given by (1.6) and (3.5) respectively. The term Z, is a complex, nonlinear
statistic. We simplify the analysis of Z; by writing it as the sum of a leading term which is a
linear statistic and a remainder term of lower order. To do this, we need the population
analogues of B and Q The analogue of Q is Q given by (3.7). The analogue of B is

-1
B = (; XkX/,{/Ck> ; X yk/ck (42)

Now rewrite (4.1) as

Z,=X-X)YB-Q+X-X){(B-B)—(Q-Q) (4.3)
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The first term (X — X)'(B — Q) is a linear statistic obtained by defining the following non-
random, scalar quantity for every k:

L, =x(B - Q) 4.4)

Thus we have (X — X)(B — Q) = >, ayLy — 3.y Ly which is an HT estimator minus its
expected value. Expression (4.3) becomes

Z,=> al;~ ;LkJr(X—X)/{(ﬁ -B)-Q-Q)

Here N™'Z, and N~ '3, a L — Yy Ly) are Op(rf“ 2). The remainder is of lower order
because N '(X — X){(B—-B)— (Q —Q)} is Op(rfl). Therefore, to a first order
approximation,

Z, = Yearr — Yoreo = Z Ly — Z Ly 4.5)
s U

In (4.5), and later, the symbol = is used with the following meaning. Let W be a statistic
with first order approximation W° such that N “'wis Op(n_” %), N"'we is Op(n_” %) and
N7' (W = W°) is Op(n_l). Then we write W = W°. In the cases we consider, W° is the
Taylor linearization of W. In (4.5), for example, Z; corresponds to W and
> sarLy — >y Ly corresponds to W°.

Remark 4.1. Suppose there is an exact linear relationship between y; and x; in the popu-
lation, denoted by y; = x;8 for k = 1,..., N and some vector 8. Then it follows from the
calibration equatlon (1.2) and deﬁmtlons (1.1), (1.5) and (3.4) that for any sample s,
YGREG = YCALF = YCAL = X'B. In other words, all calibration estimators are identical.
In practice, we do not usually have an exact linear relationship between y, and x,. Never-
theless, this observation suggests that we examine the difference Z, between Y and
Y6reG by using a linear regression between y, and x,. This is done in Sections 6 and 7.

Remark 4.2. Since N™'Z, and N~'(Ygreg — Y) have the same order in probability,
Op(nfllz), we cannot claim tAhat Z, isA small or negligible compared to (IA/GREGA— Y),
even in large samples. Since Ycarr = Ygreg + Z;, can we find examples where a Ycuar g
has smaller variance than a Ygrpg? We show some examples in the simulations in
Section 7.

Remark 4.3. The fact that Z, = Ycar — Yoreg and (Ygreg — Y) are of the same order of
magnitude may appear to conflict with the result given by Deville and Sérndal (1992).
They examined different distance measures and found that the resulting calibration esti-
mators were asymptotically equivalent. There is no contradiction with their results. The
distance measures that they considered were so similar that they generated essentially
equivalent estimators. This was true even for modest sample sizes.

5. Approximating the Variances of the GREG Estimator and the CALF Estimator

By (3.6), the bias of Ycarp is O(n™"). Thus the squared bias is small compared to the var-
iance, which is also O(n~ ! ). We can focus on the variance, rather than on the MSE. We have

V(¥earr) = V¥orea) + V(Z,) + 2Cov(Yore, Z,) S.D
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It is difficult to get exact, closed form expressions for the terms of (5.1). Therefore, we
carry out a first order approximation (Taylor linearization) of each of the statistics
(Yearr = Y), Yreg — Y) and Z,, and then we use these results as first order approxima-
tions for the terms in (5.1). The linearization of Z; was given by (4.5). We linearize
(Yorrg — Y) in a similar way. To do this, we define the population counterpart of the
sample-based residual e; given by (1.10), namely

E. =y —xB (5.2)
where B is given by (4.2). Then we can write

Yore — Y =D aiE— Y E— X —=X)(B-B) (5.3)
s U

where N™' (3, @B, — S p Ep) is Op(n™ ") and N™'(X — X)'(B — B) is O,(n™"). A first
order approximation is given by

Yores — ¥ = Z aEy — ZEk (5.4
s U
Finally, for the linearization of Ycapr, we define
Hy = E + L =y — B+ x:(B - Q) =y, — x;,Q (5.5)
Then, from (4.5) and (5.4),
Yearr =Y = Yoreg — ¥ +Z, = Zaka - ZHk (5.6)
s U

The linearized statistics in (4.5), (5.4) and (5.6) all have the form of an HT estimator minus
the corresponding expected value. Therefore, approximations of the four terms in (5.1) fol-
low from the well-known results for design-based variance and covariance of HT estima-
tors. These variances and covariances are based on the second order inclusion probabilities
from the sampling design, 7y = P(k&lE€s). We define aqy = 1/my, and Ay =
arailay — 1 for k#1. For k=1 we have my =7y =m, ay=ay =a; and
Ay = Ay = a; — 1. The variance of the HT estimator, ¥ = > s ax Y, can then be written
as V(¥) = 32 3"y Ay i yi» a quadratic form in y,, with the Ay, as coefficients. We use
> > v as a short form for > ey > ey We obtain the variances of the linearized vari-
ables in (4.5), (5.4) and (5.6) by replacing y; by L, E; and H,, respectively, in the quadratic
form. For example, we have V(Ycarp) = V(O s axHy) = S Sy AuH H,. We denote such
a ““Taylor variance’’ by the subscript ““T*, so that Vy(Yearr) = 3. Sy AHH,. Proceed-
ing in a similar manner with the other terms of (5.1), we obtain the following result.

Result 5.1. The variance of Ycarr is approximated by the following Taylor variance,

V(¥earr) = D> AyHH, = Vi(¥carr) (5.7)
U

where Ay, is as defined above. The terms on the right-hand side of (5.1) have the approx-
imate expressions

V(¥oree) = DD AuEiEr = Vi(Yorec) (5.8)
U

VZ) =) AulyLy = Vi(Z) (5.9)
U
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Cov(Yorec» Z,) = Z ZAkIEkLl = Covr(Yorec, Z) (5.10)
U

where H;, E; and L, are given respectively by (5.5), (5.2) and (4.4). The Taylor approxi-
mations satisfy

Vi(Yearr) = Vr(Yoreo) + Vr(Z) + 2Covr(Yopee. Z,). O (5.11)

The expressions (5.8) to (5.11) are general formulas for any sampling design. In particular,
(5.8) is the well-known approximation of the variance of the GREG estimator; see, for
example, Chapter 6 of Sarndal, Swensson and Wretman (1992). Each particular design,
such as simple random sampling without replacement (SRS), gives rise to particular coef-
ficients A;; and corresponding particular expressions for (5.8) to (5.11). Three designs
(SRS, stratified SRS and Poisson sampling) are examined later in this section.

Equation (5.11) allows us to answer the question: For a fixed sampling design, are there
conditions under which a GREG estimator ¥ggpg is better than all other members in
Yearr? If we interpret “‘better’” as ‘‘having smaller Taylor variance,”” then the answer
is given by the following result.

Result 5.2. Suppose that for each k € U there is a positive value cj and a vector x; of aux-
iliary variables with known total > y;x; = X*, such that > >y AuE{x; = 0 where
E} =y, — xB* with B* = Oy xix;/c) ™ Oy X; vi/c). Then the GREG estimator
Vireg = ¥ + (X* — X*YB* with B* = (O, auxix/ct) ™ (O, apxt yi/ct) has minimum
Taylor variance among all estimators f/c ALF = 2 s WicALFYx Where wycarr = a;+
X — XY (O rziXi) ™" quzy.. In other words, for this set of auxiliary variables x}, k € U,

Vi(Yearr) = Ve(Yoreo)

over all estimators ¥y ¢ obtained by valid choices of g, and z; as defined in Section 3.
O

The result follows immediately from (4.4), (5.10) and (5.11). Suppose
S STy AwERx;] = 0 for some vector x; with known total X* and a set of values cj.
Then > Yy AuEIXB—Q)=0 and using (44) and (5.10) we have
Covr(Yorea: Z,) = S S v AvEix)*(B — Q) = 0. It follows from (5.11) that

Vi(ear) = Vi(¥érea) + Vi(Z) = Vi(Vore)
where Z, is given by Yearr — Yéreg. We note that x} and ¢ determine the optimal GREG
estimator, Yéreg = ¥ + (X* — X*)YB*, in this result. It is possible for other estimators in
Yearr to attain this minimum variance but we do not have any other way of identifying them.

Whether or not we can find x; and ¢ satisfying > > AyEix; = 0 depends on the
sampling design. Let us look at three designs: SRS, stratified SRS and Poisson sampling.
Example 5.1. Consider the design SRS with sampling fraction f = n/N. Then (5.8) to
(5.11) have the familiar forms: Vy(¥Ycarp) = NY{Q —f)/n}S12qU; Vir(Yoreg) =
N*{(1 = )n}Sty: Vi(Z,) = N*{(1 — f)In}S3,, where Sk, Sz, and S7,, are the popula-
tion variances of H,, E, and L, respectively, and Covr(Yorpg.Z,) =
N*{(1 = f)In} S up(Ey — Ey)Ld(N — 1), where E;; = 3 E/N. This Taylor covariance
is zero and Result 5.2 is satisfied, if

Z(Ek —Epx, =0 (5.12)
U
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We have >y E;x,/c; = 0 because of the definitions of Ej; and B, given by (5.2) and (4.2)
respectively. Suppose we have an auxiliary vector Xq, with known totals >y xo, = X.
Then we can satisfy (5.12) by (i) defining x, = (1,x(;) and (ii) choosing ¢, to have the
same constant value, say ¢, = 1 for all k. That is, we include an auxiliary variable with
value 1 for every k, in addition to the other x-variables with known totals. This is possible
since the population size N = >_; 1 is known for calibration. The inclusion of this special
auxiliary variable corresponds to specifying an intercept in the regression. It follows from
these conditions that E; = 0 and >y Exx, = 0, so (5.12) is satisfied. Consequently,
Y6reg With ¢, = 1 and x; = (1,X{y) has minimum Taylor variance among all ¥  esti-
mators formed from this set of auxiliary variables.

Example 5.2. Consider the stratified SRS design with n;, units sampled from the N, units
in stratum U,,, with the sampling fraction f;, = n,/N,, for h = 1,..., H. We require that

H
D D AuEixi=) Fy Y (B —E, )% =0 (5.13)
U

=1 k€U,

where Ey, = >y, EJ/N, and Fy = Ni(1 = fi)l(,(N, — 1)) = (NN, — DY(ALfy — 1),
Again, using >y Exxi/c, = 0, we can meet Result 5.2 with the following choices of x;
and c;. Define x, to include the stratum identifier 8, = (8y4,..., 8, ...,0), Where
Ope = 1 if k € Uy, and 6, = 0 if k & U,,. This is permitted since the stratum sizes N,
are known. That is, we take x; = (8, X(;), where X consists of the available auxiliary
variables other than the stratum identifer. Next, choose 1/c, = F), for all k € U,. Then,
from >y Exx/c, = 0 it follows that S 5, F), > kev, Exxy =0 and ) ey, Ex =0 for
h=1,...,H, so (5.13) is satisifed. Therefore, with x;, = (8;,Xy;) and ¢, = 1/F),, Y5req
has minimum Taylor variance among all ¥ estimators based on this set of auxiliary
variables x;. Here the best choice for ¢, is not constant overall, but constant within strata.
Also note that to close approximation, 1/c; = a; — 1 since a;, = l/m;, = 1/f;, for all
k € Uy, and N,/(N, — 1) = 1 under stratified SRS.

Example 5.3. Consider Poisson sampling, defined as follows: Unit k is selected or not
selected depending on the outcome of a Bernoulli experiment with selection probability
m, proportional to a suitable size measure, for k = 1,...,N, where the N experiments
are independent. This is an exact probability proportional-to-size design, with a random
sample size. The double sum in Result 5.2 simplifies into a single sum, namely,
SIS v AwEX; = > ylay — DEx, = 0. This holds if we specify 1/c; = a; — 1, but not
otherwise. Thus, Ygreg With ¢; = 1/(a; — 1) has minimum Taylor variance among all
YeaLr estimators based on the given x,. We note that the result is valid for any fixed
set of auxiliary variables with known totals.

The practical recommendations from Result 5.2 are as follows. For any particular
sampling design, we should try to find x; and ¢; so that Covy(¥orpg, Z,) = 0 and use
the estimator Yoppg corresponding to these choices. It has minimum Taylor variance
among all estimators Yo g = > s WreaLr Vi With weights of the form (3.2). Ordinarily,
the Taylor variance is a sufficiently close approximation to the exact variance. For strati-
fied SRS and Poisson sampling, the preferred choice is 1/c; = a; — 1. The common prac-
tice of taking ¢, = 1 for all k is not supported by theory for these designs and probably not
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for other designs either. The use of 1/c;, = a;, — 1 is advantageous from another point of
view, as noted in Sirndal (1996).

6. Superpopulation Models and Linear Representations

Result 5.2 provides a condition to identify a ¥grpg with minimum Taylor variance in the
family of estimators Ycapp. If no x; and ¢ exist to meet this condition, then we may find
more efficient estimators in ¥ca r outside of ¥grpg. This depends on whether the auxiliary
variables in the calibration are ‘‘sufficient’” to explain y, or whether there are other vari-
ables that are important but are excluded from the calibration because their totals are not
known. We elaborate on this idea.

We can rewrite (5.2) as the linear representation

yvw=x,B+E  k=1,...,N (6.1)

where X, is the auxiliary vector used in calibration and B is given by (4.2). We know by
(5.8) that the residuals Ej are essential for determining the variance of Yggpg. In general,
the more variables we can include in x;, the smaller the residuals E; in the linear repre-
sentation (6.1). This justifies objective 3 in Section 2. In calibration, our main concern
is not whether or not there exists a ‘‘true’’ linear relationship between y, and x,. We obtain
an efficient calibration estimator if x; explains a significant part of the variability of y,.
The degree to which this variability is explained by the calibration vector x; varies
from one variable of interest to another.

In a typical survey, the variables used for calibration will explain some but not all of the
variation in the y, values. There may exist other relevant explanatory variables than those
present in the calibration vector x;, but absence of control totals for these additional vari-
ables prevents us from using them in the calibration. For unit &, let x; ,q4 (of dimension M)
be the vector of those additional variable values. The population total, > "y Xt agq = Xaaa, 18
unknown. Denote the extended explanatory vector by xi,ext = (xz,xi,add), of dimension
J + M. The vector X, .,, may not explain all of the variation in y, but it may come closer
than x; alone.

We can then represent the same finite population as

Yie = Xl,c,extBext + Ek,ext, k=1,...,N (6.2)

where B,,, is given by (4.2) if x; is replaced by X; ¢,; and E} ., is the new residual.

The population-based residuals Ej and Ej . in (6.1) and (6.2) cannot be calculated
except in a census where ( yy, X; ¢x) is observed for all N population units. If we had a cen-
sus, we would find the mean squared residual (1/N)3 El%,ext to be smaller than
(NS oy E;, and considerably smaller if the fit is made substantially better by adding
Xi.ada to the explanatory vector.

Here, as with many other issues in survey sampling, it is fruitful to view the finite popu-
lation as a realization of a superpopulation model. The models that we now introduce are
also important for the simulations in Section 7. Consider first the superpopulation model,
denoted £, stating that

Vi = X8 + &, k=1,....,N (6.3)

where E¢(g) =0 for every k. The explanatory vector x; consists of exactly those
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x-variables for which control totals are available and used in the calibration equation (1.2),
and no others. In this case (and more generally, when the model does not contain any vari-
able not used in the calibration), we shall say that the model is saturated by the calibration.

In a survey, we cannot assume that the calibration vector x; fully explains the study vari-
able y. Other x-variables than those in the vector x, are likely to be relevant. We must think in
terms of an extended linear superpopulation model denoted by &.,; and given by

Yk = X;c,extBext + Epexts k=1,...,N 6.4

where Bey = (B’ Baad)s Xkext = (Xk» Xiaaa) and E_ (&g ex) = O for every k. We can seg-
ment (6.4) as y, = X;B + X} aaaBadd + Ex.ext» Where X, is the calibration vector and X; ,qq
consists of the x-variables not participating in the calibration. If 8,44 = 0, (6.4) reduces
to the saturated model ¢ given by (6.3). But if 8,44 # 0, we say that the model (6.4) is
unsaturated, because it contains relevant variables other than those included in the calibra-
tion. If a finite population is generated by (6.4) with 8,44 # 0, then (6.3) is an inappropriate
model; in particular it is wrong to assume E;(g;) = 0 for every k.

The distinction just made between saturated and unsaturated models has important
implications for the difference between any members of Yo r and Ygreg, as noted by
the following result.

Result 6.1. For any fixed sample s, the difference Z, = Yo r — Yoreg has the following
properties: E¢(Z;) = 0 under the saturated model £, but E;  (Z;) # 0 under the unsaturated
model &.,,. O

Result 6.1 states that Y a p and Yoppg are equal in expectation under a saturated model,
but not so under an unsaturated one. The corresponding frequency interpretation is that, for
any fixed sample s, Ycapr and Ygrpg are equal on the average over all finite populations
generated by the saturated model &. It follows that Yo and ¥grpg are equal when aver-
aged over all samples as well as over all finite populations generated by £. This is con-
firmed by the Monte Carlo simulations in Section 7.

Proof of Result 6.1: From (6.3), and the definitions (1.6) and (3.5) for B and Q, it follows
that Eg(]f”) = ES(Q) = B3, and therefore using (4.1) we have E;(Z,) = 0. By contrast, under
the model (6.4) with 8,44 # 0, a similar argument shows that E;_ (Z,) # 0.

7. Monte Carlo Simulation

We carried out a Monte Carlo simulation to illustrate and confirm some of the findings in
earlier sections. We generated repeated finite populations under the superpopulation model,

Vi :xk—}—Kh(xk)—}—sk, kzl,,N (71)

where K is a constant and &; ~ Normal(0, 252) is a random error term. We let
Xx; € (100,300), and we took h(x;) to be the third degree polynomial
h(x;) = (x — 100)(x; — 200)(x; — 300). A data set (yg,xz), k= 1,...,N, generated by
(7.1) can be thought of as corresponding to a stratum of units for which a measure of
size, xy, falls in the interval (100, 300). We assume that X = ) ;x; is a known total
used in the calibration.

For K = 0, (7.1) simplifies into y, = x; + ;. When K # 0, the term K h(x;) creates a
wave curve about the line y, = x;, symmetric around x, = 200. It has the effect of
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weakening the correlation between y and x. In order to limit the amplitude of the wave, we
used values of K close to zero. The presence of the term K h(x;) permits us to study the
behaviour of Ycarp in unsaturated cases, where we are not in a position to calibrate on
all x-variables relevant for explaining y. Here, we do not calibrate on the two variables
x7 and x7, because we assume that the totals Su x7 and Su x; are unknown. The popula-
tion size N = > 1 represents an additional total, which may or may not be used in the
calibration. When K # 0, we can express (7.1) in the form (6.4) of an extended model
£ext Where X o = (l,xk,x%,xi)/ and B, are vectors of dimension 4.

The simulations consisted of generating repeated finite populations using (7.1), and for
each population, repeated SRS samples were drawn. More precisely, the steps were:

(a) Forafixed value of K, and for k = 1, ..., 1,000, draw x; ~ Uniform(100, 300); draw
~ Normal(0, 25%), independent of x;; compute the corresponding value y, from
(7.1). The result is a finite population of N = 1,000 values (y;, x;), k = 1,..., 1,000.
(b) From this finite population, select 1,000 independent samples s;, each of size
n = 200, using SRS. Each sample is replaced before the next is drawn. The values

of x; and y; are recorded for k € 55, j = 1,...,1,000.

Step (a) was carried out 500 times. That is, we generated 500 finite populations, each of
size N = 1,000, and for each of these, 1,000 SRS samples were drawn. For each value of
K, the simulation was thus based on 500 x 1,000 = 0.5 x 10° SRS samples. Three values
of K were used: K =0, K = —0.0001 and K = 0.0001.

For each value of K and for each of the 500 populations, the mean of the 1,000 y, values
is roughly 200, because by symmetry h(x,) is zero on average when

~ Uniform(100, 300). The variance of the 1,000 y; values depends on K. For example,
for K = 0, the variance is roughly (1/12)(200%) + (25%) = 3958.3, with a corresponding
standard deviation of roughly (3958.3)"* = 62.9.

For each of the 0.5x10° samples, we computed several estimators Yoaip =
> s WkCALF Yi» corresponding to different parameters g, and z; in the weights wy carr
given by (3.2). One choice was g, = a;/c; (with ¢, = 1) and z; = x; which gives a specific
GREG estimator. Two different simulations were carried out, Simulation 1 and Simulation
2, as described below.

We computed summary Monte Carlo measures based on the 0.5 X 10° values obtained
for each estimator under consideration. These were the average bias, the average squared
bias, the average variance and the average mean squared error defined respectively, as

500

AvBias = Z(Y

500 _
AvBias2 = — (¥, — ¥,)?
vBias 500;(,

500 1000

1
AVVAr = 250X 1000 2 Z Z(

1 500 1000 . )
AVMSE = ——— ¥, - v,
v 500 x 1000 ; ;( i~ ¥
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1000 }000  and Y is the value of the estimator ¥ for the jth sample drawn

from the ith population Wlth total Y;. We also calculated the average variance of Z; and the
average covariance between Z; and YorEG as

where Y

500 1
1 00 1000

AvVarZ = ————— Z; 2
vvar 500 % IOOOZIJZ( sij Sz)
500 1000
AvCov = mz Z(YGREG i YGREG:)(ZW Zy)
with Voppg; = e S71000 and Z; = 519 7 . where ¥, and Z,;; are the
i 1000 j= GREGij St 1000 Z«j=1 “sij GREGij 'Sij

respective values of Ygreg and Z, for the jth sample drawn from the ith population.
The results of Simulations 1 and 2 depend on the following factors, which are specified
at the outset:

(i) The calibration variables that define the vector x; (with known total X = > x;) in
the calibration.
(ii) The parameters q; and z; specified for the weights (3.2) for Ycapp.
(ili) The constants ¢; in Ygreg.
(iv) The set of x-variables in the superpopulation model, and the overlap of these vari-
ables with the set of calibration variables specified in (i).

Simulation 1 was carried out with dim(x;) =dim(z;) =1 and the following
specifications:

(i) Calibration variables: x; = x; (scalar); X = > yx; is the only total used for
calibration.

(ii) Parameters: z; = x’,j ! for p=1,2,...; for each value of p, two specifications for
qr: (1) gr=a,=N/mn for all k and (2) randomly generated ¢, as
qr = p ~ Uniform(0, 1). This extreme choice of coefficients is used to show that
even randomly chosen g; do not harm the efficiency.

(iii) The constants c; : ¢, = 1 for all k.

(iv) Superpopulation models: For K = 0, (7.1) is the saturated model y;, = x; + &;. For
K = —0.0001 or K =0.0001, (7.1) gives two unsaturated models, y, = x;3+
Xi addBadd + Eexe With dim(B) = 1, dim(Bogq) = dim(xy4q4) = 3, X aaa = (1.7, 57)',
8 =1+ 110000K and B,4; = (—6000000 K, —600 K, K)'. This means that the three
totals not used in the calibrationare N = 3", 1, Sy x7 and 3 x;.

For Simulation 1, we have
—b= Y/ Y
and

Q=0= ZQka_l}’k/ZQka
s s

In particular, for p=1 and ¢, = a;, Ycarr becomes the classical ratio estimator,
Yearr = X(P7X). The results of Simulation 1, given in Table 1, lead to the following
comments:



Estevao and Sdrndal: A Functional Form Approach to Calibration 395

The effect of the exponent p: In the saturated case (K = 0, model y, = x;, + &), B— O
has model expectation zero for any value of p. By Result 6.1, Z = Yopp—
IA/GREG = ()A( — X)(B — Q) is zero on the average over all populations and all samples.
That is, Y r and Ygreg are identical on average. This is confirmed in Table 1. For all
values of p, we have practically identical results for all tabulated quantities. In the
unsaturated cases (K = —0.0001 and K = 0.0001), we cannot use Result 5.2 to identify
Y6reG as the best (minimum Taylor variance) estimator. Although S uxEr = 0, we do
not have Yy E;, = 0. So even before the simulation, we might expect some other value
of p to produce a smaller variance than p = 2. However, we have no means of predicting
the optimal value of p. Table 1 shows that the variance (and the approximately equivalent
MSE) of Ycarr decreases as p increases, reaches a minimum p = 8 and starts to increase
again for larger values of p. There is a strong negative covariance Cov(YgreGs Z,) for
values p > 2, which explains why p = 2 is not best. The decrease in the variance as p
increases from p = 1 (ratio estimator) to p = 8 is considerable (around 15%), so there
is considerable incentive in practice to prefer the calibration estimator with p = 8. The
problem is that we cannot predict the optimal value of p. It depends on the population
data values.

The effect of the coefficients g;: For all values of K, we found that the effect of the
qy is neglibible. The coefficients g, = a; = N/n and ¢, = pi ~ Uniform(0, 1) give
almost the same variance. In order to save space, we show ¢, = p; ~ Uniform(0, 1)
in Table 1 only for the case K = 0.0001, but similar results were found for other values
of K.

Simulation 2 was carried out with dim(x;) = dim(z;) =2 and the following
specifications:

(i) Calibration variables: x, = (1,x;); the vector total used for calibration is

X = (N,X), where N =Yy 1 and X = Yy x.

(ii) Parameters: z; = (l,xf_l)/ forp = 2,3,...(p = 1 was excluded because the matrix
> s qrziX; is singular at p = 1); g as in Simulation 1 (two options).

(iii)) The constants c; : ¢, = 1 for all k.

(iv) Superpopulation models: In the saturated case (K = 0), the model isy, = x; + g;.In
the unsaturated cases (K = —0.0001; K = 0.0001), (7.1) can be written as
Vi = XiB + Xp2adBadd + €xexts Where all of B, Xy, Bagq and X; ,qq have dimension 2;
B = (—6000000K, 1+ 110000K)"; x; = (1,x)"; Baga = (—600K,K); Xpoaa =
(x7.x})'; the totals excluded from the calibration are 3"y x7 and 3y x;.

The results of Simulation 2, also given in Table 1, lead to the following comments:

The effect of the exponent p: In the saturated case (K = 0, model y, = x; + &), Result
6.1 states that ¥ca p and Ygreg are identical on average over all populations and all sam-
ples. This is confirmed in Table 1. The tabulated quantities are practically identical for
most values of p. There is no variance reduction (in fact, a slight increase) compared to
Simulation 1. That is, adding N to the calibration totals gives no improvement over the
calibration on X alone. In the unsaturated cases (K = —0.0001 and K = 0.0001), Result
5.2 shows that ¥Greg has minimum Taylor variance, because SuxiEr=> yE.=0.



Table 1. Averages based on 1,000 samples of size 200 within each of 500 populations of size 1,000 (actual values = displayed values x10%)
a indicates: g, = a, = N/n

w indicates: g; = p; ~ Uniform (0, 1)

The data values for each population were generated under the model
y=x+ K (x — 100) (x — 200)(x — 300) + &€ where & ~ Normal (0, 252) and x ~ Uniform (100, 300)

Simulation 1: Calibration variable x Simulation 2: Calibration variables

AvBias AvBias2 AvVar AVMSE AvCov AvVarZ AvBias AvBias2 AvVar AVMSE AvC

K=0 a p=1 0.000 2.63 2502.55 2505.18 0.48 0.08 — — — — —
p=2 0.000 2.63 2501.99  2504.62 0.00 0.00 0.000  2.65 2511.09 2513.74 0.
p=3 0.000 2.63 2501.62  2504.25 —-0.42 0.05 0.000  2.65 2511.26 251391  —0.
p=4 0.000 2.63 2501.41  2504.04 —-0.73 0.15 0.000  2.65 2511.78 2514.43  —0.
p=>5 0.000 2.63 2501.31  2503.94 —0.97 0.28 0.000  2.65 2512.54 2515.19 —O0.
p==©6 0.000 2.63 2501.28  2503.91 —1.13 0.42 0.000  2.65 2513.47 2516.12  —O.
p=7 0.000 2.63 2501.31  2503.94 —-1.25 0.57 0.000  2.65 2514.42 2517.17  —O0.
p=238 0.000 2.63 2501.37  2504.00 —1.34 0.71 0.000  2.65 2515.65 251830 —O0.
p=9 0.000 2.63 2501.45  2504.08 —1.41 0.86 0.000  2.65 2516.83 251948  —O0.
p=10 0.000 2.63 2501.55 2504.18 —1.46 1.01 0.000  2.65 2518.06 2520.71  —0.
p=20 0.000 2.63 2502.86  2505.49 —1.68 2.55 0.000 2.67 2531.22 253389 —O0.
p=50 0.000 2.64 2507.41  2510.05 —1.87 7.30 0.000 2.71 2573.09 2575.80 —0.
p=-o° 0.000 2.71 2552.59 255530 —3.18  53.85 0.000 3.62 2991.20 2994.82 3.

K=-00001la p=1 —0.035 7.13 554728 555441 30226  12.68 — — — — —
p=2 —0.029 6.37 5233.10 5239.47 0.00 0.00 —0.004 353 342538 342891 0.
p=3 —0.023 5.79 5017.02  5022.81 —223.64 6.97 0.003 3.52 3426.14  3429.66 0.
p=4 —0017 541 4878.62 4884.03 —375.13  19.68 0.008 3.58 3428.24 3431.82 0.
p=5 —-0013 5.19 479531 4800.50 —470.00  31.02 0.013  3.69 3433.03 3436.72 1.
p=6 —0011 5.07 474898 4754.05 —524.20  38.78 0.017 3.82 3442.16 3445.98 2.
p=7 —0.009 5.01 4726.85 4731.86 —550.65  43.03 0.020 3.94 3456.64 3460.58 3.
p=8 —0.007 4.98 472034 472532 —558.76  44.60 0.022  4.06 3476.68 3480.74 3.
p=9 —0.006 4.97 4723.86 4728.83 —554.98 4434 0.024 4.16 3501.85 3506.01 4.
p=10 —0.006 4.97 4733775  4738.72 —543.68  42.93 0.026  4.26 3531.37 3535.63 4.
p=20 —-0.006 5.16 490598 4911.14 —349.69  21.36 0.032  5.05 3907.48 3912.53 4.
p=50 -0.007 5.52 5195.46 520098 —48.61 10.12 0.039 6.38 4646.32 4652.70 1.
p=9o —0.007 5.92 5497.03 550295 20233  61.15 0.047 8.98 5776.63 5785.61 2.




K =0.0001

a p=1 0.027 5.99 5553.67 5559.66 30240 12.70 — — — — —
p=2 0.023  5.39 5239.18  5244.57 0.00 0.00 0.000 3.13 343231 3435.44 0.
p=3 0.016 4.94 5022.55 5027.49 —224.08 7.00 —-0.007 3.17 3432.86 3436.03 0.
p=4 0.010 4.66 4883.56 4888.22 —376.12  19.78 —-0.013  3.29 3434.66 3437.95 0..
p=>5 0.007 4.51 4799.73  4804.24 —471.54  31.21 —0.018 3.44 3439.00 3442.44 1.
p=6 0.004 4.44 475296 475740 —526.22  39.06 —0.022  3.60 3447.55 3451.15 1.
p=7 0.002 441 4730.46 4734.87 —553.08  43.38 —-0.025 3.76 3461.37 3465.13 2.
p=28 0.000 4.40 4723.67 4728.07 —561.50  45.01 —-0.027  3.90 3480.72  3484.62 2.
p=9 —0.001 440 472696 4731.36 —557.98  44.77 —0.029 4.02 3505.22 3509.24 2.
p=10 —-0.001 4.42 4736.66 4741.08 —546.87  43.38 —0.030 4.14 3534.09 3538.23 3.
p=20 —-0.002 4.59 4908.04  4912.63 —353.61 21.68 —0.038 5.00 3905.48 3910.48 1.
p=>50 0.000 4.89 5196.12  5201.01 —53.57 10.01 —0.045 6.39 4636.50 4642.89 3.
p=9c —0.001 526 551094 551620 210.16  61.48 —0.056 9.22 5803.38 5812.60 —6..

p p=1 0.028 5.99 555532 5561.31 303.23 1352 — — — — —
p=2 0.022  5.38 5240.81  5246.19 1.00 0.63 0.000 3.12 3439.37 3442.49 0.
p=3 0.016 4.93 5023.95 5028.88 —223.18 7.50 —-0.007 3.17 3440.05 3443.22 0..
p=4 0.010 4.66 4884.67 4889.33 —37549  20.25 —0.013  3.28 3442.11 3445.39 0.
p=>5 0.006 4.51 4800.54  4805.05 —471.26  31.74 —0.018 3.45 3446.75 3450.20 1.
p=6 0.004 443 475350 475793 —526.32  39.68 —-0.022  3.60 3455.59 3459.19 2.
p=7 0.002 4.40 4730.75 4735.15 —553.54  44.13 —-0.025 3.76 3469.65 3473.41 2.
p=38 0.000 4.39 472374  4728.13 —562.31  45.87 —-0.027 391 3489.18  3493.09 2.
p=9 —0.001 440 4726.82 4731.22 —559.10  45.76 —0.029 4.04 3513.79 3517.83 3.
p=10 —-0.001 441 4736.34  4740.75 —548.28 4447 —-0.031 4.15 354275 3546.90 3.
p=20 -0.002 4.59 4906.58 4911.17 —-356.83  23.43 —-0.038 5.03 3914.38 3919.41 R
p=50 —-0.001 4.89 5193.76  5198.65 —58.67 12.76 —0.045 6.44 4649.65 4656.09 3.
p=c —0.001 525 5509.54 551479  206.60  63.62 —-0.056 9.17 5818.33 582750 8.
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Now, the simulation results in Table 1 are affected not only by the first order term in the
Taylor variance, but also by the higher order terms. However, these terms are small and
Result 5.2 is clearly reflected in the simulation variances. Table 1 shows that the simula-
tion variance attains a minimum for Ygrpg (p = 2). It then increases with p, but at a very
gradual rate. There is a considerable variance reduction compared to Simulation 1, for
most values of p. The simulation covariance AvCov is negligible compared to AvVar
and small compared to AvVarZ. This is expected, because the Taylor covariance is exactly
zero in this case.

The effect of the coefficients g,: As in Simulation 1, the effect of the different coefficients
qy 1s negligible. The coefficients g, = a, = N/n and g, = p; ~ Uniform(0, 1) give nearly
identical results for every value of p.

8. Concluding Discussion

We have argued in this article that the derivation of a calibration estimator does not have to
start from a distance minimization argument. We have proposed instead a functional form
approach. We have defined a family of calibration estimators Yca; ¢ by the parameters ¢,
and z;.. The estimators in ¥,  are all asymptotlcally design unbiased. We have noted that
the generalized regress1on estimators Yggpg are contained in Y1 r. We have looked at the
difference Z, = Ycarr — Yorpg between any two estimators in these families and consid-
ered the Taylor variance of these statistics. We have derived a sufficient condition for the
optimality one member of ¥grgg within Yeap. For specific designs, we have showed how
to determine the values of x; and ¢} for the optimal ¥ &reg.

The variance of ¥ depends on how well the auxiliary variables x; explain the varia-
bility of y, through the linear representation y, = x;B + E,,fork = 1,...,N. We were led
to make a distinction between saturated and unsaturated superpopulation models. The
saturated models are in a sense less interesting, because in practice we cannot hope to
be in a position to calibrate on all relevant x-variables. For a saturated model, there are
essentially no differences between the calibration estimators. By contrast, the unsaturated
models are more realistic because they allow for other explanatory variables than those
used in the calibration.

The ideas in the article are illustrated by the results of Simulations 1 and 2. In both simu-
lations, X is an important control total for the calibration. The population size N is also
available and although it is not as useful by itself, it can be used as a second total. Should
we calibrate only on X or on both N and X? The simulations gave a clear answer. We
should calibrate on (N, X). In practice, we do not know if the model is saturated by the
calibration variable x. If the model is saturated (K = 0), then it does not really matter
whether we calibrate only on X or (V, X). We obtain similar estimators. If the model is
unsaturated (K # 0), then Result 5.2 allows us to identify an optimal Yorpg estimator
in ¥carp by calibrating on (N, X) and setting ¢, = 1. In either case, we can calibrate on
(N, X). When the model is unsaturated, we cannot identify an optimal estimator if only
X is used. In general, our recommendation is to calibrate on as much available information
as possible, and to try to use Result 5.2 to identify an optimal ¥Yqrgg. For certain designs,
we showed how this objective is realized through suitable choices of the parameters c;
and x;.
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