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A model-based synthesis is presented for a number of well-known results concerning
the design effect of cluster sampling. This helps to yield a simpler perspective, making the
design-based expressions more transparent. In particular, it is shown that the use of auxiliary
information removes the extra variance that is due to the variation in the cluster sizes.
Moreover, it can reduce the loss of efficiency to the extent it reduces the conditional intra-
cluster correlation given the covariates. The design effect then depends on the remaining
conditional intra-cluster correlation and an average cluster size.

Key words: Cluster sampling; design effect; cluster size; intra-cluster correlation; general
regression estimator.

1. Introduction

Clustering of elements of interest exists in many natural populations. In cluster sampling

one generally needs to balance between the likely loss of efficiency as compared to

sampling of elements and the potential administrative and operational advantages that are

important in practice. For example, cluster sampling of household-like units is employed

in the Norwegian Labor Force Survey (NLFS), mainly due to cost and operational

concerns. In contrast the Swedish LFS is based on direct sampling of persons. Strictly

speaking, one may consider the design effect (DEFF) in this case to be the ratio between

the variance of the Horvitz-Thompson (HT) estimator of a population total under cluster

sampling and that under simple random sampling (SRS) of elements. But the comparison

may be affected by several factors, including the sampling design, the choice of estimator

and the use of auxiliary information that is available. We refer to Park and Lee (2004) for a

study of the design effects for the weighted total estimator and the weighted mean

estimator under a purely design-based perspective.

In this article we synthesize a number of results that scatter in the literature

(see e.g., Cochran 1977, Chapter 9A; Kish 1987; Särndal et al. 1992, Chapters 4 and 8).

The idea is to regard the finite population as drawn from an infinite super-population that

has certain properties, and compare the model expectations of the various design

variances, also known as the anticipated variances (Isaki and Fuller 1982). The model-

based evaluation helps to yield a simpler perspective, making the design-based
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expressions more transparent and providing conditions under which similar results can be

expected. Gabler et al. (1999) used the same approach to justify Kish’s formula (Kish

1987) for two-stage sampling and multiple weighting classes. More generally, this is an

example of the combined approach to inference that involves both the sampling design and

the super-population model (see Pfeffermann 1993).

We shall distinguish between two situations of auxiliary information. In the first one, to

be referred to as the minimal case, the only information available is the cluster sizes in the

sample and the number of elements in the population. In the second one, to be referred

to as the general case, nontrivial auxiliary information is available at cluster or element

level. SRS of clusters in the minimal case is considered in Section 2, and the general case

in Section 3. In Section 4 we illustrate the theoretical results using the NLFS data.

In Section 5 we consider cluster sampling with varying sampling probabilities.

It is shown that the use of auxiliary information in the general case affects the DEFF of

cluster sampling in two respects: (a) it can remove the extra variance that is due to the

variation in the cluster sizes, and (b) it can reduce the loss of efficiency to the extent it

reduces the conditional intra-cluster correlation given the covariates. The average cluster

size remains the other deciding factor. In household surveys, or other sampling situations

where the cluster sizes are small, the variance increase by cluster sampling will be small

unless the intra-cluster correlation is very high. But there will be a great loss of efficiency

if the cluster sizes are large, unless the conditional intra-cluster correlation is basically zero.

2. Decomposition of DEFF in the Minimal Case

We start with the minimal case of auxiliary information. Denote by (ki ) element i from

cluster k. Assume the constant intra-cluster correlation model

yki ¼ my þ 1ki

where yki is the variable of interest and my is its model expectation. The residuals are

such that Eð1kiÞ ¼ 0, and Vð1kiÞ ¼ s2
y , and Covð1ki; 1kjÞ ¼ rys

2
y for two elements in

the same cluster and Covð1ki; 1gjÞ ¼ 0 for two elements from different clusters, and ry is

the intra-cluster correlation coefficient. All the expectations are with respect to the model.

We have then, at the cluster level, yk ¼ Nkmy þ 1k and 1k ¼
PNk

i¼11ki where Nk is the size

of the cluster. The above model is often used to account for the cluster effect (see e.g.,

Gabler et al. 1999).

Denote by U the population of elements and denote by s the sample of elements. Denote

by U0 and s0 the population and sample of clusters. Let N be the size of U, and let

M be the size of U0. Let n and m be, respectively, the number of elements and

clusters in the sample. Take first simple random sampling (SRS) of elements. Denote

by ŶE ¼ ðN=nÞ
P

ðkiÞ[s yki the Horvitz-Thompson (HT) estimator. We assume that

n ¼ mN� , where N� ¼
PM

k¼1Nk=M ¼ N=M is the population average cluster size, which is

comparable to cluster sampling with m sample clusters. Take next SRS of clusters. Denote

by ŶR ¼ ðN=nÞ
P

k[s0
yk the ratio-to-size estimator (Cochran 1977, Section 9A.1), which

looks just like ŶE. The difference is that n is fixed for ŶE but variable for ŶR; and inclusion

of an element implies inclusion of the whole cluster in the case of ŶR but not in the

case of ŶE. Finally, denote by ŶC ¼ ðM=mÞ
P

k[s0
yk the HT estimator given SRS of clusters.
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Denote by VD the design-based sampling variance, which is readily given by

standard formulae; see e.g., Cochran 1977, Equation (2.13) for VDðŶEÞ, Equation

(9A.2) for VDðŶCÞ, and Equation (9A.3) for VDðŶRÞ. Denote by ~N ¼ ðN1;N2; : : : ;NMÞ
T

the vector of cluster sizes in the population. It is straightforward to verify that,

conditional on ~N, the anticipated variances under the intra-cluster correlation model

are given by

E{VDðŶEÞj ~N} ¼
M

m

M 2 m

M 2 1=N�
E

X
ðki Þ[U

ð1ki 2 1�Þ2j ~N

( )

¼
M

m

M 2 m
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Ns2

y 12
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X
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ð1Þ

E{VDðŶRÞj ~N} ¼
M

m

M 2 m

M 2 1
E

X
k[U0

ð1k 2 Nk1�Þ
2j ~N

( )

¼
M

m

M 2 m

M 2 1

X
k[U0

vkð yÞ

( )

� 12
2

N

X
k[U0

Nkvkð yÞ=
X
k[U0

vkð yÞ

 !
þ

1

N 2

X
k[U0

N2
k

( )
ð2Þ
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where 1�¼
P

ðkiÞ[U 1ki=N ¼
P

k[U0
1k=N and vkð yÞ ¼Vð ykjNkÞ ¼Nks

2
y þNkðNk 21Þrys

2
y .

Asymptotically, provided m;M !1; andm=M ! r for 0 , r , 1, while Nk remains

bounded, we have

E{VDðŶRÞj ~N}

E{VDðŶEÞj ~N}
¼ 1þ ryðN�

* 2 1Þ
� �

· 1þO
1
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E{VDðŶEÞj ~N}
¼ {1þ l}·{1þ g}· 1þO

1

M

� �� �
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where �N* ¼
P

k[U0
N2

k=N is a weighted average cluster size. We may call E{VDðŶCÞj ~N}=

E{VDðŶEÞj ~N} the anticipated DEFF. Asymptotically, it is neatly decomposed into a

product of the anticipated variance ratio between ŶC and ŶR and that between ŶR and ŶE.

The term l is approximately given by the ratio V{Eð ykjNkÞ}=E{Vð ykjNkÞ}, where

V{Eð ykjNkÞ}¼ m2
yVðNkÞ and E{Vð ykjNkÞ}¼ EðnkÞ, which are the two components of the

unconditional variance V( yk) under some joint model of ( yk, Nk). It seems difficult to lay

down general conditions of the joint distribution of ( yk, Nk) that affect the term l

monotonically, apart from some special situations. For instance, for a given population of

clusters, l increases with jmyj provided the covariance parameters ðs2
y ;ryÞ remain the

same; and it increases with m2
y=s

2
y provided the intra-cluster correlation ry remains

the same. The cluster size variability is important. Indeed, in the extreme case of s2
y ¼ 0,

i.e., yki ; my, we have VDðŶRÞ ¼ 0, but VDðŶCÞ. 0, which is entirely due to the variation

in the cluster sizes. The situation is greatly simplified through the use of ŶR. The

anticipated variance ratio, i.e., 1 þ g, no longer depends on the cluster size variability

or the parameters ðm2
y ;s

2
yÞ, but only on the intra-cluster correlation ry and the average

cluster size N� *.

3. Variance Decomposition for GREG Estimators

Consider now the general case of auxiliary information. A GREG estimator can be written

as
P

ðkiÞ[s akigkiyki where aki ¼ 1=pki is the initial HT weight and pki is the inclusion

probability of (ki ) [ U. Suppose first that the GREG estimator is calculated at the cluster

level under the model

yk ¼ xT
k bþ ek

where xk is the auxiliary vector for cluster k and b contains the linear regression

coefficients, and EðekÞ ¼ 0, and VðekÞ ¼ s2
k which is specified up to a proportional

constant, and Covðek; egÞ ¼ 0. By nontrivial xk we mean to exclude the case of xk ; 1.

Denote by ŶCgreg the GREG estimator, where aki ¼ ak ¼ M=m and gki ¼ gk

¼ 1þ X 2 ðM=mÞ
P

k[s0
xk

n oT P
k[s0

xkxT
k =s

2
k

	 
21 P
k[s0

xk=s
2
k

	 

. Denote byVDðŶCgregÞ

the approximate sampling variance, which is available from Result 8.4.1 in Särndal et al.

(1992). Given SRS of clusters, it can be obtained from VDðŶCÞ by replacing yk with ek.

Next, suppose that the GREG estimator is calculated at the element level under

the model

yki ¼ xT
kibþ eki

where xki is the auxiliary vector for element (ki ) and b contains the regression coefficients,

and EðekiÞ ¼ 0, and VMðekiÞ ¼ s2
ki which is specified up to a proportional constant, and

Covðeki; ekjÞ ¼ Covðeki; egjÞ ¼ 0, i.e., zero intra-cluster correlation, which is common in

practice. We assume that the models at the cluster and the element level are connected

in that xk ¼
P

i xki. Denote by ŶRgreg the GREG estimator, where aki ¼ ak ¼ M=m

and gki ¼ 1þ X 2 ðM=mÞ
P

ðki Þ[s xki

n oT P
ðki Þ[s xkix

T
ki=s

2
ki

	 
21 P
ðkiÞ[s xki=s

2
ki

	 

. The

approximate sampling variance, denoted by VDðŶRgregÞ, can be obtained from VDðŶRÞ

simply by replacing yk ¼
P

i yki with ek ¼
P

i eki (see Särndal et al. 1992, Result 8.9.1).
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Finally, denote by ŶEgreg the GREG estimator under the same element-level model given

SRS of elements, where gki ¼ 1þ X 2 ðN=nÞ
P

ðki Þ[s xki

n oT P
ðki Þ[s xkix

T
ki=s

2
ki

	 
21

P
ðki Þ[s xki=s

2
ki

	 

and aki ¼ ak ¼ N=n. Denote by VDðŶEgregÞ the approximate sampling

variance, which can be obtained from VDðŶEÞ simply by replacing yki with eki

(see Särndal et al. 1992, Result 6.6.1).

For the anticipated variances of these GREG estimators we use the following model

yki ¼ xT
kibþ eki

where EðekiÞ ¼ 0, and eki has the same intra-cluster covariance structure as that of 1ki in

Section 2, but the parameters are now given by s2
e ; re

� �
. The anticipated variances can be

obtained from the corresponding formulae (1)–(3) above by replacing vk( y) with

vkðeÞ ¼ Nks
2
e þ NkðNk 2 1Þres

2
e , and my;s

2
y ; ry

	 

with 0;s2

e ; re

� �
. Under the same

asymptotic setting as in Section 2, we have

E{VDðŶCgregÞj ~N}

E{VDðŶEgregÞj ~N}
¼

E{VDðŶRgregÞj ~N}

E{VDðŶEgregÞj ~N}
· 1þ O

1

M

� �� �

¼ {1þ reðN�
* 2 1Þ}· 1þ O

1

M

� �� �

Thus, while the anticipated DEFF E{VDðŶCÞj ~N}=E{VDðŶEÞj ~N} remains the same, the use

of nontrivial auxiliary information in the general case can reduce its impact in two

respects. (a) ŶCgreg no longer has an extra variance term compared to ŶRgreg. In comparison,

ŶC can be regarded as a GREG estimator in the minimal case with xk ; 1, and ŶR as a

GREG starting with ŶC and using xki ; 1 at the element level. (b) The anticipated variance

ratio between ŶRgreg and ŶEgreg is reduced as compared to that between ŶR and ŶE to the

extent that re is smaller than ry. Notice also that, provided s2
e is smaller than s2

y , a GREG

estimator in the general case has a smaller anticipated variance than the corresponding

GREG estimator in the minimal case, such as ŶRgreg compared to ŶR.

4. An Illustration Based on NLFS

We now illustrate the above results using the NLFS data from the first quarter of 2005. The

NLFS is based on a single-stage cluster sample. The clusters are families in the Central

Population Register, which is a kind of household unit. The population size is slightly

above 3.3 million people, and there are 21,525 persons in our sample. To illustrate the

general case of auxiliary information we use register variables age (12 groups), sex and a

register-based employment status (i.e., “employed” or “not employed”), which can be

linked to the sample through a unique Personal Identification Number.

The estimated standard errors (SEs) of all the six estimators considered in Sections 2

and 3 are given in Table 1. The formulae for variance estimators are available from the

above-cited sources for the corresponding sampling variances. For the GREG estimators

we set s2
k / 1 and s2

ki / 1, as is common in practice. We have also carried out the

calculation with s2
k / Nk for ŶCgreg, and the resulting estimates are very close to the ones

reported in Table 1. The estimates on the “Person” line are calculated as if the sample were

selected using SRS of elements. This is plausible provided n=m < N=M, which holds in
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Table 1. Estimated standard errors for total employment and unemployment in NLFS (2005, 1st Quarter). Minimal auxiliary information: number of elements in population and

sample cluster sizes. Register auxiliary information: age, sex and register employment status

Minimal auxiliary information Register auxiliary information

Sampling unit Estimator Employment Unemployment Estimator Employment Unemployment

Cluster ŶC 15,791 3,958 ŶCgreg 7,094 4,192
Cluster ŶR 10,859 3,931 ŶRgreg 7,071 4,152
Person ŶE 10,341 3,856 ŶEgreg 6,948 4,077
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a large sample situation as the NLFS, and provides the basis for assessing the design effect

of SRS of clusters in practice.

Take first the minimal case. We note that cluster sampling has a large DEFF of over

200% for total employment. But almost all the DEFF can be removed by switching to the

ratio-to-size estimator, reducing the SE from 15,791 to 10,859 as compared to 10,341

based on SRS of elements. For the NLFS we have N� * < 1:6, and ry < 0:2 for the

binary variable “employed” or “not employed” (see Rafat 2002), such that

1þ g ¼ 1þ ryðN� * 2 1Þ < 1:12; whereas V̂DðŶRÞ=V̂DðŶEÞ ¼ ð10; 859=10; 341Þ2 ¼ 1:10

in Table 1. The intra-cluster correlation model seems to be a good approximation in the

NLFS situation. Meanwhile, the differences are small for total unemployment, and the

DEFF is only 105%. The difference between ŶC and ŶR is small because the mean per

element for the binary unemployment variable is only about 0.03, compared to about

0.7 for the binary employment variable. The difference between ŶE and ŶR is small

because the intra-cluster correlation is low. Indeed, judging from the results in Table 1, we

have ry < {V̂DðŶRÞ=V̂DðŶEÞ2 1}=ð �N* 2 1Þ ¼ 0:065 for the unemployment variable.

The use of register auxiliary information reduces the sampling variance for total

employment as compared to the minimal case. It practically removes the difference

between ŶCgreg and ŶRgreg. The difference between ŶRgreg and ŶEgreg is also reduced

because, while �N* is the same, the conditional intra-cluster correlation is smaller, i.e., the

results suggest re < {V̂DðŶRgregÞ=V̂DðŶEgregÞ2 1}=ð �N* 2 1Þ ¼ 0:060 as compared to

ry < 0:2. As for the total unemployment, the register auxiliary information here is not

efficient; and the conditional intra-cluster correlation is approximately re < 0:062, which

is basically the same as ry < 0:065. Indeed, the estimated variances of the GREG

estimators are slightly increased using the register information, which is a price one pays

for using good auxiliary information for employment that at the same time is ineffective

for unemployment.

5. On Varying Sampling Probability

Varying sampling probability can be achieved by stratification or some probability

proportional-to-size (PPS) scheme. For simplicity we consider PPS cluster sampling with

replacement, where the sampling probability is given by pk ¼ Nk=N for k [ U0. Denote

by ŶP ¼ ðN=mÞ
P

k[s0
ð yk=NkÞ the HT estimator. Under the intra-cluster correlation model

in the minimal case (Section 2), we have

E{VDðŶPÞj ~N} ¼
N 2

m
E

X
k[U0

pkð1�k 2 1�Þ2j ~N

( )

¼
M

m
Ns2

y 1þ ryð �N 2 1Þ2
1

M·N

X
k[U0

vkð yÞ=s2
y

( )

where �1k ¼ 1k=Nk and VDðŶPÞ is given by Cochran (1977, Equation (9A.6)). Thus,

asymptotically and disregarding the finite population correction, we obtain the anticipated

DEFF of PPS cluster sampling as

E{VDðŶPÞj ~N}=E{VDðŶEÞj ~N} ¼ {1þ ryð �N 2 1Þ}·{1þ Oð1=MÞ}
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which is very similar to the corresponding ratio between ŶR and ŶE in Section 2. This is

intuitive because it is the same information of cluster size that is being used in both cases:

in PPS sampling it is used before the sample is selected, whereas for the ratio-to-size

estimator it is used afterwards.

Now, consider the general case of nontrivial auxiliary information as in Section 3, and

the GREG estimator applied to PPS sampling, denoted by ŶPgreg. The “assisting” model

can either be the cluster- or element-level model above. The approximate sampling

variance, denoted by VDðŶPgregÞ, is given by VDðŶPÞ on replacing yk with ek and �Y with �e.

For the anticipated variance we assume the constant intra-cluster correlation model

(Section 3) for eki with parameters s2
e ; re

� �
. Again, the extra auxiliary information has two

effects: (i) it reduces the anticipated variances provided s2
e , s2

y , and (ii) it reduces

the difference between the sampling variances under PPS of clusters and SRS of elements,

i.e., provided re , ry, E{VDðŶPgregÞ}=E{VDðŶEgregÞ} is closer to unity compared to

E{VDðŶPÞ}=E{VDðŶEÞ}.
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