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A Neural Network Model for Predicting Time Series
with Interventions and a Comparative Analysis

M.D. Cubiles-de-la-Vegal, R. Pino-Mejl'as]’Z, J.L. Moreno-Rebollo"? and
J. Muiioz-Garcia'

A procedure for designing a multilayer perceptron for predicting time series with interven-
tions is proposed. It is based on the generation, according to a rule emerging from an ARIMA
model with interventions previously fitted, of a set of nonlinear forecasting models with inter-
ventions. Each model is approximated through a three-layered perceptron, selecting the one
minimizing the Bayesian Information Criterion. The training of the multilayer perceptron
is performed by three alternative learning rules, incorporating multiple repetitions, and
the hidden layer size is computed by means of a grid search. A comparative analysis
using time series from the Active Population Survey in Andalusia, Spain, shows a better
performance of these neural network models over ARIMA models with interventions.

Key words: Backpropagation; backpropagation with momentum; Levenberg-Marquardt;
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1. Introduction

Artificial Neural Networks (ANNs) provide a great variety of mathematical nonlinear
models, useful for tackling different statistical questions. Thus, a good review of this
area from a statistical perspective is Cheng and Titterington (1994), while Ripley
(1993, 1994, 1996) and Bishop (1995) cover classification problems. Nordbotten (1996)
presents experimental research with neural network imputation models. In time series
analysis, Hill et al. (1994) point out that the results achieved by neural network models
can be similar to those obtained by traditional statistical methods, but it continues to be
necessary to delve deeply into comparing the efficiency of ANN forecasting models,
taking into account topics like architecture network, determining the size of hidden layers,
learning algorithms, error measures and alternative statistical procedures.

This article belongs to this research area, but considers the problem of intervention
analysis. Many economic and official time series present interventions, existing statistical
procedures which take into account those phenomena, for example ARIMA models with
interventions (Mills 1990). We outline in this article a methodology for fitting this sort of
models, based on the previous fit of an ARIMA model with interventions. The constructed
neural networks provided, over a collection of Andalusian labour force time series, a better
performance than ARIMA models with interventions.
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2. ARIMA Models with Interventions

The general expression for a multiplicative seasonal ARIMA model with m interventions
and periodicity s (Box and Tiao 1975), is:

dgp . _ N\~ UiB) caop s ¢(B)®(B")
VIVPx =) 5B VivPls! +00+79(3)®(3s) a, (1)

i=1
The classical seasonal multiplicative ARIMA(p, d, g)(P, D, Q),, where we use the stan-

dard Box and Jenkins (1976) notation, including the nonseasonal ARIMA(p, d, q)
model when P = D = Q = 0, is defined by the following components in (1):

the lag operator B, where Bx, = x,_, and the seasonal lag operator B*, B*x, = x,_;,

the difference operator V = 1 — B, and the seasonal difference operator V, = 1 — B*, used
d and D times, respectively, to achieve stationarity, and the constant 6,

¢(B) and ®(B*) are the autoregressive polynomial terms, with p and Ps degrees, being

¢(B)=1—¢B—...—¢,B",®B°)=1—-& B —...— &,B""

¢(B) and ®(B’) are the moving average polynomial terms, with ¢ and Qs degrees,
being

0B)=1-6,B—...—0,B", 0B’)=1-0,B"—...— 0,B%
a, is a white noise process, so a, i.i.d ~ N(0, 02)

We can also consider an additive seasonal ARIMA model, where the product ¢(B)®(B*)
is replaced by a polynomial term 1—¢B—...—¢,B" —& B —... - ®,B"*,
and similarly, the product 6(B)®(B*) is replaced by 1—6,B—...—0,B'—
0,B°—...—0,B%.

In addition to the classical ARIMA( pd, q)(P, D, Q), model, we see in (1) m terms, one
for each intervention. The m auxiliary variables 81, 85,...,8!, are associated with inter-
ventions occurring in time periods ry, 75, ..., I, respectively, and their definition depends
on the nature of the intervention.

For a permanent intervention;

1 if t=r
Si=¢&i= { f ' 2
0 lf‘ < r;
For a transitory intervention;
1 I} = ri
§i=00-BEi= { f 3)
0 l‘f t+ r;

There exist diverse forms for U;(B) and S;(B), so it is possible to accommodate in the
model (1) several types of responses to the interventions (see Mills 1990 for example),
but it is not an easy task to arrive at the best ARIMA model with interventions. Given
that in our comparative study we only had two possible interventions, we decided to
follow a straight procedure to identify an ARIMA model with interventions, as is
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described by Liu (1992). Next we summarize this procedure for a possible intervention in
time period r:
1) Try a sudden and transitory intervention:
Uy ‘
1-s B —SIB(I —B)§
If §; is larger than or equal to 1, or near 1, we can exclude a transitory effect.
2) Try a gradual and permanent intervention:
Uy g
1-$,B
If § is not significantly different from O, we discard a gradual effect. If §| = 1, there
exists a linear trend.
3) Finally, try a sudden and permanent effect:
Upé'
If this model is not valid, we discard an intervention in time period r.

Thus we can define interventions of Types 1, 2, and 3 corresponding to each of the three
intervention models defined in the three steps of the last algorithm.

3. A General Nonlinear Forecasting Model with Treatment of Interventions

Given a univariate time series {x,,7=1,2,...,n}, where x, € R, ANN forecasting
models usually suppose that each observed value is an unknown nonlinear function F
of c lags ty, t,,...,1.:

Xy = F(xt—tlv xt—zz’--th—z()‘l' &

where the error g, is of zero mean.

Next, we suppose that m interventions, in time periods ry, r,,...,r,, have been
detected. We define m auxiliary variables 8], 85,...,85, depending on the nature of the
intervention, as in (2) and (3). So we consider the next nonlinear forecasting model
with ¢ lags q, t,,...,f, and m interventions:

Xp=F Xy Xpysees Xy s 81,65,...,8)+¢, 4
There remains the problem of obtaining c, ti, 5, ..., .. Following Cubiles de la Vega
(1999), we considered the nonintervention component in the expression of the fitted

ARIMA model. Thus several models were constructed, introducing some variability in
the complexity of the ANN models. Concretely, we consider:

i) All of the possible models where ¢ varies between 1 and k, being
k =Max{p+ Ps, q+ Os}.
ii) The model with every lag between 1 and p, and every lag between bs and bs + p,

b=1,2,...,P.

iii) The model with every lag between 1 and ¢, and every lag between bs and bs + ¢,
b=1,2,...,0.

iv) The model with every lag between 1 and p, and every lag of the form bs,
b=1,2,...,P.

v) The model with every lag between 1 and ¢, and every lag of the form bs,
b=1,2,...,0.
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vi) When p = g = P = Q = 0, we construct models similar to those of ii) and iv), but
based on d (instead of p) and D (instead of P).

For example, from the model ARIMA(O 1 1)(0 1 1)4, we considered next lag sets: {1},
{12}, {123},{1234},{12345} (), and also, {1 4 5} (iii), and {1 4} (v).

The unknown function F of (4) must be approximated by an appropriate model. Given
the nonlinear nature of this task, ANNs provide a convenient framework to attack the job,
standing out the multilayer perceptron.

4. The Multilayer Perceptron

4.1. Definition

A multilayer perceptron is a feedforward artificial neural network with three or more
layers. The layers between the first and the last one are the hidden layers. The first
layer, or input layer, is formed by Kk nodes, corresponding to an input vector
(x1,X9,...,x5). The last layer, or output layer, is formed by g nodes, so the network output
isavectory = (yy, y2,---,Yq)- The multilayer perceptron was devised as a mathematical
model for approximating a function ¢: A € R* — RY. The approximation is based on the
network training (or learning) starting from n training patterns x®, y(l)), being
yO =¢x"),1=1,2,...,n.

Let H be the hidden layer size, {v;,,i=0,1,2,...,k,h=1,2,...,H} the synaptic
coefficients for the connections between the input and the hidden nodes, and let
{wpj»h=0,1,2,...,H, j=1,2,...,q} be the synaptic coefficients for the connections
between the hidden and the output layers. The output of each hidden layer, s,

h=1,2,...,H, is computed by applying an activation (or transfer) function, g, to its
net input, m;, = vy, + Zle vipX;, SO s, = g(my). Similarly, each output node produces
avaluey;,j=1,2,...,q, obtained by means of an activation function f, y; = f(#;), being

t; the net input of the output node j:

H H k
yi=f) =1 (WOj + Z Whj5h> :f<W0j + Z Whjg<V0h + Z Vihxi>>
h=1

h=1 i=1
The last expression shows clearly that each network output, y »i=1, 2,...,q,1s a
nested function, usually nonlinear, of the input values (x{, x», ..., xx). The total number

of parameters for a three-layered perceptron, M, is
M=k(+1)H+H+1)g=(k+qg+1)H+q

Several theoretic properties support the multilayer perceptron, among which we
can point out the universal approximate one (Ripley 1996), where the sigmoid activation

function is:
X

e
X)) =——

g(x) T

THEOREM. Any continuous function ¢: A ng — RY, A being a compact set, can be

uniformly approximated by means of a three layered perceptron, with sigmoid

activation functions in the hidden layers and identify activation function in the output layer.
This is the network architecture we adopted for the multilayer perceptron in our work.
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4.2.  Learning rules

Once the parameters k, H, g, and the activation functions are fixed, we need an algorithm
to obtain appropriate values for the synaptic coefficients. In this article we consider three
of the learning rules we can find in MATLAB 5.1.0.421 (Demuth and Beale 1994): Back-
propagation, Backpropagation with momentum, and Levenberg-Marquardt, all of them
intended to minimize the mean squared error over the training set.

From some preliminary studies we performed over the time series analyzed in our
comparative study, we did not find any important effect in varying the parameters control-
ling the algorithms, so our programs worked with the default parameter values assigned by
MATLAB. However, the initial values of the synaptic coefficients showed a more impor-
tant effect on the final mean squared error. So we wrote MATLAB programs to repeat each
algorithm 50 times, selecting the set of synaptic coefficients leading to the minimum mean
squared error. This procedure is intended to avoid the lack of global minimum property of
these algorithms also.

4.3.  Determining the hidden layer size
The multilayer perceptron we used in our comparative study has the following features:

1. The number of input nodes k is equal to the sum of the number of lags ¢ and inter-
ventions m, k = ¢ + m. The input vector is (x,_,, X,_;,,....%,_, , 01, 85,...,8,).

2. The sigmoid activation functions in the hidden layer.

3. Anoutput node, ¢ = 1, with the identity activation function, providing the forecast %,
of x,.

4. A learning rule as is described in Section 4.2.

Smith (1993) suggests as the hidden layer size the average of k and ¢. From this advice,
we introduced in our work a grid search for H around that value:

i) Compute a = [(c + m + 1)/2] where [ ] denotes the nearest integer.

ii) For h = max{0, a — 3} to a + 3, construct a multilayer perceptron with ¢ + m input
nodes, i hidden layers, and one output layer. Apply the learning rule, with 50
repetitions, over the training set.

iii) Select for H that value of & yielding the minimum MSE over the training set.

The MATLAB code we wrote is contained in Cubiles de la Vega (1999).

5. A Comparative Study

5.1. Outline of the study

We considered 33 quarterly time series from the Active Population Survey in Andalusia,
Spain, from 1977 to 1997. These series contain the total of active, employed and
unemployed people, each of the three classes being classified into 11 categories: total,
total of men, total of women, 16 to 19 years old, 20 to 24 years old, 25 to 54 years old,
older than 54, Agriculture, Industry, Construction and Services. The 33 series were iden-
tified, following this classification, by Al to All, El to E11, and U1 to Ul1. Each series
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was split into a training set and a test set: the test set is formed by the 8 cases corresponding
to the years 1996 and 1997, while the 76 cases corresponding to the period 1997-1995
form the training set, used for fitting the forecasting models.

Some definitions of the variables measured by the Active Population Survey were
changed in the second quarter of 1987. Though the series of the Survey were linked by
the Spanish National Statistical Institute, we could expect the presence of an intervention
in that time period. Furthermore, the time series plots revealed a clear intervention in the
first quarter of 1984 for several series. So we considered the analysis of the possible
presence of interventions in both time periods. Thus, for each of the 33 series, when it
came to the training set, a multiplicative or additive and possibly seasonal ARIMA
model was fitted. Box-Jenkins’ methodology for identifying one or more ARIMA models
(Box and Jenkins 1976) was used, and we incorporated, in the case of each of these
models, the procedure outlined in Section 2 in order to identify interventions. So for
each series we had one or more ARIMA models with interventions. A model was consid-
ered valid when 1) all the coefficients were five percent significative, and ii) the residuals
were not found to be correlated by means of Ljung-Box test. When several models were
considered valid, the minimum Bayesian Information Criterion was used to select the best
model.

This procedure was developed using the ETS module of SAS v7.5.2, SAS Institute Inc.
(1993), available in Asterix node of Andalusian Scientific Computing Centre (CICA), and
employing maximum-likelihood estimation. From it, we found one or two interventions in
25 of the 33 series.

For each series, and from the identified ARIMA model with interventions, we
constructed several lag sets as in Section 3. The nonlinear models so constructed were
approximated by means of a multilayer perceptron, constructed as is described in
Section 4. The forecasting model with the minimum Bayesian Information Criterion
was selected.

5.2. Results

Following the procedure of Section 5.1, for each of the 25 series where we identified at
least one intervention, we analyzed and compared the results obtained with ARIMA
models with interventions and the multilayer perceptron.

Tables 1, 2 and 3 contain, for each of these 25 series, the fitted ARIMA model with
interventions, all of them with log transformation, where (+) denotes that the ARIMA
model is additive. The second column contains the lags that, with the corresponding auxili-
ary variables, define the input layer of the selected multilayer perceptron. The characters 1,
2 and 3 in the intervention columns denote the type of intervention, as is described in
Section 2, using a 0 for no intervention in the associated time period. Numbers surrounded
by parentheses are the only nonzero coefficients in the corresponding term.

We observe that the unemployed series need more complex multilayer perceptrons,
whereas for the active series simpler multilayer perceptrons are sufficient, thus revealing
a dependence on a larger number of lagged values for the unemployed series.

Table 4 contains the numbers of series where each method has the minimum test fore-
casting error among the four methods, as measured by the mean squared error (MSE) and
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Table 1. Lag sets and ARIMA models for the Active Population Series

Series Lags ARIMA model (log) Interventions
P d q P D 0 1984 1987
Al 1,4 0 1 1 0 1 1 3 3
A2 1 0 1 0 0 0 0 3 0
A4 1,2,3 0 1 3 0 0 0 0 3
A5 1,4 0 1 1 0 0 1 0 3
A6 1,4 0 1 1 0 1 1 3 2
A10(+) 1,4,5 1 1 0 1 1 0 3 1
All 1,4 0 1 1 0 1 1 0 3

Table 2. Lag sets and ARIMA models for the Employment Series

Series Lags ARIMA model (log) Interventions
P d q P D 0 1984 1987

El 1,4 0 1 1 0 0 1 3

E2(+) 1 0 1 2) 0 0 1 3 0
E3 1,4 0 1 1 0 1 1 0 2
E5 1 0 1 25) 0 0 0 3 0
E6 (+) 1,4 0 1 1 0 0 1 3 0
E7 1,4 0 1 1 0 1 1 0 1
ES8 1,4 0 1 1 0 1 1 1 2
E10 1,2,3,4,5 0 1 2) 0 1 1 2 0
Ell 1,2,3,4 0 1 0 0 1 1 2 0

Table 3. Lag sets and ARIMA models for the Unemployment Series

Series Lags ARIMA model (log) Interventions
P d 0 P D (0] 1984 1987

Ul 1,2,3,4,5 0 1 35) 0 0 0 3

U2 1,2,3 0 1 3 0 0 0 3 0
u4 1,4 0 1 1 0 0 1 0 3
Us 1,2,3,4,5 0 1 (5) 0 0 1 3 0
ue(+) 1,2,3,4,5 0 1 1 0 0 1 3 0
u7 1,2,3,4,5 0 1 1 0 1 1 2 3
U8 1,4 0 1 1 0 1 1 2 0
U9 1 0 1 0 0 0 0 0 3
U10 1,2,3,4,5,6,7 (3) 1 0 1 0 0 3 3

Table 4. Number of series minimizing the tests MSE and

MAD

Method MSE MAD

Backpropagation 6 7

Backpropagation with 9 7
momentum

Levenberg-Marquardt 2 4

ARIMA models 8 7
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the mean absolute deviation criteria (MAD), so obtaining a comparison of the
generalization capacity of the four methods.

From Table 4 we see that in 17 of the 25 series the minimum MSE test was found
in a multilayer perceptron model, 9 of these 17 models being trained with backpro-
pagation with momentum. In 18 of the 25 series the minimum MAD test was
found in a multilayer perceptron model, and 14 of these 18 models were trained
with backpropagation (7) or backpropagation with momentum (7). Further, in the
series where Levenberg-Marquardt trained models achieved the minimum MSE or
MAD test, the second best model were a backpropagation or backpropagation with
momentum multilayer perceptron model. This brings out the superiority of the fore-
casting models based on the multilayer perceptron, trained with backpropagation
and backpropagation with momentum particularly.

Figure 1 exhibits the boxplots for the MSE in the training and test sets. A similar graphic
for the MAD is shown in Figure 2. From Figures 1 and 2, we observe that backpropagation
and backpropagation with momentum tend towards lower MSE and MAD values in the
test set, in comparison with the other methods. Levenberg-Marquardt achieves very low
values in the training set, but at the price of a poor capacity of generalization, revealing
a clear overfitting with regard to the training test.

From Figure 2, backpropagation with momentum offers poor results with regard to
the training set, but its capacity of generalization, measured by the MAD, is similar
to that of the other methods. There is a clear difference in Figure 2 between the
performances of the three learning rules, the multilayer perceptron trained with back-
propagation being the method yielding the best compromise between the training and
test set.
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Fig. 1. Mean squared error in the training and test sets
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Fig. 2. Mean absolute deviation in the training and test sets

6. Concluding Remarks

1) In a majority of the considered series, the presented procedure for designing fore-
casting ANN models, with treatment of interventions, provided better results than
those obtained with ARIMA models with treatment of interventions.

ii) The multilayer perceptron, trained with MATLAB default parameters for the
backpropagation and backpropagation with momentum learning rules, but intro-
ducing multiple repetitions and a grid search for the hidden layer size, offers a
good performance. However, Levenberg-Marquardt trained models exhibit an
overfitting behaviour.

iii) The best compromise between the test and training errors, measured with
MSE and MAD criteria, is achieved by the multilayer perceptron trained with
backpropagation.

iv) Artificial neural networks trained by several learning rules, combined with the
preview study of the series with Box-Jenkins methodology, and selecting the
model through the Bayesian Information Criterion, provide a valuable framework
for obtaining univariate predictions of the labour force time series, incorporating
the treatment of interventions in the forecasting model.
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