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A Method for Estimating Design-based Sampling Variances
for Surveys with Weighting, Poststratification, and Raking

Hao Lu' and Andrew Gelman®

It is common practice to use weighting, poststratification, and raking to correct for sampling
and nonsampling biases and to improve efficiency of estimation in sample surveys. In general,
the sampling variances of the resulting estimates depend on the weighting procedures, not just
on the numerical values of the weights.

In this article we develop a method for estimating the sampling variance of survey estimates
with these adjustments, using three ideas: (1) a general notation that unifies the different forms
of weighting adjustment, (2) a variance decomposition to estimate sampling variances
conditional and unconditional on sample sizes within poststratification categories, and (3)
the delta method applied to uncertainties in sample sizes within poststrata. The resulting
variance estimates are design-based and comparable to those obtained by the jackknife. We
focus on estimation of population and subgroup means but also discuss more complicated
summaries such as ratios and regression coefficients.

We apply our approach to the problem that motivated this research, the New York City
Social Indicators Survey, a telephone survey that uses inverse-probability weighting, post-
stratification, and raking to correct for sampling design and nonresponse. Our variance
estimates systematically differ from those obtained using methods that do not account for
the design of the weighting scheme. Assuming simple random sampling leads to under-
estimating the sampling variance, and treating all weights as inverse-probability causes
variances to be overestimated.

Key words: Inverse-probability weighting; iterative proportional fitting; poststratification;
raking; ratio estimate; regression estimate; sample survey; variance estimation.

1. Introduction

Poststratification and weighting are used to adjust for known or expected discrepancies
between response group and population. We consider surveys that use inverse-probability
(Horvitz-Thompson) weighting, poststratification, and raking or iterative proportional
fitting (IPF). Although these methods are commonly used, it can be difficult to estimate
sampling variances of the associated weighted estimates. In general, these variances
depend on the weighting procedures, not just on the numerical values of the weights,
and variance-estimation methods that use only the weights, without using the weighting
design, cannot in general be correct. Analytic formulas exist for inverse-probability
weighting (see, e.g., Hanif and Brewer 1980) and poststratification (e.g., Little 1993),
and Taylor-series methods exist for ratio adjustment (e.g., Jones and Chromy 1982) and
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raking (e.g., Sen 1953; Wolter 1985; Binder and Theberge 1988; Deville et al. 1993).
However, for the combination of inverse-probability weighting, poststratification, and
raking, existing design-based variance estimates rely on resampling methods (see, e.g.,
Yung and Rao 1996, 2000) or else can drastically underestimate the sampling variance
(see Canty and Davison 1999). Binder (1983) and Binder and Patak (1994) suggested a
general approach for estimating sampling variances from complex surveys using esti-
mating functions. But their method can be difficult to implement when sample weights
are complicated functions of sample sizes within poststrata (as in the example we consider
here).

In this article, we derive design-based analytic and Taylor-series variance estimators in
a general way and show how they can work even in complicated circumstances. We go
beyond published Taylor-series methods (e.g., Binder and Theberge 1988) in considering
all the weighting methods together (as happens in many real surveys). Another interesting
feature of our approach is a decomposition of variation conditional and unconditional on
the sample sizes of poststrata. We illustrate our method with an actual survey that
motivated this work.

Section 2 of this article briefly reviews classical weighting and poststratification and
describes our general framework. In Section 3 we build a procedure to find the variances
of these estimators and compare these to the simple variance estimates that either ignore
weights or treat them all as inverse-probability corrections. We apply our method in
Section 4 to the New York City Social Indicators Survey conducted by the School of
Social Work at Columbia University. Nonresponse was high in this survey, and a com-
plicated weighting adjustment was used to match the sample to the population. We extend
our results to more complex estimates such as ratios and regression coefficients in Section
5 and conclude in Section 6.

2. Weighting and Poststratification

2.1. Methods

The essential goal of weighting in sample survey estimation is for weighted averages over
the sample to provide good estimates of the corresponding averages in the target popula-
tion. The usual way of explaining this is that the weighted estimator will be unbiased for
the population mean under repeated sampling that uses the same sampling plan. The
intuitive appeal of weighting seems to be based on a more fundamental notion of creating
estimates that better ‘‘represent’’ the target population.

Here is a brief overview (see, e.g., Lohr 1999, and Gelman and Carlin 2002, for more
discussion and references). There are two types of classical weights: inverse-probability
weights (Horvitz and Thompson 1952) and poststratification. A basic distinction is that
the former are known at the time the survey is designed whereas the latter weights are
only determined after the data have been collected. Also they are used for different pur-
poses: inverse-probability weights are used to correct for unequal selection probabilities
whereas poststratification weights are used to correct for known discrepancies between
the sample and the population. A further distinction among types of inverse-probability
weights is that sometimes they are created by the survey designer, for example using
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probability-proportional-to-size sampling schemes (see, e.g., Yates and Grundy 1953),
and sometimes they are a by-product of a multistage structure, as with household-size
weights in a survey of individuals (Gelman and Little 1998). Raking is a poststratification
method that can be used when poststrata are formed using more than one variable, but only
the marginal population totals are known. It shares the same idea with poststratification as
to match the sample with what is known about the target population. Iterative proportional
fitting (IPF) is simply iteration of the raking procedure (Deming and Stephan 1940, Little
1993). Although these methods have the same intuitive interpretation, they have different
statistical properties, with potential implications for the estimation of standard errors (see
Gelman and Carlin 2002, for some simple examples). Poststratification also has applica-
tion outside of sample surveys (Little 1993, Rosenbaum and Rubin 1983, 1984), but we do
not discuss this here.

2.2.  Notation: cell weights and unit weights

We have found it useful to develop a unified notation for design-based inference under
weighting and poststratification of sample surveys, following Little (1991, 1993). We shall
generally follow standard practice and focus on a single survey response at a time, labeling
the values on units i in the population as Y;, i=1,...,N, and in the sample as y;,
i=1,...,n. To start with, we suppose the goal is to estimate the population mean
0=7Y=>", Y/N.

We suppose the population is divided into J stratification/poststratification cells, with
population N; and sample size n; in each cell j=1,...,J, with N = Z}:le and
n= Zle n;. For example, if the population of U.S. adults is classified by sex, ethnicity
(white or nonwhite), 4 categories of education, 4 categories of age, and 50 states, then
J =2%x2x4%x4x50=3,200 and the cell population N;’s would be (approximately)
known from the public-use subset of the long form of the U.S. Census as updated from
the U.S. Current Population Survey.

We define m; as the probability that a unit in cell j in the population will be included in
the respondent sample, assuming all units have the same probability of inclusion. (In
designs with unequal sampling probabilities, cells are defined with enough specificity
that inclusion probabilities can be assumed equal within each cell.) For some designs,
w; is known but, in general, when nonresponse is present, it can only be estimated.

We are combining designed selection probabilities with respondent inclusion effects
such as nonavailability and unit nonresponse. Although this is not the standard notation,
we will find it useful for computing design-based standard errors with poststratification.
If clustering crosses the classification groups, then we would define the groups to be the
intersection of the clustering and stratification categories, so that in these smaller groups,
the probability of inclusion is constant.

We label the population mean and standard deviation within cell j as 6, = 171 and
g; = §;, the sample mean within cell j as ;. The overall mean in the population is then

SN
N

g=Y= (1

which we refer to as the basic poststratification identity. We focus on weighted estimates
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of the form
~ J A~
6 = Z W, 6; ()
i=1

vyhere the cell weights W; sumto 1. So far, Equation (2) has no restriction: the Wj’s and the
6;’s can depend in any way on the data.

We use (1) and (2) as a way to unify existing estimation procedures. The classical
weighting methods we consider in this article generally avoid any explicit modeling of
the response and restrict themselves to unsmoothed estimates éj =y; and weights W;
that depend only on the n;’s and N;’s, not on the y;’s, thus yielding population
estimates of the form

B —XJ:W_ _Z?:lwiyi 3)
v ' =1 Wi

where w; = Wj;y/n;qy is the unit weight of the items i in cell j. Strictly speaking, the
denominator in (3) is unnecessary since, as we have defined them, the w;’s sum to 1,
but the general ratio formula is useful when considering arbitrary unnormalized unit
weights. The implicit model underlying these procedures is of equal probability of
inclusion in the sample for all units within any cell. This is why ¥; is considered a
reasonable estimate for ;. This is also why it is helpful to poststratify as finitely as
possible, so that the implicit assumption of equal probability of inclusion is reasonable
within each poststratification cell.

In our three methods, the weights are defined as follows:

¢ Inverse-probability:

szji forj=1,...,J
Z]:lnj/'ﬂ'j

and

wizle fori=1...n
Zj:l n]/'ﬂ']

Problems appear if inclusion probabilities are not known; also, these weights can
often lead to large variance estimates. With single-stage unequal probability
sampling, we are defining a separate cell j for each possible weighting value.

e Poststratification:

N; .
Wj:ﬁ forj=1,...,J

and
i:M fori=1,...,n
Nnj)
Problems arise if n; = 0 (or 1 or 2) for some cell j.

e Raking and iterative proportional fitting: We suppose a population is cross-classified
into J = J; X...xJp cells, with K = 25:1 J,; being the number of marginal cells.
Now instead of knowing all N;’s for j=1,...,J, assume only the K margins

M = (Mlyl,...,Mul,...MDyl,...,MDJD)’ are known and we want to estimate N,
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from the knowledge of sample sizes and margins. Let A be the K X J indicator matrix
that satisfies

AN =M “
Here N = (N1, ...,N;) is the vector of populations of each cell. Therefore the k th row
of A indicates which elements of N belong to the kth margin from M. Write
A= (A,...,Ap); here each A, is a J X J; matrix. Define the vector of sample margins
f;l:(mlyl,...,ml,J],...,mD’JD)l:A}’_i (5)
Here 7t = (ny,...,n;)" is the vector of sample sizes. In our notation, raking proceeds

in the following steps:

— 1. Ford = 1, calculate 7 = (M, /mg 1,...,My ;,/my ;). and compute w = A, 7.

— 2. Update vector 7 by multiplying each element n; by w; for j = 1,...,J. Update
vector m using (5).

— 3. Repeat steps 1,2 ford =2,3,...,D.

— 4. For iterative proportional fitting, repeat steps 1, 2, 3 until 7, converges to M.

'l:he updated n; coming from the above procedure will be the IPF estimate ofA N;, say
Nj, forj=1,...,J. Thf:n the weights resulting from raking or IPF are W; = N;IN for
j=1,...,Jandw; = Niiy/(Nnj;y) fori = 1,...,n. For raking and also IPF, the final
weight can be written as a product of weight factors for each margin.

3. Variance Estimates

3.1. Decomposing the variance of the weighted estimate

We treat the vector of sample sizes 71 as random (see e.g., Holt and Smith 1979, Little
1993, for discussions); the variance decomposition gives some sense of the importance
of this choice. We assume that the poststrata are fine enough so that all units in each
cell have equal probabilities of inclusion in the respondent sample (this is the implicit
assumption underlying the weighted average estimators). With enough samples in each
cell, the population mean and standard deviation 6; and o; can be estimated by the sample
mean and standard deviation. Based on the notation of the previous section and these
assumptions, the variances of the ‘‘classical estimates’’ 6= Zle W;y; can always be
written as

var(0) = E(var(0| 1)) + var(E(0 | 71))

J J
= Elz Wi var(y; | 7) | + var| ) W,-E(yjm)]
j= j=1
J R o2 J
=E wZ> L W.0.
Z:l J n; + var p J7

J W'z
= Z E <’> sz + 6" var(W)6 (6)

n:
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Here var(W) represents the variance matrix of W = (W, ..., W,)', where W is considered
a function of the random variable 7. This is also classical: W is determined solely from #,
not from y. In (6) we need to ensure that W; = 0 whenever n; = 0: that is, since no data are
available in such cells, they are assigned zero weights. To use Equation (6) to find the
variance, we need the distribution of 72. Without further information about the survey, it
would be appropriate to assume

R . . TN T N
n ~ multinomial | n; 7 Lt N eV I
> j=1mN; 2i=1mN;

where the J categories include all cross-classifications of strata and poststrata. In (6),
the correlations between poststrata are zero because we are assuming that the design is
single-stage (or that any clustering in the design occurs within poststrata).

Both terms in (6) are important; as Canty and Davison (1999) discuss, if the unit weights
w; are treated as fixed, this is equivalent to ignoring the sampling variance in 7 and thus
ignoring the second term in (6), causing the variance to be underestimated.

3.2.  Computation using the delta method

The first term in (6) can be estimated by ZJJZ I(VAVJ-Z/n j)s?’ where sz is the sample variance
of cell j and W; is the weight we get. For the second term in (6), we can estimate 6 by
the vector of sample means. For poststratification, var(W) is simply zero. For inverse-
probability weights and raking and IPF, the vector of cell weights W is a continuous
function of 7, and we can write

W = h(it) = h(iy) + B(i — i) (7)

for a proper matrix B by Taylor expansion. Here 7 is the true sample size vector, and
h(n) is the weight vector for this sample size. Then

var(W) =~ Bvar(ii)B' (8)

Since 7 has a multinomial distribution, var(7) can be estimated by observed data. There-
fore we only need to figure out the matrix B to get an estimate of Var(ﬁ/). We estimate B
using a perturbation method. From (7), if we change 7 by a small amount, W is also
changed:

AW =~ BA# )

The perturbation procedure is a sort of delta method: in Step 1, we increase the first
element of 7, n, by a small amount e. Then obviously Az = (e, 0,. .. ,0)". Now use the
new 7, say 7', repeat the IPF procedure and get new weights for all cells, say W'. Let
AW be the difference between the two weights wo—W. Apply (9), and the first column
of B can be approximately expressed as AW/e. In the next step, we increase the second
element of 72, n, by a small amount e, and similarly we can find the estimate of the second
column of B. Repeating J times, we can find the estimate of B, say B. We need only
calculate var(W) once for the entire survey. For different estimates, we only need to
change the first term in (6) and 6.

This method works well when there is a sufficiently large sample size in each post-
stratification or raking category. It also can be used for other kinds of weights that are
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generated based on N;, nj, wj, j = 1,...,J, for example smoothed weighting or com-
binations of inverse-probability and IPF weighting. One of the advantages of this method
is that it will also work with complicated weighting rules, as we illustrate in the examples.

3.3.  Comparison to simpler approaches

We shall compare our variance estimates to two commonly-used approximations based on
simplified assumptions about the weighting. We find that for our example, the simplest
approximation — the assumption of simple random sampling — underestimates the
sampling variance. The next-simplest approximation of inverse-probability weighting
overestimates the sampling variance.

3.3.1. Analysis as if the data had arisen from simple random sampling
We first consider the simplest approximation, which is to compute the variance of the
weighted estimate under simple random sampling. Although not based on a realistic
model, this is a reasonable computation because it is so simple to do, especially for binary
outcomes, that it is usually computed in practice. The actual sampling variance, compared
to this approximation, can be used as a design effect for correcting simple analyses.
The estimator is § = St iwiyi, with Y7 w; = 1. We can estimate its variance by
the sample variance of the data, with the weights w; treated as constants. Then,

varggs(6) =Y w var(y;) = (Z w?) var (y1) (10)

i=1 i=1

and var(y) can be estimated as the weighted sampling variance of the data:

n
var(y) = > wi(y; — 0y
i=1
(For binary outcomes, this is just 9(1 — 9).) Method (10) will tend to underestimate the
variance because it ignores the variance in the weights w;. These calculations are from
a design-based perspective, under which sample values y; and sample means y are random

variables (in contrast to population values ¥; and population means ¥ which are fixed); see
e.g., Cochran (1977).

3.3.2. Assuming inverse-probability weighting

The other natural simplifying assumption is to pretend that the weighting is all inverse-
probability, with independent sampling where the probability that unit i is selected is pro-
portional to 1/w;. An extensive review of variance estimation for inverse-probability
weighting is offered by Hanif and Brewer (1980). To appropriately compute the variance
for inverse-probability sampling, we must acknowledge the ratio form of the weighted
mean:

The denominator of this expression is 1, but only after the weights have been normalized.
If we define the population quantities u, = E(w;y;), u, = EW;), u; =w;y; and
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0=p,/lpy, i => 7 w;yiln,w=">7_, w;/n, then the estimator can be written as
i (I +e)
0 = o =
w l"'w(l + GW)

where ¢; ~ N(0, Var(ﬁ)/,ubzl), and e; ~ N(O, Var(W)/,u&,). The Taylor expansion yields the
approximation

0~0(1+e)(l —ep+e2—...)

Its variance can be estimated by

N 1
var(f) = 6> var(e; — €3) = —5 var(ii — 6w)
w

1 A 1 &

o7 var(ii — Ow) (ZLI w,»)z var (; z,)
where z; = u; — 9w,-, i=1,...,n. Under the assumption of independent sampling,
var( > 7= z;) can be estimated by > 7, z; since E( 37—, z;) = 0. Therefore we can
estimate the variance of 6 by

N
vargr(0) = wity; — 0)° (1)
i=1
Here we are assuming the weights have been normalized, so that > 7_; w; = 1.

These approximate estimates are not in general correct since they do not account for the
design of the weighting procedure; in particular, the individual w;’s are not fixed with the
units but actually depend on the selected sample. In the example in the next section, we
compare our variance estimates to these simpler formulas, focusing on the comparison
with (10) since it is the natural point of comparison.

3.4. Jackknife variance estimator

We now consider an alternative approach to estimating sampling variances — the jackknife
— which is similar to our method in that it is based on recomputing the weights based on
perturbations of the data. Compared to our approach, the jackknife has the advantage of
simplicity and the disadvantage of not having an analytic decomposition as in (6). The
two methods give similar variance estimates, as we discuss in Sections 4.3 and 4.4.

Jackknife variance estimation for stratified multistage sampling is discussed by Rao and
Shao (1992) and Yung and Rao (1996, 2000). Using notation from our Section 2.2, the
procedure goes as follows: for stratum j, delete the /th sample. Repeat the raking proce-
dure for the remaining samples and generate the jhth replicate estinlate, @jh. Repeat the
above steps for all 4 and j. Then the jackknife variance estimate of 6 is

A I on—1 gL o "
@Jack(o) = Z ]n- Z (ajh - 0)2
J oh=1

=1

4. Application to the Social Indicators Survey (SIS)
4.1.  Survey design

In this section, we apply our method to the 1997 New York City Social Indicators Survey
(NYCSIS) by the Columbia University School of Social Work in 1997 (Garfinkel and
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Meyers 1999). This survey is designed to assess the individual and family well-being of
area residents in order to better study the citywide effects of current national and state
government policies on social services and welfare reform. NYCSIS is based on repeated
samples of New York City proper and non-New York City metro area counties. In the
1997 wave of the survey which we analyze here, 2,224 respondent families were sampled.
In collecting this data, two independent telephone samples were taken: a sample of 1,477
families with children and a sample of 747 individuals who were asked about their families
(defined as the respondent, spouse/partner, and any children cared for by the respondent or
spouse/partner).

Both samples were based on random digit dialing. In the caregiver survey, the telephone
interviewer identified for each household the number of children under age 18 living at
that location. One child was randomly chosen from all resident children. This child’s care-
giver was selected as the respondent. In the individual version, the telephone interviewer
identified the number of people 18 or older residing at the household and randomly chose
one of these adults as the respondent. If the respondent was also a primary caregiver, then a
random child was selected from the available children. Here, the chosen focal child
became the subject of child caregiving topics addressed by the respondent during the inter-
view. If the respondent was not a primary caregiver, the survey questionnaire omitted
questions specific to child rearing. The sampling design had four strata: New York City
families with children, New York City families without children, non-New York City
families with children, and non-New York City families without children.

4.2.  Weighting adjustments

The NYCSIS used a complicated weighting scheme to adjust for several demographic
variables. Here we describe the weighting procedure and then illustrate how we used
our method to compute sampling variances of weighted averages.

A ten-step weighting procedure based on inverse-probability weighting and raking was
applied to correct for unequal sampling and nonresponse rates. First, inverse-probability
weighting was used to correct for differences in the probabilities of selection. Then
poststratification and iterative proportional fitting were used to adjust the basis of
demographics. The variables considered in the weighting procedure are selection prob-
abilities at the family level, selection probabilities based on telephone availability and
intermittent telephone services at the household level, selection probabilities based on
child caregiver status relative to the city and metro populations, educational differences
by race or ethnicity, and family composition discrepancies. To correct such variations
between the sample and population distributions, accurate population estimates from
the 1996 Current Population Survey (CPS) were used for weighting controls. See Becker
(1998) for details.

In Step 1, sample cases were weighted at the family level by the inverse probability of
their selection so as to adjust for selection bias due to family and household size. Step 1
weights were calculated as the squared root of the number of adults or children in the
household divided by the number of adults or children in the family, capped at 4. Squared
roots were used because inverse-probability weights for household size tend to overcorrect
in telephone surveys (Gelman and Little 1998).
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In Step 2, cases with multiple telephone lines were weighted downward by the inverse
of the number of telephone lines to correct for their higher probabilities of telephone selec-
tion. Conversely, cases with interrupted telephone service were weighted upward in direct
proportion to the number of months during which they had no telephone service. This
adjusted for their lower probability of telephone availability.

In Step 3, weights were constructed relative to the city population to adjust for differences
in selection probability resulting from variations in child caregiver status. The sample was
stratified according to child caregiver status and weighted totals for families with and
without children were calculated. Two ratios were obtained by comparing the CPS New
York City totals for families with and without children to their corresponding NYCSIS
weighted totals. From these ratios, all family cases were weighted upward in accordance
with 1996 CPS New York City child caregiver population proportions.

In constructing Step 4 weights, our sample was stratified both by highest educational
attainment per family and by the racial or ethnic identity of the families’ survey respon-
dents. NYCSIS weighted proportions for educational attainment by racial or ethnic repre-
sentation were produced. Sixteen ratios were calculated by comparing 1996 CPS New
York City education by race or ethnicity proportions to our weighted N'YCSIS proportions.
From these ratio weights, our sample strata were adjusted for deviations in educational
attainment and racial or ethnic composition relative to the underlying New York City
population.

Step 5 involved the building of family composition weights, and our sample was
stratified into categories based on family organization. Parallel to the method in Step 4,
NYCSIS weighted proportions for family composition were obtained. Six ratios were
computed by setting corresponding 1996 CPS New York City family composition propor-
tions over the weighted NYCSIS proportions. With these ratio weights, our sample strata
were accurately stabilized for differences in family composition relative to the general
New York City population.

Steps 6, 7, and 8 of the weighting procedure involved iterations back to weight Steps 3,
4, and 5. Weights adjusting for selection probability due to child caregiver status, weights
adjusting for differences in educational attainment by race or ethnicity, and weights
adjusting for family composition by poverty status, all converged after two iterations.

In Step 9, final weights for all NYCSIS sample families were calculated as the products
of the appropriate individual weights produced by Steps 1 through 8. Lastly, with Step 10,
a weight was created to adjust the NYCSIS data to the aggregate population total for
New York City from the 1996 CPS. The weights converged well with two iterations:
for example, in Step 8, all of the weight updating factors are between 0.99 and 1.02.

The final weighting corrections are shown in Tables 1-4. Table 1 shows that most
Social Indicators Survey respondents live in one-family households, have one telephone
line, and have complete telephone service. These cases are simply weighted with a value
of 1 in the first two steps. Table 2 shows that weights are largest for families without
children. These weights are comparatively large because the representation of these strata
in the sample of 2,224 cases is small. Table 3 shows that the minority respondents tend to
have higher educations than the general minority population and are weighted down
significantly. The SIS sample did not cover enough minorities and whites with low
educations, thus the weights for these cases are comparatively high. The weights in
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Table 1. Inverse-probability weights (with frequencies in the sample in
parentheses) adjusting for differences in selection associated with telephone
use at the household level

Description Weight (frequency)
4+ lines, complete service 0.25 (27)

3 lines, complete service 0.33 (81)

2 lines, complete service 0.50 (271)

1 line, complete service 1.00 (1,765)

1 line, <1 month intermittent service 1.09 (34)

1 line, 1-3 months intermittent service 1.20 (31)

1 line, 4—6 months intermittent service 1.71 (7)

1 line, 7+ months intermittent service 4.00 (8)

Table 2. Final weight factors for four different strata with frequencies in the
sample in parentheses

With children Without children

NYC families 1.00 (1,176) 6.75 (306)
Non-NYC metro families 3.14 (584) 10.36 (158)

Table 3. Final weight factors stratified by ethnicity and educational attainment with
[frequencies in the sample in parentheses. There were 45 unidentified people not included
in this table; they were given weight factors of 1 for these variables

16 years 13-15 years 12 years 1-11 years
White 0.87 (521) 0.75 (241) 2.10 (185) 6.16 (27)
Black 0.48 (137) 0.55 (184) 1.05 (171) 1.77 (68)
Hispanic 0.31 (116) 0.36 (167) 0.93 (126) 2.89 (82)
Asian 0.48 (95) 0.56 (30) 1.98 (22) 14.31 (7)

Table 4. Final weight factors for different family compositions with fre-
quencies in the sample in parentheses. There were 13 people who don’t know
or refuse to answer; they were given weight factors of 1 for these variables

With children Without children

Coupled families 0.87 (1,224) 1.07 (174)
Female householder 1.05 (471) 1.20 (164)
Male householder 1.40 (55) 0.78 (123)

Table 5. Estimated populations (in proportion) of different family types among New York City families. Here
since we used this information in the poststratification, the estimated variances are essentially zero

Family type SIS unweighted % SIS weighted % *s.e. CPS %
Coupled families, children 49.7 16.5£0.014 16.5
Coupled families, no children 6.9 18.8 £ 0.016 19.0
Female householder, children 26.3 14.4 +0.012 14.5
Female householder, no children 7.5 29.8 = 0.025 29.9
Male householder, children 2.9 1.7 £0.001 1.7
Male householder, no children 6.1 18.3 +0.016 18.4

Don’t know, refuse 0.6 0.5 £0.001 0




144 Journal of Official Statistics

Table 6. Proportions of different household tenures among New York City families. Design-based standard
errors (computed using our method developed in Sections 3.1 and 3.2) can be compared with standard error esti-
mates under two simplifying approximations and the jackknife estimate. Design effects would be computed as the
ratio of the design-based and SRS variances and are in the range 1.3%10 1.8 for this example

Household tenure Estimates (%) Standard error ests (%)
SIS SIS CPS Design- Assuming Assuming Jackknife
raw weighted based SRS inv-prob
Owner 30.0 24.8 269 1.5 1.1 22 1.7
Renter 65.3 68.1 72.0 1.8 1.2 24 1.9
Staying there/rent free/other 4.7 7.1 1.1 1.2 0.7 1.4 1.3

Table 7.  Proportion of people born in the United States and other countries of New York City families. Design-
based standard errors (computed using our method developed in Sections 3.1 and 3.2) can be compared with
standard error estimates under two simplifying approximations and the jackknife estimate. Design effects,
compared to simple random sampling, are 1.5% for this example

Place of birth  Estimates (%) Standard error ests (%)
SIS SIS CPS Design- Assuming Assuming Jackknife
raw  weighted based SRS inv-prob
United States 56.4 61.2 60.0 1.9 1.3 24 1.9
Other country 43.6  38.8 400 1.9 1.3 24 1.9

Table 8. Adult rates New York City as a place to live . . . New York City families only. Design-based standard
errors (computed using our method developed in Sections 3.1 and 3.2) can be compared with standard error
estimates under two simplifying approximations and the jackknife estimate. Design effects, compared to simple
random sampling, are in the range 1.5% to 1.7° for this example

Rating of NYC  Estimates (%) Standard error ests (%)
SIS SIS Design-  Assuming  Assuming  Jackknife
raw weighted  based SRS inv-prob
Very good 158 164 1.5 1.0 1.7 1.5
Pretty good 39.5 443 2.1 1.3 2.5 2.2
Only fair 37.1 3038 1.9 1.2 2.0 2.0
Poor 7.6 8.5 1.1 0.7 1.3 1.1

Table 9. Adult thinks that in the last few years New York has . . . New York City families only. Design-based
standard errors (computed using our method developed in Sections 3.1 and 3.2) can be compared with standard
error estimates under two simplifying approximations and the jackknife estimate. Design effects, compared to
simple random sampling, are in the range 1.5° to 1.7% for this example

Opinion of NYC Estimates (%) Standard error ests (%)
SIS SIS Design- Assuming Assuming Jackknife
raw  weighted based SRS inv-prob
Become a better place 32.8 35.8 2.1 1.2 25 2.1
Remained the same 29.7 29.2 1.9 1.2 2.2 1.9

Gotten worse 37.5 35.0 1.9 1.2 2.4 2.0
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Table 10. Adult rates police protection . . . New York City families only. Design-based standard errors
(computed using our method developed in Sections 3.1 and 3.2) can be compared with standard error estimates
under two simplifying approximations and the jackknife estimate. Design effects, compared to simple random
sampling, are in the range 1.5° to 1.7 for this example

Rating of police  Estimates (%) Standard error ests (%)
SIS SIS Design-  Assuming  Assuming Jackknife
raw weighted  based SRS inv-prob

Very good 219 232 1.9 1.1 2.1 1.9

Pretty good 35.0 395 2.1 1.3 2.5 2.1

Only fair 31.6 248 1.7 1.1 2.0 1.7

Poor 11,5 125 1.4 0.9 2.0 1.4
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Fig. 1. (a) Weights for New York City families with children. (b) Weights for non-New York City metro families
with children. (c) Weights for New York City families without children. (d) Weights for non-New York City metro
families without children

Table 4 show that the SIS oversampled single male householders without children and
couples households with children, while sampling too few single female householders
without children and single male householders with children. A brief summary of the
weights appears in Table 4.

From the histograms of the final weights (Figure 1), we observe that the weights for the
two strata of New York City families with children and non-New York City families with
children are balanced primarily around 1; however, a few outlying larger weights remain in
each stratum. With the final weights for the two strata of New York City families without
children and non-New York City families without children, the histograms show that these
weights are spread in larger distributions, with the majority of the cases balanced around 5
and 10, respectively. A few heavy outlying final weights exist for each of these strata.

4.3.  Examples of weighted means and variance estimates

Given these weights, we can compute weighted estimates, and by applying methods we
described in Section 3 we can find the variances of these estimates. Some examples of
results are shown in Tables 5—10, with comparison with CPS estimates. In these calcula-
tions, ‘‘don’t know’’ responses and refusals are not included in the weighted estimates.
We know that applying poststratification weights can decrease the bias of the total
survey error, and at the same time this can increase the variance due to an increase in
the variance of the respondent weights (Kish 1965). Therefore for estimators not based
on poststratification strata, we calculate the design effects, the inflation factor to the
variance of the estimators assuming simple random sampling. Tables 6—10 show that
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the design effect is around 1.7° for New York City families for various estimands of
interest. That is, the approximation based on simple random sampling drastically under-
estimates the variances (see Canty and Davison 1999, for a similar point). (We write
design effects as d 2, so that d represents the factor by which confidence intervals must
be widened.)

Conversely, the approximate variance estimates based on the assumption of inverse-
probability sampling are all much too high in these examples. Jackknife variance
estimates are also included in Tables 6—10. They are very close to estimates using
Decomposition (6).

4.4. A simulation study

We conducted a simulation study based on the NYCSIS data. For each cell, we calculate
the mean response to a single question (for example, household tenure) as the “‘truth.”’
Then we simulate 1,000 fake data sets: simulating 7 from the multinomial distribution,
then simulating responses y within each cell using the binomial distribution, given the
“‘true’” probabilities. For each simulation, we compute the survey weights and the
weighted estimate, which we call 95im. For each simulation, compute the five different
standard error estimates: assuming simple random sampling; assuming inverse-probability
weighting; assuming simple poststratification weighting; using our design-based method;
and using the jackknife. Then we put all the simulations together: we compute the standard

Table 11. From simulation study: true standard error and five different standard error estimates (in
percentages) for the proportions of different household tenures among New York City families

Household tenure True Assuming Assuming Assuming Design- Jackknife
sd SRS inv-prob post-strat  based

Owner 1.9 1.1 2.1 1.5 1.8 1.8

Renter 2.0 1.2 23 1.7 1.9 1.9

Staying there/rent free/other 1.2 0.7 1.3 1.0 1.2 1.1

Table 12. From simulation study: true standard error and five different standard error estimates (in
percentages) for the proportion of people born in United States and other countries of New York City families

Place of birth True  Assuming  Assuming Assuming Design-  Jackknife

sd SRS inv-prob post-strat based
United States 2.0 1.3 2.5 1.7 1.9 1.9
Other country 2.0 1.3 25 1.7 1.9 1.9

Table 13. From simulation study: true standard error and five different standard error estimates (in
percentages) for the proportion of adults who rate New York City as a place to live . . . .

Rating of NYC True  Assuming Assuming Assuming Design-  Jackknife

sd SRS inv-prob post-strat  based
Very good 1.6 1.0 1.7 1.4 1.6 1.6
Pretty good 2.5 1.3 2.6 1.9 2.2 2.2
Only fair 2.0 1.2 2.2 1.7 1.9 1.9

Poor 1.1 0.7 1.2 0.9 1.1 1.1
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Table 14. From simulation study: true standard error and five different standard error estimates (in percen-
tages) for the proportion of adults who think that in the last few years New York has . . . New York City families
only

Opinion of NYC True Assuming Assuming Assuming Design- Jackknife
sd SRS inv-prob  post-strat  based

Become a better place 2.2 1.2 25 1.9 2.1 2.1

Remained the same 2.0 1.2 23 1.6 1.9 1.9

Gotten worse 2.0 1.2 24 1.7 2.0 2.0

Table 15. From simulation study: true standard error and five different standard error estimates (in
percentages) for the proportion of adults who rate police protection . . .

Rating of police True  Assuming Assuming Assuming Design- Jackknife

sd SRS inv-prob post-strat  based
Very good 2.1 1.1 2.2 1.7 1.9 1.9
Pretty good 2.2 1.3 2.4 1.9 2.1 2.1
Only fair 1.9 1.1 2.1 1.6 1.8 1.7
Poor 1.5 0.9 1.9 1.2 1.4 1.4

deviations of the 1,000 9sim’s: this is the ‘‘true’’ standard error. We compare the true
standard error to the average standard error estimates obtained in the five different
ways. The results are shown in Tables 11-15.

5. Other Estimators: Ratios and Regression Coefficients

So far we have focused on estimating the population mean or subgroup means. In general,
however, one may be interested in more complex estimands, most notably ratios and
regression estimates (see e.g., Cochran 1977).

5.1. Ratios

Ratios arise in various ways, perhaps the most common being means of subgroups with
unknown population proportions. For example, suppose we are interested in 6, the average
income of whites. If we let Y; be the income response and U, be the indicator with U; = 1 if
the respondent is white and 0 otherwise, then

g iz UtV a2

iU U

where V; = Y;U;. The bias correction and standard error of a ratio estimate can be
estimated using Taylor expansion (see Lohr 1999). As a particular example, the
inverse-probability weighting estimator can be viewed as a ratio estimator.

In general, the ratio (12) can be estimated in a weighted analysis by

n
- Doim i Will;y;
- n
doim 1wl
where y;, u; are observed values, and w; is the unit weight for case i. We define v; as
u;y;, and o, = > j_ w;v;, il,, = > i w;u;. The variance of this estimate can be

_ (13)
MW
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Table 16. Estimates and standard errors for the percentage of New York City adults of different ethnic groups
who rate police protection. . . . The design effects compared to simple random sampling are in parentheses

Adult thinks  White = s.e. (d.eff) Black *s.e. (d.eff) Hispanic *s.e. (d.eff) Other * s.e. (d.eff)

Very good 29.2 +3.4 (1.6%) 122 +£2.0 (1.4%) 18.9 +3.6 (1.9%) 38.1 5.3 (1.29)
Pretty good ~ 45.7 +3.6 (1.6%) 321+38(1.8%) 40347 (.0% 28844 (1.2%)
Only fair 14.1 £2.2 (1.4 35736 (1.79) 323 +4.4(1.9%) 26.9 +5.0 (1.2%)
Poor 11.0+23 (1.6%) 20.0 =29 (1.6%) 8.5+3.6 (2.7%) 62+26(1.2%
Total 100 100 100 100

approximated by
A A 1
var(f) = E(6 — 0)* = o E(3, — 0i,)*

1
~ — var(v,, — 0i,)

= _Lz var(z,,)
w
where z; = u;y; — Ou; and z,, = Sioiwizi =9, — fi1,,. Now we can use the method
described in Section 3 to find var(z,,) and hence the variance of the ratio estimator.

We illustrate using the survey described in Section 4. Suppose that in estimating the
adult opinions of police protection (see Table 10), we are interested in the different
opinions of different ethnicities. As explained in the last paragraph, this is a ratio estimate,
and its variance can be estimated as explained. The result is shown in Table 16.

5.2.  Regression estimates

Regression estimates commonly arise in analytical studies of sample survey responses that
attempt to understand what variables are predictive of an outcome of interest Y. Suppose
that we are interested in finding a relation between Y; and a p-dimensional vector of expla-

natory variables X;, where X; = (X;1,... ,X,-p)’. We want to estimate the p-dimensional
vector of population parameters, 8 = (3}, ..., f3,), in the linear model ¥ = BX. Now given
the sample y, = (y,...,¥,) and x = (x,...,x,), the regression coefficient can be

estimated by
B = (xWx") ' xWy (14)
where W is a diagonal matrix of the unit weights w;. Let
2 = xi(y; — Bx)
Then, using linearization (see Shah et al. 1977),
var(B) = (xWx")~" var (Z w,-z,-> Wx)™! (15)
i=1

where var( S iwiz i) can be estimated using the method described in Section 3, and so
can var(f3).
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6. Discussion

In practice, classical weighting methods such as inverse-probability and iterative propor-
tional fitting of poststratification weighting are extensively used. We showed in this article
how sampling variances of the resulting weighted estimators can be found in a rather
straightforward way, even with large numbers of poststrata as in the NYCSIS example
in Section 4. For this application, we recommend that the users compute standard errors
assuming simple random sampling and then multiply by 1.7 to correct for design and
weighting.

We hope these methods will allow researchers to better account for the design of
weighting schemes in survey inferences. By comparison, simpler estimates of standard
errors based on standard inverse-probability or poststratification formulas can be far off
(see for example Tables 6—10, where our design-based estimates are compared to these
approximations).

But there are difficulties with classical weighted estimates. As (3) indicates, if the unit
weights are too variable, then 6 will itself have an unacceptably large variance, and this
will occur if the n;’s are small. This is thus a tension between two extremes: (a) keeping
the number of weighting cells small, so that the individual n;’s will be reasonably large and
the weighted estimate not too variable; and (b) increasing the number of cells, which
makes more plausible the implicit assumption of equal-probability sampling within cells
but leads to more variable estimates. A commonly-used compromise is to keep a large
number of weighting cells but to ‘‘smooth the weights’’: that is, to set the unit weights
so that they are less variable than would arise from simply setting w; ~ N;;)/nj;). In
practice, this means that the units from cells with small sample sizes do not get
such large weights as they would receive under the unbiased estimate. Raking and
IPF can be thought of as sophisticated methods for smoothing weights (Elliott and
Little 1999). In settings where cell sizes are small, estimated variances within cells
can be unstable as well.

An extreme version of the instability problem occurs with nonstructural zero cells: that
is, cells for which n ;=0 but N; > 0. This can obviously happen; for example, if J/ = 3,200
in the second paragraph of Section 2.2 and n is 1,500, say, which is typical in national
polls, then by necessity most of the cells will be empty. In this case the classical solution
is to pool weighting cells, or to adjust for partial information (as with raking). The choice
of which cells to pool or which margins to rake over is somewhat arbitrary and contradicts
the goal of including in the analysis all variables that affect the probability of inclusion,
which is a basic principle in classical sampling inference.

Further work is needed to define ways which will overcome these difficulties while
incorporating the information used in classical weighting adjustments that are currently
used in practice.
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