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A Note on Jackknife Variance Estimation for the General
Regression Estimator

Pierre Duchesne1

1. Introduction

Let U � f1; . . . ;Ng be a ®nite population. Suppose that we know the total Tx of an

auxiliary variable x of dimension p. A sample s is observed from a pps sampling plan.

Let pk and pkl be the ®rst and second inclusion probabilities, respectively. Our goal is

to estimate the total Ty � SU yk of a positive variable y with f�xk; yk�, k [ sg and Tx.

The general regression estimator (GREG) of Ty is given by

ÃTGREG �
X

s

dkgksyk

where

gks � 1 � �Tx ÿ ÃTxp�
0
X

s

dkxkx0k=ck

 !ÿ1

xk=ck

is the `g-weight', dk � pÿ1
k is the sampling weight, ÃTxp � Ssxk=pk is the Horvitz-Thomp-

son estimator of Tx, and ck is chosen by the user. SaÈrndal (1996) discusses the choice of ck.

The asymptotic variance AV for the GREG is given by

AV� ÃTGREG� �
XX

U

Dkl
ÆEk

ÆEl

where Ek � yk ÿ x0kB;B � �SUxkx0k=ck�
ÿ1SUxkyk=ck;Dkl � pkl ÿ pkpl and ÆEk � Ek=pk.

Since the asymptotic variance is an ordinarily unknown quantity, SaÈrndal et al. (1989)
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suggested the following g-weighted variance estimator given by

ÃVg � ÃVg� ÃTGREG� �
XX

s

ÆDkl�gks Æeks��gls Æels� �1�

where eks � yk ÿ x0k ÃBs, ÃBs � �Ssdkxkx0k=ck�
ÿ1Ssdkxkyk=ck, ÆDkl � Dkl=pkl and Æeks � eks=pk.

With ÃVg, we can construct a con®dence interval for Ty given by ÃTGREG 6 z1ÿa=2� ÃVg�
1=2,

that is expected to be valid approximately to the 1 ÿ a con®dence level.

The jackknife technique is another popular method to obtain a variance estimator. That

method is described in Wolter (1985) and SaÈrndal et al. (1992, chap. 11). We derive in

the next section explicit jackknife variance estimators of the GREG. A corrected

version is proposed that removes a large part of the positive model bias in Section 3. A

small simulation is given in Section 4 to illustrate the proposed estimator. We conclude

with a discussion in Section 5.

2. Jackknife Variance Estimation

In this section, we obtain explicit formulas for the jackknife variance estimators of the

GREG. Let the sample be divided into A groups of size m partitioning the sample, where

Am � n, where n is the sample size. The two jackknife variance estimators advocated by

SaÈrndal et al. (1992) are given by

ÃVJK1 �
A ÿ 1

A

XA

a�1

� ÃTGREG�a� ÿ ÃTGREG;JK�
2

ÃVJK2 �
A ÿ 1

A

XA

a�1

� ÃTGREG�a� ÿ ÃTGREG�
2

where ÃTGREG�a� is the GREG calculated without the group a and

ÃTGREG;JK �
1

A

XA

a�1

ÃTGREG�a�

Since the two formulas ÃVJK1 and ÃVJK2 are related by the following relation

ÃVJK1 � ÃVJK2 ÿ �A ÿ 1�� ÃTGREG ÿ ÃTGREG;JK�
2

�2�

we can conclude that ÃVJK1 # ÃVJK2 and it is easy to pass from one form to the other. In prac-

tice, the two formulas give very similar results.

We consider in the following the maximal number of groups, that is the case

A � n;m � 1. See the remark 11.5.3 of SaÈrndal et al. (1992, pp. 441±442). With that

hypothesis, we now use the random group technique to obtain explicit formulas for
ÃVJK2 and for ÃVJK1 using Expression (2). Under that technique, we suppose that conditional

on s, each group fig is obtained by simple random sampling. In that case, there are n ran-

dom subsamples s�i� � s ÿ fig. The inclusion probability that the unit k will be in the

®nal subsample, denoted pk�i�, is pk�i� � �n ÿ 1�=npk. Using that technique, we obtain

the following result:

PROPOSITION 1. The jackknife variance estimator ÃVJK2 of the GREG estimator is

134 Journal of Of®cial Statistics



given by

ÃVJK2 �
n

n ÿ 1

X
s

�Ägis Ïeis ÿ nÿ1 ÃTep�
2

�3�

where Ägis � �gis ÿ nÿ1T 0
xMÿ1

s xi=ci�=�1 ÿ hi�; ÃTep � Sseks=pk; hi � dix
0
iM

ÿ1
s xi=ci,

eis � yi ÿ x0i ÃBs; Ms � Ssdkxkx0k=ck

Proof. Let s�i� denote the sample s without unit i. Since

ÃTGREG �
X

s

dkgksyk

� ÃTyp � �Tx ÿ ÃTxp�
0 ÃBs

the GREG without unit i can be written as

ÃTGREG�i� � ÃTyp�i� � �Tx ÿ ÃTxp�i��
0 ÃBs�i�

where ÃTyp�i� �
P

s�i� yk=pk�i� and similarly for ÃTxp�i�, and

ÃBs�i� �
X
s�i�

xkx0k=�ckpk�i��

( )ÿ1X
s�i�

xkyk=�ckpk�i��

With some algebra, we can show that

ÃTGREG�i� � ÃTGREG �
1

n ÿ 1

X
s

eks=pk ÿ
n

n ÿ 1
�gis ÿ nÿ1T 0

xMÿ1
s xi=ci�Æeis=�1 ÿ hi�

Finally, using the relation 2, we obtain the following corollary

COROLLARY 1.

ÃVJK1 � ÃVJK2 ÿ
1

n ÿ 1
� ÃTep ÿ

X
s

Ägis Æeis�
2

It is interesting to note that with the exception of the factor Ägis, Formula 3 looks like the

simpli®ed variance estimator ÃV0 of SaÈrndal et al. (1992, ex. (11.2.6), p. 422), where eis

now replaces yi.

3. Corrected Estimator for the Model Bias

SaÈrndal et al. (1992) note that, with the exception of the Horvitz-Thompson estimator,

there are no exact results concerning the properties of the jackknife variance estimator.

We study in this section the model bias of the Formula 3. Let the y regression model

for y1; . . . ; yN be given by

yk � x0kb � ek

where the ek are independent under the model, and such that Ey�ek� � 0;Vy�ek� � j2ck,

where Ey and Vy indicate the mean and variance under the model. We assume like SaÈrndal

et al. (1989) that for some l independent of k

ck � l0xk �4�
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and we similarly de®ne the prototype ÃV* for ÃVg as

ÃV�
�
XX

s

ÆDkl�gksÆek��glsÆel�

SaÈrndal et al. (1992, p. 232) give several examples of variance structures satisfying Con-

dition (4). Note that under that condition we have Sseks=pk � 0. We now recall a result that

will be useful in the sequel.

LEMMA 1. Under the model y, for any given realized sample s, the model mean, the model

mean squared error and the relative model bias of the prototype ÃV� are given by

�i� Ey� ÃV�
� � j2

X
s

g2
ksck=p

2
k ÿ

X
U

gksck

 !

�ii� MSEy� ÃTGREG� � Ey� ÃTGREG ÿ Ty�
2
� j2

X
s

g2
ksck=p

2
k ÿ

X
U

ck

 !

�iii� RMBy� ÃV�
� �

Ey� ÃV�
� ÿ MSEy� ÃTGREG�

MSEy� ÃTGREG�
�

ÿ
P
U

�gks ÿ 1�ckP
s

g2
ksck=p

2
k ÿ

P
U ck

Proof. See SaÈrndal et al. (1989).

We study properties of the jackknife variance estimator prototype. Under Condition (4),

it is given by

ÃV�
JK2 �

n

n ÿ 1

X
s

Äg2
ksÏe

2
k

Under the model, note that Ey� ÃV�
JK2� � n=�n ÿ 1�j2Ss Äg2

ksck=p
2
k � As. Suppose that all hi are

negligible (their sample mean is nÿ1Sshi � p=n�. Then gks < Ägks and As will be of the same

order that the ®rst term in the right member of (i) in the lemma. We have approximately

Ey�V
�
JK2� ÿ Ey� ÃV�

� < j2
X

U

gksck

suggesting that the jackknife variance estimator overestimates the true variance, which is

well-known. The relative model bias of the jackknife variance estimator can also be cal-

culated using (ii) in the lemma:

RMBy� ÃV�
JK2� <

P
U ckP

s g2
ksck=p

2
k ÿ

P
U ck

�5�

Looking at the numerator of 5, the relative model bias RMBy� ÃV�
JK2) is expected to be more

important than for ÃVg. It may however be small if the ®rst term in the denominator dom-

inates the second term in Formula (5). It can be seen that under simple random sampling, if

the sampling fraction f � n=N is small, then RMBy� ÃV�
JK2� can be negligible.

However, since the positive bias may be more important in practice, we consider the

following modi®cation:

ÃV�
JK3 �

n

n ÿ 1

X
s

�1 ÿ pk�Äg
2
ksÏe

2
k �6�
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We can justify that modi®cation with the following argument. Under the model, we now

obtain

Ey� ÃV�
JK3� � As ÿ

n

n ÿ 1
j2
X

s

Äg2
ksck=pk �7�

If gks < Ägks, then the second term of that right member of Expression (7) will be of the same

order as that for the second member of (i) in the lemma since Ssg
2
ksck=pk � SUgksck (see

SaÈrndal et al. (1989, Expression 5.6)). Note that in the case of the simple random sampling,
ÃV�

JK3 is simply ÃV�
JK2 affected by the ®nite population correction. However, our analysis is

in the more general setting of a pps sampling plan. Wolter (1985) discusses some methods

to remove the bias of the jackknife variance estimator in the Horvitz-Thompson case. See

also SaÈrndal et al. (1992, pp. 439±440). These ideas are applied here to the GREG.

4. Illustration

We consider a small Monte Carlo simulation for the variables y � RMT85 ´ 10ÿ4,

x1 � CS82 and x2 � SS82 for the MU281 population (of size N � 281) in SaÈrndal et al.

(1992). This study is a complement to the one in SaÈrndal et al. (1992, pp. 278±280).

Like them, we carried out 5,000 repeated simple random samples, each with size

n � 100. The main objective of the simulation study is to evaluate coverage properties

of con®dence intervals at the 95% level

ÃT 6 1:96� ÃV� ÃT��1=2

where ÃT is the GREG estimator, and ÃV� ÃT� is a variance estimator. We consider the GREG

estimator with only x1, the GREG estimator with only x2, and the GREG estimator with x1

and x2. We always included an intercept and let cku1 throughout the study. We consider the

variance estimator given in Formula (1), the jackknife variance estimators given in Formula

(3) and the corrected Version (6). Formula (1) becomes under simple random sampling

ÃVg � N2 1

n
ÿ

1

N

� �P
s g2

kse
2
k

n ÿ 1

Results are presented in Table 1, where ÅÃT and S2
ÃT are the sample mean and sample variance

of the 5,000 estimates ÃT ; ÅÃVg, ÅÃVJK2 and ÅÃVJK3 are the sample means of the 5,000 variance

estimates, ÃVg; ÃVJK2 and ÃVJK3, respectively; and ECRg, ECRJK2 and ECRJK3 are the respec-

tive coverage rates for the GREG based on ÃVg, ÃVJK2, ÃVJK3, respectively. The ®nal column

gives the approximate variance for ÃT given by

AV� ÃT� � N2 1

n
ÿ

1

N

� �P
U E2

k

N ÿ 1

The results in Table 1 show that in our experience, ÃVJK3 gives good coverage properties

and in the three cases the variance of the 5,000 estimates is close to ÅÃVJK3. In that limited

simulation, ÃVJK3 seems to compare reasonably well with ÃVg.

5. Discussion

In this article, explicit jackknife GREG variance estimators are exhibited. These

formulas give new examples of the well-known rule of thumb that jackkni®ng leads to
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overestimation of the variance. An idea for possible overestimation ``correction'' is

presented, leading to a modi®ed estimator. In the numerical illustration, we obtain reason-

able properties with the corrected version. We do not claim that the proposed estimator is

superior to other estimators. In fact, in a vast majority of situations occurring in practice,
ÃVg may be preferable. Jackknife estimators are perhaps applicable to exceptional situations

(shortage of time, one-time use, etc). It seems to appear that their chief merit is that they

require less programming efforts. For example, there is no need to evaluate all the pkl as in
ÃVg. See SaÈrndal (1996) for a discussion of this problem. However, if jackknife variance

estimators for the GREG are needed, it is hoped that Proposition 1 will be useful.
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Table 1. Results of the simulation

Estimator ÅÃT S2
ÃT

ÅÃVg ECRg
ÅÃVJK2 ECRJK2

ÅÃVJK3 ECRJK3 AV

ÃTGREG�x1� 5.31 0.122 0.115 0.937 0.189 0.977 0.121 0.942 0.116
ÃTGREG�x2� 5.30 0.124 0.118 0.934 0.191 0.978 0.123 0.941 0.117
ÃTGREG�x1; x2� 5.31 0.056 0.052 0.929 0.088 0.978 0.057 0.939 0.052

Note: The total Ty is 5.315.


