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A Practical Use for Instrumental-Variable Calibration

Phillip S. Kott'

This article describes a simple scenario where defining an instrumental variable is helpful for
computing calibration weights (i.e., weights that satisfy the specified calibration equation yet
are asymptotically identical to the inverse selection probabilities). The implicit model is sim-
ple regression with an intercept. The choice of instrumental variable can reduce the possibility
that any calibration weight will be less than one.
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I. Introduction

Recently, Estevao and Sarndal (2000) introduced a ‘‘functional form’’ calibration
estimator for T = Yy y;, where U is a population of N elements, with the following form:

tearr = Z Wi Yk )]
kES
where S in the sample,
-1

Wi = ay + Z X; — Z a;X; Z Gz | Qi 2

i€EU i€S i€S
a;y = 1/m, =1 is the original sampling weight for element k, x; is a row vector of J
auxiliary variables associated with k, g, is an arbitrary constant, and z; is a row vector
of J instrumental variables, some of which may also be components of x,. This assumes
that > ¢;Z; x; is invertible. The wy are called ‘calibration weights’> because they satisfy
the calibration equation, Y ;X = > ¢ WiX;.

It is easy to show that 7-4;r is an unbiased estimator for 7 under the model
Vi = X8 + &, where E(g|x;) = 0. Moreover, tc4;r is randomization consistent under
mild conditions, which we assume here to hold. Finally, under those same conditions
and some equally mild restrictions on the variance structure of the g, the anticipated
variance (model expected randomization mean squared error) of f-4;r is asymptotically
invariant to the choice of ¢; and z;.

This estimator is an interesting, if not new, generalization of the standard GREG made
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popular by Sdrndal et al. (1992). An earlier version of -4 can be found in Brewer et al.
(1988), although not in calibration form. In practice, it is not obvious why one would con-
template using a vector for z; other than x;, itself, the usual GREG formulation. As for gy, it
is frequently set equal to a;. Brewer (1999), however, has argued that setting ¢, = a; — 1,
the remainder weight, more often returns a set of calibration weights where w; = 1 for all
elements in the sample. Many find this a desirable property since then each sample
element can be thought of as at least representing itself.

In this brief article, we will consider the scenario where x;, = (1, x;), and the x; vary
within the population and the sample (so matrices are invertible when need be). Using
the remainder weights for the g; helps assure that all w;, = 1 (for those & in the sample).
The addition of a well-chosen z;, introduced in Section 2, makes that property even more
likely. Section 3 discusses the more modest goal of finding a complete set of positive
calibration weights. Section 4 contains a small empirical investigation. The discussion
in Section 5 concludes that a particular choice of the z;, produces a set of calibration
weights with all w, = 1 if any such set exists except in an unusual circumstance.

2. The Instrument and Its Calibration Weights

Let z, = (1,z;), where z; = 1 when x; = A, and z; = —1 otherwise. A can be anywhere
within the range of the x;. Our rationale in choosing z; is to lessen the effect of a large
|x, — A| on wy. Although we use the term ‘‘instrumental variable’’ from the econometrics
literature (see Johnston 1972, pp.278-281) to describe z;, its purpose in this context is
very different from that employed by econometricians.

As noted in the introduction, we also let g; = a; — 1. This limits the size of [w;, — a;|
when q;, is near 1.

Let S; be that part of the sample for which z; = 1, and S, be the complement of §;
within the sample. Let my be the remainder-weighted mean of the x; in S, mp; be the
remainder-weighted mean of the x; in Sy, and myp, be the remainder-weighted mean of
the x; in S,. Let Iél be the sum of the remainder weights in S, 12’2 be the sum of the
remainder weights in S,, and R= Iél + 1@2. Let My be the mean value of all x; in
R = U — S, and R be the size of R. Not surprisingly, R is estimated by R. Under many
designs, the two are identical.

Inspecting Equation (2) one can see that the calibration weights are invariant to linear
transformations of z; or x;; that is, z; or x; can be replaced by z,H where H is any non-
singular J X J matrix without it affecting the result. This means that each component of z;
can be replaced by a linear combination of other components as long as the combination is
the same for all k.

Let us replace x; in x; by x, — mp. This changes the second component of x; to the
difference between the original second component and my times the first. In z;, let us
replace the 1 by I/R times 1, and then replace the second component, z;, by
(l/Rl - 1/R2)/2 times itself added to (l/Rl + 1/R2)/2 times the original first component
(i.e., 1). This effectively replaces z; with l/Rl when k € §;, and with —1/R2 when
k €S,. As a consequence of all these changes, the 2 X2 matrix > ¢¢;Z;X; becomes
diagonal. Its upper left hand corner contains a 1, and its lower right the value
mpg, — Mg,. It is important to note that A must be so located within the range of sample
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values of x; that neither S; nor S, is empty. Otherwise, either R, or R, would be zero, and
the transformation of z;, above would not be possible.
A little manipulation reveals

Wi = @ + (N -> a,-> (ax — D/R + (mgy — mgs)™"

ies

XY —mp) = il — m@] (ax — ey 3)
= i€S
where ¢, = I/ﬁl when k€ S|, and ¢; = —llléz otherwise. Observe that for sample

designs where Y ¢a; = N, Equation (3) has a much simpler form:

Wi = @ + (mpy — mgy)™! [Z = aixi] (@ — Deg

ievu ies

Continuing from Equation (3),

Wy = ay + (R—Z la; — 1]>(ak— 1)/R

ies

+ (mgy — mR2)_] lz (x; —mpg) — Z (a; — D(x; — mR)‘| (ar — Dy

ieER ies
=1+ (@ — 1)+ R — R — D/R + (mgy — mgy)”'R(Mg — mg)(a — Dey
= 1+ (@ — DIRIR) + (mgy — mps) "' R(Mg — mg)cy]
= 1+ (@ — DR(mgs — mgo) ™ [(mg; — mgo)/R + (Mg — mg)cy]
= 1+ (ax — DRIR)mg; — mpgy)” (Mg —mgy) when k € S, (4.1)
= 1+ (@ — DRIR)(mg, — mgy) ™" (mgy — My) when k €S, (4.2)

This last step uses the equality Iélle + Iészz = Ii’mR.

It is easy to see that w, in Equations (4.1) and (4.2) will be 1 or larger as long as
Mgy = My = mp,. Now, mp; is a randomization consistent estimator of the mean of the
x; values in R that are larger than or equal to A, while my, is a randomization consistent
estimator of the mean of the x; values in R that are less than A.

In principle, A can be anywhere within the range of the x; in U. In practice, it makes
sense to put it somewhere in the ‘‘center’’ of the distribution. Although the population
median seems a reasonable choice, the population mean proved more effective in the small
empirical example to be discussed in Section 4. In Section 5, we see that setting A = My
will usually find calibration weights with all w;, = 1 if such a set exists. Whatever the
choice for A, it should to be made before one looks at the sample values, so that the
randomization consistency of 74 r is assured, although A can be a predetermined function
of the sample values.

3. Sample Weights Versus Remainder Weights

One can think of the conventional ratio estimator as having the same form of 7¢4;r in
Equation (1) with x;, = xy, z; = 1, and g; = @, the original sample weight of element
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k. Brewer (1979) proposed a variant of the ratio with ¢, = a; — 1, the remainder weight.
The name derives because » s(a; — 1)y, is an estimator for Y r y;.

Each of the calibration weights under the conventional ratio formulation must be
positive as long as all x; =0 and one sample element has a positive x-value, since
wp = [ uxi/ Yosaix;]ay. Brewer’s variation assures more. No calibration weight will
be less than 1, since wy = 1+ { > _gx;/ > sla; — 11x;}a; — 1], and @, = 1. Note that
[a; — 1]x; must be positive for at least one sample element for Brewer’s wy, to be defined.
That is to say, at least one noncertainty sample element must have a positive x-value.

A similar thing happens in our scenario. Defining z; as in the previous section but
letting g;, = a; in Equation (2), the interested reader can derive these calibration-weight
formulae:

wy = a,(N/N,)(m, —my)~ (M — m,) when k €S, 5.1)
= ay(NIN,)(m; — my)~'(m; — M) when k €S, (5.2)

where N 1(]%) is the sum of the g, in §,(S,), m; (m;) is the sample-weighted mean of the x;,
in S7(S,), and M is the mean of the x; in U. Under this formulation, all the calibration
weights are positive when m, < M < m;. This is no guarantee, however, that each weight
is at least 1.

4. A Small Empirical Investigation

In this section, we investigate equally-weighted samples of size 16 drawn from a very
large population, U. The population is so large that the differences between Equations
(4) and (5) virtually vanish, and positive calibration weights are effectively always larger
than 1. As a consequence, we limit our investigation to whether or not the calibration
weights are positive.

The x-values are generated by a chi-squared distribution with 1 degree of freedom. The
population mean of the x; in U is assumed to be 1, the mean of the chi-squared distribution.
Likewise, its median is assumed to be 0.455.

Although we are rarely interested in samples of size 16 in practice, this study has
instructive value. Moreover, it is not that uncommon to use a separate regression estimator
where there are as few as 16 sampled elements per stratum.

Table 1 displays the results of four simulations each based on 1,000 independent sample
selections. Each of the simulations compares calibration weights computed using Equation
(5) with conventional simple regression weights (i.e., those resulting from Equation (2)
with g, = a; and z, = (1,xy)):

Wy = ag |1+ 16(M — m)(x;, — m) / > - m)Z] (6)
i€S
where M is the population mean of the x;(= 1), and m is the sample-weighted mean of the
X;.. In the first simulation, A is set equal to the population mean, 1. It is not possible to com-
pute Equation (5) for five of the samples, because all the sample x-values are less than 1.
Consequently, S, is empty, and m; does not exist. In the other 995 samples, the calibration
weights are all positive. By contrast, Equation (6) produces at least one nonpositive weight
in 6.7% of the samples.



Kott: A Practical Use for Instrumental-Variable Calibration 269

Table 1. Fractions of 1,000 samples with at least one nonpositive weight

A (for Equation (5))  Using Equation (5) Using Equation (6)*

Population mean 0.005° 0.067
Population median 0.036 0.065
Sample mean 0.025 0.060
Sample median 0.087 0.055

“These values vary because they are based on different samples.
PCalibration weights could not be calculated at all in five samples.

Note that it is conceivable for the largest x-value in a sample to be exactly 1, rendering
Equation (5) computable and a calibration weight exactly equal to zero. That did not
happen in any of the 1,000 samples.

In the next simulation, Equation (5) is calculated using the population median as A. The
calibration weights can always be calculated with each of the 1,000 samples, but some
weights are nonpositive in 3.6% of them. Although this is better than using the simple
regression weights, it is not as good as setting A equal to the population mean in the first
simulation.

Table 1 also displays results from simulations using the sample mean and then the sam-
ple median as A. Using the sample median produces nonpositive weights in more samples
than the conventional regression method. Using the sample mean is much better, but not as
good as using the population mean.

According to Table 1, setting A equal to the population mean (A = 1) is clearly the best
thing to do. Increasing the sample size to 25 has little qualitative effect on the results,
except that complete sets of positive calibration weights become more common. On the
one hand, using Equation (5) with A = 1 produces a positive calibration weight for every
sample element in all 1,000 samples (not displayed). On the other, Equation (6) with 25
replacing 16 returns at least one nonpositive calibration weight in only 2.3% of the
samples. This is a small fraction, but not zero.

5. Discussion

The population mean works well as A in our simulation because Equation (5) will always
return nonnegative weights as long as there is at least one sample element with an x-value
greater than or equal to the population mean and at least one sample element with an
x-value below the population mean.

For those surveys where the population size (N) is not effectively infinite, Equation (4)
can be different from Equation (5). The former was constructed to assure that no calibra-
tion weight would be less than 1. If we set A = My (the mean x-value among population
elements not in the sample), then that will always be the case as long as there is at least one
sample element with an x-value larger than or equal to My and at least one sample element
with an x-value below M. This is why Equation (4) with A = My, is usually preferable to
Equation (5) with A = M. Nevertheless, under certain unusual conditions, it is possible
that Equation (5) will return all positive weights, while Equation (4) will not be compu-
table. This can happen when there is no sample element with an x-value larger than or
equal to My but there is one with an x-value larger than M < M.
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Supposex; = Xy, < Mpforallelementskinthe sample,sothat Equation (4)withA = My
is not computable. It is easy to see that no set of calibration weights satisfying w; =1
exists. Suppose one did. Then ) "¢(wy — 1) = R, and > ¢(w; — D)xy = > g Xy = RMj. But
> oswg — 1)Xk/ Yoswe = 1) =3 g(wy — l)xsmax/ YosWe — 1) = Xy < Mg. This is a
contradiction. An analogous argument applies when x; = x,,;, > My for all elements in
the sample. There remains the possibility that the minimum value of x; in the sample is
My, so that Equation (4) is not computable (because mp, is undefined) but a set of calibration
weights all larger than or equal 1 exists with w; = 1 whenever x; # Mp.

It is now easy to see that unless the minimum value of x; in the sample is My, Equation
(4) with A = My, fails to produce a set of calibration weights that are all 1 or larger only
when no such set exists. A similar series of arguments can be made about Equation (5)
with A = M and nonnegative calibration weights.

Let us consider the case where the minimum x; in the sample is My, and Equation (4)
fails to find a desired set of calibration weights even though one exists. Suppose we were
willing to look at the sample values, see that the minimum value of x; in the sample was
Mp, and change the definition of z; so that it equaled —1 when x; = M. These steps would
violate the randomization consistency of t-4; in Equation (1), but it is instructive to note
that Equation (4) would again return calibration weights all equal to 1 or larger unless all
the x; in the sample equaled My, which contradicts the assumption that there is variability
among the x; in the sample.

Readers of an earlier draft of this article have asked whether there is a randomization-
mean-squared-error (MSE) penalty from using the nonstandard values for the g; and z; in
Equation (2) suggested in the text. The answer to that question is theoretically elusive
when the y, are not constrained by a model and awaits thorough empirical study. Some
insight, however, comes from Brewer (1999), who found no such systematic penalty
from using a variant of our g, in a multivariate setting with real data. In particular, he
explored using g; = (a; — 1)/g;, where g; was a measure of size somewhat related to
his x; vector, and found the results very similar to those from using ¢, = g, in terms of
empirical MSE.

This leaves open the question of a possible MSE penalty from using an instrumental
variable other than x;. The author takes some solace in noting that the conventional ratio
estimator effectively employs an instrumental variable, as pointed out in Section 3, yet the
literature reveals no clear penalty from its use.

A simulation of 6,400 samples was run using the same population structure as in Section
4 with n = 16. Each y; was set equal to x2/3, so that the linear model, y, = 8, + Box; + &
with E(g|x;) = 0, clearly failed. Conveniently, the population mean of the y,, the goal of
the estimators to be described below, is 1. Note that since the population size is assumed to
be very large, our goal switches from estimating the population total of the y, to estimating
their population mean.

Computing weights with Equation (6) and each a; = 1/n produces the conventional
simple regression estimator, which is asymptotically equivalent to the randomization-
unbiased difference estimator with the lowest randomization MSE; that is, tp;pr =
> svi/n+ [M — m]b, where M = 1 is the population mean of the x;, m is the sampled
mean of the x;, and b is chosen to minimize the randomization variance of #p;r. (See
Sdrndal et al. (1992), Section 6.8.) Despite this fact, the display in Table 2 shows that
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Table 2. Properties of different weighting approaches

Estimator Empirical bias Empirical root MSE
Sample mean 0.010*° 0.810°

Simple regression —0.182° 0.342°
Instrumental-variable regression —0.122 0.363

Modified simple regression —0.122 0.518°

The simple regression estimates were computed with calibration weights determined by Equation
(6) with @, = 1/n.

The instrumental-variable regression estimates were computed with calibration weights deter-
mined by Equation (5) with A = 1 and @, = 1/n. When a set of all-positive calibration weights
did not exist, the weights were set to 1/n (as in the sample mean).

The modified simple regression estimate was computed with calibration weights determined by
Equation (6) with @; = 1/n. When a set of all-positive calibration weights did not exist, the weights
were set to 1/n.

“Not significantly different from 0 at the .05 level.

"Significantly different from the instrumental-variable-regression value at the 0.05 level.

the simple regression estimator had a more negative empirical bias (—18.2% in percentage
terms) than the instrumental-variable regression estimator resulting from computing the
calibration weights using Equation (5) with A =1, the population mean of the x;
(—12.2%). Moreover, the simple regression estimator has only a modestly smaller empiri-
cal root mean squared error (0.342) than the instrumental-variable regression estimator
(0.363). Both methods had much smaller empirical root MSE’s than the sample mean
(0.810), although the latter is randomization unbiased.

For those few simulations where Equation (5) failed to yield a set of all-positive
calibration weights, the calibration weights were set to 1/n. When the same policy was
followed with Equation (6), as is sometimes done in practice, the empirical bias was
greatly reduced (—12.2%) but with a noticeable root MSE penalty (0.518). The table refers
to the resulting estimator as the ‘‘modified simple regression estimator.”’

It is of some interest to note that the model failure resulting from the choice of y,
coupled with the small sample size (16) caused the simple and instrumental-variable
regression estimators to be biased. Nevertheless, both had considerably less MSE than
the randomization-unbiased sample mean. One does not need the model to hold, for
regression estimation to be effective.

Although we need to be cautious about drawing a conclusion from the modest simula-
tions described above, it appears that determining calibration weights with Equation (5)
and A equal to the population mean of the x; is at least competitive with more conventional
alternatives.
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