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Masking methods for the safe dissemination of microdata consist of distorting the original
data while preserving a predefined set of statistical properties in the microdata. For continuous
variables, available methodologies rely essentially on matrix masking and in particular on
adding noise to the original values, using more or less refined procedures depending on the
extent of information that one seeks to preserve. Almost all of these methods make use of the
critical assumption that the original datasets follow a normal distribution and/or that the noise
has such a distribution. This assumption is, however, restrictive in the sense that few variables
follow empirically a Gaussian pattern: the distribution of household income, for example, is
positively skewed, and this skewness is an essential amount of information that has to be
considered and preserved. This article addresses these issues by presenting a simple
multiplicative masking method that preserves skewness of the original data while offering
a sufficient level of disclosure risk control. Numerical examples are provided, leading to the
suggestion that this method could be well-suited for the dissemination of a broad range of
microdata, including those based on administrative and business records.

Key words: Disclosure; microdata perturbation; sufficient statistics; skewness; log normal
distribution.

1. Introduction

Microdata are individual records coming from surveys or administrative registers. Due to

their nature and the incredible amount of details that they contain, they generally meet

high quality standards. However, this wealth of information is often untapped due to the

legal obligations that National Statistical Offices (NSOs) and other governmental

institutions face to protect the confidentiality of their respondents, and conservative

behaviours that seek to keep the risk of confidentiality breach as low as possible. Such

requirements shape the dissemination policy of microdata at national and international

levels. The question then is how to ensure a sufficient level of data protection to meet data

producer’s concerns in terms of legal and ethical requirements while offering to users a

reasonable richness of information. To resolve this tension, several solutions are available.

These include providing access to microdata through a controlled environment such as

data centres, safe remote access, providing interval data or tabulations rather than data
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points, or modifying the individual records before public release by using statistical

disclosure control techniques.

Statistical Disclosure Control (SDC) consists of the set of numerical tools that enhances

the level of confidentiality of any given micro-record while preserving to a lesser or

greater extent its level of information (see Hundepool et al. 2010 for an authoritative

survey). The increasing number of available techniques makes this field of statistics a

potential candidate to support the growing demand for micro-records (OECD 2010).

While standards are still missing for the use of SDC in an integrated and coherent

framework both at the national and international levels, some techniques are worth looking

at due to their tractability and their performance regarding the trade-off between

confidentiality and information. Among them, data perturbation has gained considerable

attention in the literature.

Data perturbation involves distortions of the original datasets such that unique

combinations of original values disappear and new ones are created. This perturbation is

made to preserve statistical confidentiality. At the same time, statistical properties (more

specifically a selected subset of them) of the original data are preserved, or do not differ

significantly. The selection of suitable perturbation methods requires choosing those that

will maximize statistical information while minimizing disclosure risk. No dominant

method exists, in the sense that the type of statistical information preserved differs among

the different techniques available and for different associated levels of disclosure risk.

The general approach to data perturbation consists of the matching of the original data

with random noise terms in a nonreversible way, i.e., the data user cannot recover the

original values from the perturbed ones. This can be performed in various ways, from a

simple additive structure to nonlinear transformations, applicable to both categorical and

numerical variables. However, most of the perturbation techniques focus on continuous

variables and so will the methodology presented in this article.

In practice, popular perturbation techniques (Brand 2002; Burridge 2003; Muralidhar

and Sarathy 2005) use an additive structure for noise application, where error terms

are randomly drawn from a normal distribution, the latter being data-dependently

parameterized in such a way that the resulting distributions of the perturbed values have

the same first and second order moments as those in the original data. As information on

these two moments is sufficient to fully identify a normal distribution, this implies that if

the original values follow themselves a normal law then the original and the perturbed

values will have exactly the same distribution. The loss of statistical information is thus

low, in the sense that only the values of the data points of the underlying distribution are

altered but not their overall shape. Such a high degree of preservation is made possible by

the use of the Gaussian framework. Apart from its peculiar properties, the choice of

additive noise methods is motivated by the fact that normality underlies many statistical

and econometric tools, extending thus the usefulness of, and audience for, these techniques.

Additive noise methods have, nonetheless, some drawbacks. The most obvious and

crucial is the amount of information that is lost when the original data do not follow a

normal law. In this case, analyses performed on perturbed data could produce quite

different results from those performed on the original set. In particular, the Gaussian

framework implies a strong assumption of symmetry in the original distribution. Clearly

for numerous economic variables, this assumption is too strong to be tenable.
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In fact, microdata often exhibit positively skewed distributions, as in the case of

household income and wealth. In particular, lognormal distributions appear to display a

reasonable approximation for a large range of economic variables (Kleber and Kotz 2003;

Lydall 1966). As such, Gaussian perturbation methods would be of limited utility when

applied to such distributions for at least two reasons:

. The first one is that the sum of skewed and nonskewed distributions provides an

identifiable distribution only in very rare cases (Gao et al. 2009; Krishnamoorthy

2006). Thus perturbed datasets will, in most cases, follow unknown and

unidentifiable distributions.

. The second reason is linked to protection of confidentiality. As the presence of

observations far from the mean leads to a skewed distribution, it follows that adding

noise drawn from a normal distribution to those observations will only weakly

perturb them. As an example, very large firms in business surveys will be resubmitted

to high disclosure risk after perturbation.

At this stage, one can ask why we should care about departing from the Gaussian

framework. Is the assumption of normality not providing a good enough approximation for

the distribution of most economic (and social) variables? The fact is that observations

away from the mean in surveys and, more importantly, in administrative records –

whether household, individual or firm based – provide crucial statistical information that

could contribute greatly to analysis performed on the data. Some recent studies relying on

a growing stream of research on income inequality (such as Piketty and Saez 2003;

Atkinson et al. 2010) have pointed out the fact that in most developed countries top

incomes contribute disproportionately to the overall level of income inequality in a

country. As a result, skewness matters, and perturbation methodologies preserving it are of

central interest for statistical disclosure control, despite its relative lack of treatment in the

literature (see in particular Muralidhar et al. 1995 for an attempt).

This article presents a new multiplicative masking method that preserves positive

skewness of the original data based on the lognormal distributions. This method allows

users to generate perturbed data that are similar to the original data to a degree that is

selected by the user. The methodology preserves confidentiality constraints in particular

for observations away from the mean, by changing their ranks in the sample during the

perturbation process. The methodology will be presented in the next section, after having

first described the features of a general additive Gaussian method based on Muralidhar and

Sarathy 2008. The third section proposes numerical validation. The last section concludes.

2. Methodology

Described in this section is the proposed methodology for preservation of asymmetric

distributions based on the identification of sufficiency conditions for lognormal

distributions. To fully appraise the departure from additive Gaussian methods, we first

describe the latter using the recent methodology of Muralidhar and Sarathy (2008),

showing how it is possible to generate perturbed data that preserves the distribution of the

original dataset but where data points have a selectable degree of similarity.
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2.1. The Muralidhar-Sarathy Hybrid Generator

This methodology inoculates noise to a confidential variable in a very general way and as

such encompasses the classical additive noise model where no parametric assumption is

made as to the type of noise used (Brand 2002) and the Burridge’s data perturbation model

as a particular case (Burridge 2003).

Let us assume that X is a confidential variable that we want to perturb, and that S is a

nonconfidential or a key variable with a low level of identification risk. (Confidential

variables are variables containing sensitive information that has to be protected from

disclosure risk, as opposed to nonconfidential variables where their disclosure does not

raise any confidentiality issue.) Without loss of generality, it is assumed that the means of

X and S are equal to zero. Let s2
XX , s

2
SS and s2

SX be, respectively, the variance of X, S and

the covariance between X and S. We will denote by Y the perturbed value of X generated

by the following equation (where yi; xi; si ;i ¼ 1; : : : ; n are the values of Y, X and S

variables for the ith respondent in the dataset):

yi ¼ ð12 aÞ
1

n

Xn
i¼1

xi 2 b
1

n

Xn
i¼1

si

" #
þ axi þ bsi þ ui ;i ¼ 1; : : : ; n

a and b are coefficients and ui is a random term generated from a normal distribution

Nð0;s2
uuÞ, satisfying

1

n

Xn
i¼1

xiui ¼
1

n

Xn
i¼1

siui ¼ 0 ðxi and si are orthogonal to uiÞ

This equation shows that a is a similarity parameter between Y and X. When a ¼ 0, X

and Y are completely dissimilar. For a ¼ 1, Y equals X and no perturbation is added.

Thus, the choice of a allows the user (e.g., NSOs in the case of records from official

sources) to control for the degree of similarity between the original and the perturbed

variable that will be disseminated.

The conversion of X into Y through the preceding equation adds “noise” to the original

X variable. In fact, it is easy to verify that

Eð yiÞ ¼
1

n

Xn
i¼1

xi

and thus that X and Y will have the same expectation: the first moment of X’s distribution

is then preserved. To preserve the second moment, the following condition must be

satisfied:

s2
XX ¼ s2

YY ¼ E½ðaxi þ bsi þ uiÞðaxi þ bsi þ uiÞ� ¼ a2s2
XX þ bs2

SS þ s2
uu þ 2abs2

SX

Finally, in order to preserve the covariance between the confidential and

nonconfidential variables, the following equation must also hold:

s2
SX ¼ s2

SY ¼ as2
SX þ bs2

SS as
1

n

Xn
i¼1

siui ¼ 0

 !
, b ¼ ð12 aÞ

s2
SX

s2
SS
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Combining the two preceding equations, we obtain the following restriction for s2
uu:

s2
uu ¼ ð12 a2Þ s2

XX 2
s2
SX

� �
s2
SS

2
" #

The term

s2
XX 2

s2
SX

� �
s2
SS

2
" #

is always larger than or equal to zero. Thus the necessary and sufficient condition for

s2
uu . 0 is that 21 # a # 1. As a negative a induces a negative correlation between the

original and the perturbed value, this case is ignored in the following, i.e., we will focus

only on 0 # a # 1 to fulfill the above restrictions.

When a is set to 1, X ¼ Y and no perturbation is added; when a ¼ 0, Y is not a

function of the (confidential) value X but only of the nonconfidential variable S and of an

error term. The intermediary cases where 0 , a , 1 create therefore a hybrid dataset, as

the released variable is a combination of its original value, of the nonconfidential variable

S and of a noise term. Through this method, users can choose to which extent they want

to protect their initial release. This procedure is perfectly secure in the sense that no

reverse engineering is possible as the hybridation is performed using a random draw for ui.

A direct consequence of this algorithm is that users can choose to communicate

transparently their chosen degree of “dissimilarity”: in other words, knowledge of a

provides access to the value of s2
uu but not to the ui values themselves (although

maintaining the confidentiality of a does provide an additional security gate).

While it can be argued that this method implies significant information loss, in fact

statistical information is preserved to a greater extent than with other approaches (such as

those described by Fuller 1993). In particular, the Muralidhar-Sarathy method preserves

the first two moments of the X’s distribution, these moments being the necessary and

sufficient conditions for the identification of a normal distribution; it follows that if the

distribution of X is normal, then Y will have exactly the same distribution as the original,

undisclosed variable. Moreover, by using a nonconfidential variable in the perturbation

process, this method allows preserving the covariance between the confidential variable X

and the nonconfidential variable S.

As appealing as this framework appears, it relies nonetheless on the pivotal normality

assumption. Normality underlies many statistical analyses commonly used (such as

regression and hypothesis testing), and assures that analysis based on the masked data will

lead to the same results that one would have obtained with the original data – but with the

advantage that the secure environment avoids disclosure risks. But this approach could be

problematic for other uses. First, if a user, rather than being interested in performing

econometrics and inference, chooses instead to focus on the intrinsic features of the

distribution and wants to perform analysis on subdomains, then this methodology while

ensuring the preservation of parameters at a general level, does not guarantee it at some

finer level of disaggregation. In this case, a recent improvement for hybridation render it
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possible to preserve some properties for some selectable level of disaggregation

(Domingo-Ferrer and Gonzalez-Nicolas 2010).

Second, this approach could potentially bias the computation of some measures of

dispersion as in order to properly perform this task, additional features of the original

distribution are required, in particular skewness which conveys substantial and relevant

information on the dispersion of a given distribution. This last consideration leads to a new

multiplicative method presented hereafter.

2.2. A Sufficient Multiplicative Masking Method for Lognormal Distributions

Using the same notation as before, we let X follow a lognormal distribution with

parameters mX . 0 and s2
XX

X 7! LN mX;s
2
XX

� �
where, by the definition of a lognormal distribution,

mX ¼
1

n

Xn
i¼1

ln xi and s2
XX ¼

1

n

Xn
i¼1

ð ln xi 2 mXÞ
2

The first and second order moments of X are thus respectively

EðXÞ ¼ exp mX þ
s2
XX

2

� �

andVðXÞ ¼ exp s2
XX

� �
2 1

� �
exp 2mX þ s2

XX

� �
The same assumptions apply for the perturbation U, assumed to be independent of X

and with parameters

mU ¼
1

n

Xn
i¼1

ln ui . 0 and s2
UU ¼

1

n

Xn
i¼1

ð ln ui 2 muÞ
2

U 7! LN mU ;s
2
UU

� �

withEðUÞ ¼ exp mU þ
s2
UU

2

� �
andVðUÞ ¼ exp s2

UU

� �
2 1

� �
exp 2mU þ s2

UU

� �

The perturbed value of X, Y is generated through the following equation, a homothetic

Cobb-Douglas function:

Y ¼ X aU 12a with 0 # a # 1

As for the Muralidhar-Sarathy hybrid generator, a is also a similarity parameter: when a

is set to 1, X ¼ Y and no perturbation is generated; when a ¼ 0, Y is not a function of the

confidential value X but only of the lognormal noise. The intermediary cases 0 , a , 1

create convex combinations of confidential values and noise.
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By the properties of a lognormal distribution (Krishnamoorthy 2006), the a power

distribution of X also follows a lognormal law

X a 7! LN amX;a
2s2

XX

� �
and the same applies for the 1 2 a power of U

U 12a 7! LN ð12 aÞmU; ð12 aÞ2s2
UU

� �
By independence of U and X, Y has thus the following distribution

Y 7! LN amX þ ð12 aÞmU ;a
2s2

XX þ ð12 aÞ2s2
UU

� �
with the associated two first moments being:

EðYÞ ¼ exp amX þ ð12 aÞmU þ
a2s2

XX þ ð12 aÞ2s2
UU

2

� �
and

VðYÞ ¼ exp a2s2
XX þ ð12 aÞ2s2

UU

� �
2 1

� �
£ exp 2 amX þ ð12 aÞmU

� �
þ a2s2

XX þ ð12 aÞ2s2
UU

� �
We can now derive the necessary and sufficient conditions that will ensure that Y has

the same distribution as X. Unlike the additive framework, we cannot proceed by

preserving the first two moments of Y. More generally any set of k-order moments with

k $ 1 is not isomorphic to any set of lognormal laws: we can in fact always find other

laws (lognormal or not) that have the same moments. To achieve sufficiency we have to

consider the logarithmic transformation of Y

ln Y 7! N amX þ ð12 aÞmU ;a
2s2

XX þ ð12 aÞ2s2
UU

� �
Being now in a Gaussian case, we can derive conditions for the first two moments

amX þ ð12 aÞmU ¼ mX , mX ¼ mU

a2s2
XX þ ð12 aÞ2s2

UU ¼ s2
XX , s2

UU ¼
12 a2

ð12 aÞ2
s2
XX

As s2
UU . 0, we also have 1 2 a 2 $ 0 and thus 0 # a # 1, confirming a as a well-

defined similarity parameter. Using the sufficiency conditions at the logarithmic level

and exponentiating ln Y , we find that U must have the following lognormal distribution:

U 7! LN mX;
12 a2

ð12 aÞ2
s2
XX

� �

As exponentiation establishes a one to one correspondence (i.e., it is a bijective

mapping), the sufficiency conditions at the logarithmic scale ensure sufficiency at the

original variable scale. Thus this perturbation method preserves the features of the original

distribution including its skewness, but allows the similarity of data points to be selected.

This methodology constitutes a natural extension of several previous multiplicative

noise protocols that aims to preserve the skewness of micro-records, at least approximately
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(see, for example Höhne 2004; Kim and Winkler 2001; Oganian and Karr 2011) or

asymptotically (see Sarathy et al. 2002 for a copula-based approach). The present

methodology preserves exactly the property of the underlying data at finite distance and

asymptotically but to the condition of log-normality. It is thus strongly rooted to a

parametric assumption while the other methodologies are more flexible, at the cost of

some approximations at least at finite distance. In that sense, our methodology is probably

best suited for small samples.

In terms of generalization of the outlined approach, this multiplicative method has been

derived in the case of a univariate confidential variable. Its multivariate counterpart (such

as is to be found in Muralidhar and Sarathy 2008 for the hybrid generator) is a natural

extension to consider. But this generalization to any finite set of confidential variables

suffers potentially from several pitfalls, a major one being that working with multivariate

log-normal distribution is computationally cumbersome as numeric problems are likely to

occur (see Mostafa and Mahmoud 1964 for the bivariate case). Moreover, the availability

of more than one skewed confidential variable is highly unlikely in a large variety of

micro-records (for example, income and wealth are rarely measured together in a single
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Fig. 1. Density of original data

0.25

0.2

0.15

0.1

0.05

0
0 200 400 600 800 1000 1200 1400 1600

Fig. 2. Density of perturbed data with a ¼ 0.9

Journal of Official Statistics114



survey). These two factors lead us to think that, regarding the simplicity and easy

implementation of the univariate case and the potential lack of application for the

multivariate one, there are no clear advantages that could arise from such an extension.

In term of disclosure risk, and as shown in the following section, this method is also

confidentiality efficient in the sense that the risk remains relatively low, in particular for

observations far from the mean.

3. Numerical Validation

Methods for statistical disclosure control cannot be fully appraised without experimental

validation (programs and the dataset are available from the author upon request). We

simulated a vector consisting of one thousand data points drawn from a lognormal

distribution with parameters 4 and 2, i.e., a deliberately highly skewed distribution.

Figure 1 shows the density of the original distribution.

When a ¼ 0.9, the distribution of the perturbed data matches exactly that of the original

data: as one can see in Figure 2, the density of the former is strictly identical to the latter.
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Fig. 3. Differences between original and perturbed data for a ¼ 0.999

1400

900

400

–100
0 100 200 300 400 500 600 700 800 900

–600

–1100

–1600

Fig. 4. Differences between original and perturbed data for a ¼ 0.95
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As derived in the previous section, perturbed distributions will remain the same as the

original ones for 0 # a # 1. Thus, the multiplicative masking method preserves the initial

data structure. Nonetheless, data points are altered in an interesting way, in particular for

confidentiality purposes. Figure 3 depicts the changes that occur in the absolute values for

each point (ranked in ascending order on the x-axis according to their original values).

One immediately sees that, for a small value of the dissimilarity parameter, most of the

data points that are close to the mean are very close to the original values while, due to the

multiplicative structure used, values that are far away from the population mean are

substantially altered. And as these high values are those where disclosure risk is higher,

this pattern of perturbation is the one most appropriate. For lower values of a, and thus

greater dissimilarity, perturbations start to spread along the distribution, from the upper to

the lower tail as can be seen in Figures 4, 5 and 6.

As perturbations can both reduce and increase values of different data points, the

ranking of data points is likely to be changed during the process, thus increasing data

protection against disclosure risk (in particular observations away from the mean could

now become close to it and conversely). As shown in Figures 7 and 8, the more

dissimilarity is introduced, the more changes occur in the data ranking.
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Fig. 5. Differences between original and perturbed data for a ¼ 0.9
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Fig. 6. Differences between original and perturbed data for a ¼ 0.7
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Rank changes reinforce the fact that the greater the dissimilarity the lower the disclosure

risk for the disseminated microdata perturbed by this method. Data points that are further

away from the sample mean can be more easily identified due to two distinct problems: the

classical issue of protection of the value recorded, plus a distance effect, i.e., while

perturbed, an observation away from the mean could again face high disclosure risk by still

remaining far from it. Changes in ranks circumvent this additional problem. This

mechanism is a (welcome) by-product of the present methodology.

Changes in the ranks, however, can also be a drawback, as they will perturb the

covariance with other variables. In fact, the lower a is, the lower the correlation between

the original and the perturbed variable will be (Table 1); this will also imply higher

perturbation of covariance with other variables.

Through its similarity parameter, the univariate multiplicative method presented here

allows preserving the covariance with any other variables, but with a trade-off regarding

the degree of securization that one wants to achieve in the disseminated data. This trade-

off represents an inherent limit to the multiplicative masking structure. For example, one
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Fig. 7. Initial vs. perturbed ranks for a ¼ 0.95
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Fig. 8. Initial vs. perturbed ranks for a ¼ 0.7
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cannot adapt the perturbation process by introducing a nonconfidential variable in order to

preserve exactly some set of covariances: a necessary condition to do that would be that

the nonconfidential variable also itself follows a lognormal distribution. But a heavy-tailed

nonconfidential variable is a very unlikely configuration. In other cases, the use of the

perturbation method with any nonlognormal distribution would induce a distribution of the

perturbed variable having a different functional existing in neither exact nor closed form,

or being too cumbersome an approximation to be tractable in a simple disclosure control

environment (Laeven et al. 2005). This is true at finite distance but one has to note that

asymptotic exactness is possible using copula (Sarathy et al. 2002).

4. Further Remarks and Conclusion

When using statistical disclosure control techniques to generate perturbed data, analysis

performed on the altered datasets should yield results that are identical or at least very

close to those that would have been obtained using the original data. The assumption of

normality in the distribution of the original variable and in the error term is a convenient

way to achieve this objective. Unfortunately, many economic variables are distributed

according to a heavy-tailed, asymmetric form that makes the Gaussian framework limited.

Moreover, as underlined by many recent studies (Piketty and Saez 2003), fat tails are

important for economic analysis as their impact could be substantial. Nonetheless, one has

to note that data points generating a heavy-tailed distribution are often scarcely present in

microdata sets, especially those coming from survey-based data (except if specific

oversampling procedures are used).

Two reasons account for this under-representation of high values. The first is simply the

sampling scheme, as observations away from the mean are less likely to be observed in

surveys. The second is that, as observations away from the mean face a higher disclosure

risk than data points closer to it, control of these risks forces data producers to rely on top

coding, i.e., values above a certain amount are automatically censored to that amount. As a

result, sample data skewness is only a partial measure of the true population skewness. In

this case, one can still reasonably assume that normality is a sufficient assumption for

sample data perturbation, but further research will have to be conducted to determine the

relative performances of these additive masking methods when the original data differ

from a normal distribution.

The case of register-based microdata is quite different from that of surveys, as entire the

population is generally included. In this case, skewness is likely to occur very often, and

our methodology will perform better than methods such as the Muralidhar-Sarathy hybrid

generator. Moreover, as only heuristic rules are possible in practice for preserving

covariances (one being, for example, choosing a degree of similarity between 0.99 and

0.95 that will protect observations away from the mean while preserving sufficiently the

covariance), register-based data are favoured; due to their nature and the fact that they are

Table 1. Correlation between original and perturbed variable coefficients for different similarity degrees

a 0.999 0.95 0.9 0.8 0.7
Correlation coefficient 0.99 0.60 0.41 0.24 0.18
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not originally collected for analysis purpose, fewer variables are available than in a survey

for covariance computations.

In conclusion, this article has presented a simple technique that allows data producers

to generate perturbed datasets according to a selectable degree of similarity when

the underlying distribution is positively skewed, using the properties of a lognormal

distribution. The range of applications for this technique is potentially large, particularly

when one is interested in the descriptive features of a distribution. For example, this

method avoids the use of interpolation for the computation of inequality as practised in

Atkinson et al. (2010). For a low value of the dissimilarity parameter, administrative

records could easily be made available as public use files. As argued by Sen and Foster

(1997) in the case of income distribution: “The log-normal form gives good fits for many

countries, though for high levels of income as such the best fits often seem to take the

Pareto-form.” This means that lognormal distributions, while useful and reasonable

approximations, do not always conform to the heavy tails observed for some economic

variables. However, transformations of distributions exhibiting more skewness than the

lognormal form such as Pareto can only be achieved through approximation, rendering a

disclosure control framework based on them intractable in practice. What is sure is that

more research is needed in this field. Because of the growing demand for microdata access,

the simple methodology presented here could provide a useful starting point upon which

more refined masking techniques preserving skewness could be built.
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