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A Procedure for Strati®cation by an Extended Ekman Rule

Dan Hedlin1

1. Introduction

Strati®cation is a widely used sample survey technique. The sampling frame is divided

into strata and independent samples are drawn from the strata. One reason for strati®cation

is that the survey designer forms homogenised strata, which are achieved if important

study variables vary less within strata than in the unstrati®ed population.

We will focus on strati®cations that minimise the variance of the standard expansion

estimator (Horvitz-Thompson estimator) for strati®ed simple random sampling. The num-

ber of strata and the sample size are assumed predetermined. Two strati®cation techniques

that give variances close to the optimal ones, in the sense described, are the Ekman rule

(Ekman 1959) and the widely used Dalenius-Hodges rule, ``the cum
���
f

p
rule'' (Dalenius

and Hodges 1959). Cochran (1961) and Hess, Sethi, and Balakrishnan (1966) compared

the Dalenius-Hodges and the Ekman rules with some other strati®cation rules. Hess

et al. found that the Ekman rule gave the best precision in their application to a skewed

population. The Ekman rule also performed well compared to the best strati®cation

possible. In Cochran's study of eight populations the Dalenius-Hodges and the Ekman

rules performed equally well. Murthy (1967) applied the Ekman rule and some other

approximate methods, although not the Dalenius-Hodges rule, and found that the Ekman

rule performed best.

For convenience, we assume that a single frame is available and every population unit

corresponds to exactly one frame unit. One strati®cation variable is assumed to be avail-

able with known values for every frame unit.

When using the Dalenius-Hodges rule, one divides the sorted frame into a fairly large

number of intervals (a good description of the Dalenius-Hodges rule is provided by
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SaÈrndal, Swensson, and Wretman 1992, sec. 12.6). Let the number of intervals be denoted

by J and the number of frame units within the interval j by fj. Then one calculates���
f

p
j; j � 1; 2; ::: J; and forms strata by joining adjacent intervals into H groups (strata)

in which the sum of the
���
f

p
j are to be equal or nearly equal. That is, the following equation

should be satis®ed as well as possible:
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Thus, the user of the Dalenius-Hodges rule must ®nd appropriate values of J1 < J2 < ::

< JHÿ1, given the initial choice of J. The problem with the Dalenius-Hodges rule is that

the strata you end up with depend on J and that there is no theory that gives the best J.

So in a sense there is some arbitrariness in what stratum boundaries you obtain with the

Dalenius-Hodges rule. From a practical point of view, this might not be severe, as the esti-

mator variance regarded as a function of the stratum boundaries is usually ¯at around its

minimum, which makes minor deviations from the minimum negligible. A more important

problem may be that the Dalenius-Hodges rule is intricate to program due to the arbitrari-

ness. If, for example, a solution to (1) is sought which minimises

DJ � max
h

���� XJh

j�Jhÿ1�1

���
f

p
j ÿ

1

H

XJ

j�1

���
f

p
j

����
then for most applications there is no solution satisfying DJ � 0. It is dif®cult to construct

an algorithm that determines what numbers of DJ are acceptable and at which level of DJ

the process should be reiterated with a new J, and, in that case, which new J one should

pick. One way of implementing the Dalenius-Hodges rule is to let the user set the value of

J. One implementation of this type is the ``Generalized SAS Univariate Strati®cation

Program,'' see Sweet and Sigman (1995).

The Ekman rule states that the stratum boundary points b1; b2; :::bHÿ1 should be chosen

so as to satisfy the following relation as well as possible,

N1�b1 ÿ b0� � N2�b2 ÿ b1� � ::: � NH�bH ÿ bHÿ1� �2�

where the minimum and maximum values of the sorted frame are denoted by b0 and bH

respectively, and Nh is the number of frame units in stratum h; h � 1; 2; :::H. The reason

for the vague term ``as well as possible'' is that (2) usually lacks an exact solution

when N1;N2; :::NH are con®ned to integers. The extended Ekman rule, given below, admits

non-integral N1;N2; :::NH and produces an exact solution under very general conditions.

The Ekman rule is dif®cult to use without a numerical procedure. As Slanta and

Krenzke (1996, p. 65) note, the Ekman rule ``seemed to require rather ominous calcula-

tions.'' Here, such a numerical procedure is presented. A referee has pointed out that a

similar idea is put forward by Norland (1983).

The Ekman rule shares the shortcoming of the Dalenius-Hodges rule in that there rarely

is an exact solution to it. This means that if an approximate solution is found, one cannot

know for sure whether there is a better solution or not. The extended Ekman rule gives

under general conditions the best solution to the Ekman equations (2).

There are a number of problems associated with stratum construction in highly skewed
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populations. Sigman and Monsour (1995) give an overview with references to other

articles in this area. Wright (1983) proposes a model-based strati®cation method (also

described in SaÈrndal, Swensson, and Wretman 1992, sec. 12.4). Another model-based

approach is Unnithan and Nair (1995).

In Section 2, the problem is described in detail. Section 3 gives a geometrical interpretation

of the Ekman rule. This geometrical picture is the crucial idea underlying this article. The

extended Ekman rule is presented in Section 4 and an iterative numerical algorithm is pre-

sented for it. Applications based on populations generated from a log-normal distribution

are presented in Section 5. Concluding remarks are given in Section 6.

2. The Problem

A sample is taken from the population U � f1; 2; :::Ng with a study variable

y � �y1; y2; :::yN�
0 in order to estimate the population total t � y1 � y2 � :::yN . For simplicity,

we disregard nonsampling errors, that is nonresponse, measurement and coverage errors.

The population is partitioned into a predetermined number of strata, H, denoted by

A1;A2; :::AH : One strati®cation variable x � �x1; x2; ::: xk; ::: xN�
0 is assumed to be avail-

able with known values for every frame unit k. The strata are determined by stratum

boundary points b1 < b2 < ::: < bHÿ1 :

A1 � fk : xk # b1g

Ah � fk : bhÿ1 < xk # bhg; h � 2; 3; :::H ÿ 1

AH � fk : bHÿ1 < xkg

From each stratum a simple random sample without replacement is drawn indepen-

dently of samples of other strata.

Consider the standard expansion estimator of the total of a study variable y:

Ãty �
XH

h�1

Nh

nh

Xnh

k�1

yk �3�

The problem is to ®nd the stratum boundaries that minimise the variance of Ãty,

Var�Ãty� �
XH

h�1

N2
h

S2
yh

nh

�
1 ÿ

nh

Nh

�
�4�

where Nh and nh are the number of frame units and the sample size in stratum h, respec-

tively, and S2
yh is the study variable variance in stratum h,

S2
yh �

1

Nh ÿ 1

XNh

k�1

�yk ÿ Åyh�
2

where Åyh is the study variable mean. Here, Nh; S
2
yh and Åyh are functions of the stratum

boundaries. The total sample size n is predetermined. The stratum sample sizes are given

by Neyman allocation. However, there is a complexity here that needs some explanation.

In the applications below we focus on skewed populations such as those encountered in

business surveys. A widely used design for business surveys is strati®ed simple random

sampling, where the population is divided into subpopulations according to e.g., industry.
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Each subpopulation is strati®ed by size. Here we focus on size strati®cation and we use the

term population with the meaning subpopulation in the sense just described. Typically, the

size stratum with the largest business is a certainty stratum (also called self-representing

stratum, complete enumeration stratum or take-all stratum) where all businesses are

selected for observation. Other strata in the population are genuine sampling strata. A

part of the sample size n is used for the certainty stratum. In this article the remainder

is assumed to be allocated to the genuine sampling strata with the Neyman allocation

rule, as this gives optimal stratum sample sizes in the sense that the variance of Ãty is

minimised.

We work under the assumption that the values of a single auxiliary variable are known

and it is, although unrealistically, assumed that the values of the study variable equal those

of the strati®cation variable. Many other authors draw on this assumption, among others

Dalenius (1950), Ekman (1959), Dalenius and Hodges (1959) and LavalleÂe and Hidiroglou

(1988). Moreover, we work under the approximation that 1 ÿ nh=Nh < 1, which may be

entirely reasonable for genuine sampling strata, but not for a certainty stratum where

1 ÿ nh=Nh � 0 by de®nition. Articles dealing with optimal strati®cation that use this

approximation include Dalenius (1950), Ekman (1959), Dalenius and Hodges (1959),

Sethi (1963), Ser¯ing (1968), and Mehta et al. (1996).

Because of the approximation that 1 ÿ nh=Nh < 1 we focus on forming optimal genuine

sampling strata, given the size of a certainty stratum. Fixing the size of a certainty stratum

reduces, in effect, the population and we focus on what is left when the certainty stratum

has been covered. Hedlin (1998) gives necessary conditions for stratum boundaries for the

more general case when the size of the certainty stratum is not ®xed.

Approximating the ®nite population with a continuous distribution, Dalenius (1950)

minimises

v�Ãtx� �
XH

h�1

N2
h

S2
xh

nh

�5�

where S2
xh is the strati®cation variable variance in stratum h and nh � nNhSxh

�PH
h�1 NhSxh, that is, the sample is Neyman allocated under the assumption that Sxh < Syh.

The function v�Ãtx� approximates (4) if 1 ÿ nh=Nh < 1 for h � 1; 2; :::H and if the strati®cation

variable is approximately equal to the study variable. Dalenius derives the following equa-

tions as a necessary condition for stratum boundaries minimising (5):

S2
xh � �bh ÿ Åxh�

2

Sxh

�
S2

x;h�1 � �bh ÿ Åxh�1�
2

Sx;h�1

; h � 1; 2; :::H ÿ 1 �6�

where Åxh is the mean of the strati®cation variable in stratum h. This condition is also dis-

cussed by Cochran (1977, sec. 5A.7). Schneeberger (1985) points out that a solution to (6)

is not necessarily a local or global minimum to (5). There may be for example two solu-

tions, one minimum and one maximum.

The Dalenius equations (6) are, however, ill adapted to practical computation. Conse-

quently, a large number of approximate methods have been suggested. We will focus on

the Ekman rule. The degree of approximation to an exact solution of (6) is discussed by

Ekman (1959).
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3. A Geometric Interpretation of the Ekman Rule

The Ekman rule can be interpreted geometrically as in Figure 1, displaying a population

divided into three strata. The cumulative distribution of x over the ®nite population is

represented by a step function incremented by 1 for each element in the population. Stra-

tum 1, 2 and 3 generate rectangles, displayed in Figure 1, each with height Nh; h � 1; 2; 3;

and width �bh ÿ bhÿ1� and hence area Nh�bh ÿ bhÿ1).

The crucial idea in the numerical algorithm for solving (2) is as follows. If you minimise the

difference between the largest and smallest of the areas of the rectangles 1, 2 and 3 in Figure 1,

you arrive at stratum boundaries that approximate (2) as well as possible. In the following

we present a numerical method for ®nding the boundaries based on this idea.

4. The Extended Ekman Rule

Apart from a constant Nÿ1 the cumulative distribution function of x is

F�x� � ]fk : xk # xg; b0 # x # bH

F�´� has a piecewise continuous step graph, see Figure 1.

Let the extended distribution graph, denoted by F, refer to the union of the graph of

F�´� and the vertical lines connecting steps (see Figure 2). F is the graph of a vector-valued

function

b ° F�b� � �x�b�;N�b��

where N�b� and x�b� are continuous versions of the discrete variables N and x. The values

of the functions N�b� and x�b� are the vertical and horizontal projections of F�b� displayed

in Figure 2. Let the parameter b have the interpretation ``distance along F'' and let b0 � 0

be the minimum value of b. The maximum value, to be denoted by bH , is the sum of the

horizontal and vertical parts of F : bH � �xN ÿ x1� � N. The endpoints of F are F�b0� �

�b0; 0� � �x1; 0� and F�bH� � �bH ;N� � �xN ;N�.

By an extended stratum boundary point we refer to any point on the graph F. We

denote the H±1 extended stratum boundary points we are interested in by

b1;b2; :::bHÿ1. Given a bh; the corresponding proper stratum boundary bh is the horizontal

position x�bh� of F. There is a natural order of the extended stratum boundary points and
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Fig. 1. A geometric interpretation of the Ekman rule. A population with some 7,000 units and a strati®cation variable

x ranging from 0 to 190,000 is divided into three strata. The population is represented by a step function of cumulated

frequencies. The three strata are represented by shaded rectangles with approximately the same area.



the endpoints, let them satisfy b0 < b1 < b2 < ::: < bH . In the extended situation we allow

formation of rectangles with lower left and upper right corners anywhere along F, including

the vertical parts of it. We refer to them as Ekman rectangles. The area of Ekman

rectangle h is

Eh � �N�bh� ÿ N�bhÿ1���x�bh� ÿ x�bhÿ1��

The counterpart to (2) becomes

�N�b1� ÿ N�b0���x�b1� ÿ x�b0�� �

�N�b2� ÿ N�b1���x�b2� ÿ x�b1�� �

::: � �7�

�N�bH� ÿ N�bHÿ1���x�bH� ÿ x�b
Hÿ1

��

We refer to (7) as the extended Ekman rule. The geometric interpretation of a solution

to (7) is that all Ekman rectangles have the same area. Figure 3 exhibits the extended

Ekman rule. The difference between this ®gure and Figure 1 is that the rectangles of

Figure 1 have approximately the same area, whereas the areas in Figure 3 are exactly

the same (although with arbitrarily small discrepancies due to the iterative numerical algo-

rithm described below).

20 Journal of Of®cial Statistics

Fig. 2. The graph F and the values of the functions N�b� � 5; 000 and x�b� � 13; 500 for some b.

Fig. 3. A geometrical interpretation of the extended Ekman rule. The three strata are represented by shaded

rectangles, Ekman rectangles, with exactly the same area.



There are conceivable cases where (7) has no solution, for example, if a very large pro-

portion of the units in the frame have the same value of x, but for all practical purposes we

can neglect this possibility. It is readily seen in Figure 3 that an exact solution

x�b1�; x�b2�; ::: x�bHÿ1� of (7) gives stratum boundaries b1; b2; ::: bHÿ1 that satisfy (2) ``as

well as possible.'' It is also readily seen that a solution to (7) is unique.

4.1. Algorithm for solving (7)

First we give an outline of the algorithm. A start value b1 is decided on. The values of

N�b1� and x�b1� are found. The area of the leftmost Ekman rectangle is then

E1 � �N�b1� ÿ N�b0���x�b1� ÿ x�b0��. In the next step, bh; h � 2; 3:::H ÿ 1, are deter-

mined so as to equalise the areas of all Ekman rectangles except the rightmost one, whose

area is EH � �N�bH� ÿ N�bHÿ1���x�bH� ÿ x�bHÿ1��.

If EH is smaller than E1, then b1 is too large; if it is larger, b1 is too small; and if it equals

E1 (within some preassigned level of tolerance) a solution is found. If b1 is too small or too

large, the algorithm reiterates with a new value of b1.

There are two similar components in this procedure:

1. To select a new value of b1, when the current one is found too small or too large

2. For given b1, to ®nd b2;b3; :::bHÿ1 such that E2 � E1;E3 � E1; :::;EHÿ1 � E1

For both components we use the bisection method (see, for example, Dahlquist and BjoÈrk

(1974)). The basic version of this method we will need runs as follows. Let f be a contin-

uous and monotone function on (a,b) with exactly one root z to the equation f �x� � 0 in

(a; b). Divide the interval by its midpoint and check which of the two subintervals contains

z . The subinterval containing z is again divided, and so on. It is well known that this algo-

rithm must converge to the root.

There are more ef®cient numerical methods for solving an equation than the bisection

method. In this application, however, the rate of convergence of any iterative method and

the approximation error is of minor importance since the application is basically of dis-

crete nature. There is no point in pursuing the algorithm until b1; b2, etc, can be determined

with a good number of signi®cant decimals. Therefore, the comparatively simple bi-

section method is proposed.

4.1.1. Finding the values of the functions N�b� and x�b�

When a b is selected or computed, the values of the functions N�b� and x�b� must be found.

The points on F that correspond to population units are the left-hand ends of the steps of

the step function F�x� having co-ordinates �xk; k�; k � 1; 2; :::;N (Figure 1). For a unit k

with a unique value of the strati®cation variable, the distance along F from the starting

point (x1; 0� to the point of the unit is �xk ÿ x1� � k, which is the sum of the horizontal

and the vertical parts of F. If there are two units with the same value of the strati®cation

variable, that is, if xk � xk�1 for some k, we de®ne the distance to k as �xk ÿ x1� � k. The

distance to an arbitrary point F(b) is �x�b� ÿ x�b0�� � N�b�.

If the population is not too large, it is searched through for a given b until

�xk ÿ x1� � k # b < �xk�1 ÿ x1� � k � 1. The values of N�b� and x�b� depend on whether

b is located on a vertical or a horizontal part of F. If xk � xk�1 after the search, then b is
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located on a vertical part. In this case, x�b� � xk, and N�b� � b ÿ �xk ÿ x1�, which can be

interpreted as ``the total distance along F from F�b0� to F�b� minus the horizontal parts.''

Similarly, if xk Þ xk�1, then x�b� � b ÿ k � x1 and N�b� � k.

If the population is large, it will pay to take into account some of the simplifying properties

of this application. The search is non-dynamic in the sense that the set of triples �x; k;b�,

that is the set

f�x1; 1; 1�; �x2; 2; x2 ÿ x1 � 2�; ::: ; �xk; k; xk ÿ x1 � k�; ::: ; �xN ;N; xN ÿ x1 � N�g

remains unchanged throughout the procedure. It will not even be resorted. The ®le will be

searched over and over again, often in a region within or in the vicinity of a region that has

already been searched.

4.1.2. Computation of extended stratum boundary points

Let b1, and thus E1 be given. In order to ®nd the area of the second rectangle with an area

E2 that equals E1, one wants to ®nd the value of b2 that solves the equation

E1 ÿ �N�b2� ÿ N�b1���x�b2� ÿ x�b1�� � 0 �8�

The function

Z�b2� � E1 ÿ �N�b2� ÿ N�b1���x�b2� ÿ x�b1��

is continuous and strictly decreasing on �b1; bH�. Therefore, Z�b2) has at most one root in

�b1;bH�. There is exactly one root if Z�b1� > 0 and Z�bH� # 0. There is no root if Z�b1� > 0

and Z�bH� > 0. In this case b2 and E2 are set to missing.

The algorithm above is formulated for b2, given b1. It is repeated for the pairs �b2; b3�,

�b3;b4�; :::�bHÿ2;bHÿ1�: If bi is missing in a pair �bi;bj�, then bj and Ej are set to missing.

4.1.3. Classi®cation of extended stratum boundary points

A tolerance d > 0 is speci®ed. After all extended stratum boundary points b1;b2; :::bHÿ1

are computed, the point b1 is classi®ed. If the rightmost Ekman rectangle, EH , is nonmiss-

ing it is either smaller than, larger than or equal to (with tolerance d) E1. If EH is missing, it

is considered smaller than any number. We classify b1 into the three possible outcomes:

· b1 is too large if EH � d < E1

· b1 is too small if EH > E1 � d

· b1 is good if jEH ÿ E1j # d

This classi®cation divides the graph F into three parts according to the value of b1: the ®rst part

where b1 is too small, the second one where it is good and the last part where b1 is too large.

4.1.4. An algorithm that solves (7)

1. Specify a pair �b0
1; b

00
1� of a too small and a too large value of b1, for example �b0;bH).

2. Compute the arithmetic mean of �b0
1; b

00
1�. Denote it b�

1.

3. Compute b2; b3; :::bHÿ1 given b1 � b�
1 and classify b�

1 into good, too small or too large.

4. If b�
1 is good, a solution of (7) is found and the algorithm is terminated.

Else if b�
1 is too small, go to step 1 and replace �b0

1; b
00
1� with �b�

1;b
00
1�.

Else if b�
1 is too large, go to step 1 and replace �b0

1;b
00
1� with �b0

1;b
�
1�.
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5. Applications

An arti®cial population LOGNORM1 was created by 2000 random numbers generated from a

log-normal distribution X � eZ where Z is univariate normal with mean 4 and variance 2.7

(further details in Appendix A). There were three reasons for choosing this population:

· Univariate strati®cation with one continuous strati®cation variable is often conducted

in business surveys where populations are highly skewed. It is interesting to see the

Ekman rule applied to a population of extreme skewness, where it may be question-

able to ignore the ®nite population correction (see the introductory section).

· Instead of picking a real-life population, an arti®cial one was constructed to make the

results reproducible. Hedlin (1998) applies the extended Ekman rule to a population

of Swedish businesses.

· Other authors modelling business populations include Thorburn (1991) who explores

the properties of a log-normal based estimator, and Lee, Rancourt, and SaÈrndal (1994)

who draw on a gamma distribution in a simulation study. Karlberg (1999) uses a com-

bined lognormal-logistic model. For the application presented here, a log-normal dis-

tribution is realistic enough for modelling a skewed population such as one

encountered in a business survey.

Another arti®cial population LOGNORM2 was created by rounding all realised values of

X in LOGNORM1 to the nearest 1000. Thus LOGNORM2 is a population with clusters of

units with the same value of the strati®cation variable. In fact, LOGNORM2 contains only

49 distinct values (i.e., 49 clusters). The reason for creating it was to examine how the stra-

ti®cation method proposed here works for such a population, deviating considerably from

something that you would regard as well approximable by a continuous distribution.

5.1. Framework of the simulations

Each of the LOGNORM1 and LOGNORM2 populations were divided into four strata. The

size of the total sample to be drawn from each population was set to 50 (overall sampling

rate 2.5%). As the populations are highly skewed, the stratum comprising the largest units

was predetermined to a certainty stratum. The other strata were predetermined genuine

sampling strata.

With some numerical effort the best possible strati®cation was found for the LOGNORM1

population, that is, the strati®cation minimising the variance of the expansion estimator under

Neyman allocation. Some characteristics of the best possible strati®cation are shown in Table 1.

The best possible size of stratum 4, the certainty stratum, was found to be 24. In effect,

23Hedlin: A Procedure for Strati®cation by an Extended Ekman Rule

Table 1. Characteristics of the best possible strati®cation of the LOGNORM1 population

Stratum Minimum Maximim Nh nh 1 ÿ nh=Nh Åxh S2
h

x-value x-value %

1 0 654 1,642 6 99.6 90 0.2?105

2 664 5,574 266 9 96.6 1,911 15?105

3 5,801 26,098 68 11 83.9 12,426 350?105

4 29,444 399,214 24 24 0 66,420 57,573?105

Sum 2,000 50



this reduces the population as well as the sample by 24 units. We focus on what remains of

the population when stratum 4 is covered. Note that the best possible sampling fractions in

strata 1±3, given by Neyman allocation, vary from 0.4% to 16%. Even with stratum 4

removed, the population is still highly skewed. The skewness of the remainder is about

6, which can be compared to the skewness 2 of an exponential distribution. LOGNORM1

without the 24 largest units is more skewed than the populations studied by Cochran

(1961) and Hess et al. (1966).

The best possible CV,
����������
V�Ãtx�

p
=tx, of LOGNORM1 was found to be 5.82%.

5.2. The extended Ekman rule applied to LOGNORM1

We applied the extended Ekman and the Dalenius-Hodges rules only to the remainder of

the LOGNORM1 population with the certainty stratum excluded, that is, we ®xed the

maximum value of stratum 3 to b3 � 26; 098, and we regarded that as the maximum value

of the population. This means that b3 equalled 28,074 (the sum of x�b3� � 26; 098 and

N�b3� � 1; 976) throughout the study. We let the maximum x-value of each stratum be

the ``proper'' stratum boundary point, that is bh � max�xk : k [ Ah�; h � 1; 2; 3.

The stratum boundaries obtained by the extended Ekman rule are shown in Table 2. By

the relative variance, we mean the ratio of the variance of a particular strati®cation to the

variance of the best possible strati®cation. The relative variance in this case is 1.004,

which is only a tri¯e more than unity. Thus, the extended Ekman rule performs well for

this highly skewed population. The ordinary Ekman rule (2) would have given results

very similar to those in Table 2. The Dalenius-Hodges rule gives different results depend-

ing on the choice of J (see Introduction). Tables 3 and 4 display the strati®cations obtained

with J � 200 and J � 400, respectively. The relative variance of the strati®cation in

Table 3 is 1.026 and that of Table 4 is 1.049.

5.3. The extended Ekman rule applied to LOGNORM2

When stratifying LOGNORM2, we let the certainty stratum be the same size as that for

LOGNORM1. We applied the extended Ekman rule and the Dalenius-Hodges rule to
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Table 2. Stratum boundaries of LOGNORM1 found by the extended Ekman rule

Stratum bh Nh nh

1 761 1,671 7
2 6,110 240 9
3 26,098 65 10

Sum 1,976 26

Table 3. Stratum boundaries of LOGNORM1 found by the Dalenius-Hodges rule, J � 200

Stratum bh Nh nh

1 761 1,677 7
2 4,707 217 6
3 26,098 82 13

Sum 1,976 26



the remainder of LOGNORM2. This part contains 1,976 units, which form 27 clusters

within each of which the strati®cation variable has the same value for all units. Table 5

displays this part of LOGNORM2. The ®rst cluster consists of 1,590 units, all with zero

value of the strati®cation variable. It is desirable to form one stratum out of this cluster.

The extended Ekman rule allows the upper right corner of an Ekman rectangle to be

located anywhere along F, see Figure 4. The extended Ekman rule forms a stratum

from the 1,590 units containing the zero values. The vertical and horizontal side of the cor-

responding Ekman rectangle is N�b1� � 1; 590 and x�b1� ÿ x�b0� � 915 ÿ 0, respectively.

The boundaries obtained by the extended Ekman rule are shown in Table 6.

5.4. Details of the convergence of the process

Some details of the convergence of the process of stratifying LOGNORM2 are shown in

Table 8. The boundary of the third stratum was ®xed to b3 � 26; 000, and b3 equalled

27,976 �� 26; 000 � 1; 976�. The starting value of b1 was set to 13,988 (halfway to the

maximum value). With this value of b1; N�b1� was as large as 1,949 and it was impossible

to form a second Ekman rectangle with an area equalling the area of the ®rst one. So E2

was set to missing and b1 was found too large. Even with the next value of b1, 6,994, the

®rst Ekman rectangle was very large and E2 was set to missing again. At the third iteration

b1 � 3; 497, and the second Ekman rectangle could be formed with an area equalling that

of the ®rst one. The part of the population now remaining for the third rectangle was small
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Table 4. Stratum boundaries of LOGNORM1 found by the Dalenius-Hodges rule, J � 400

Stratum bh Nh nh

1 654 1,642 6
2 3,603 234 4
3 26,098 100 16

Sum 1,976 26

Table 5. The 1976 smallest units of the LOGNORM2 population

x-value Number of units Cumulated number of units

0 1,590 1,590
1,000 192 1,782
2,000 59 1,841
3,000 32 1,873
4,000 17 1,890
5,000 15 1,905
6,000 12 1,917
7,000 9 1,926

..

.

22,000 4 1,971
23,000 1 1,972
24,000 1 1,973
25,000 2 1,975
26,000 1 1,976

Sum 1,976



and b1 was yet again found too large. The value of d was 1,500. After the fourteenth itera-

tion the absolute difference of the third and the ®rst Ekman rectangle was somewhat less

than 1,600. After the ®fteenth iteration it fell short of 1,500 and the process terminated.

The choice of 1,500 is fairly arbitrary.

5.5. Comparing with the Dalenius-Hodges rule

There is no mechanism in the Dalenius-Hodges rule that would enable it to automatically

®nd clusters and group them to strata. The boundaries it produces with J � 80 are shown

in Table 7. However, it is natural to use the clustered structure when stratifying. The basic

form of the Dalenius-Hodges rule requires that the J intervals are of equal length. As the

27 clusters in this application were equidistant in the sense that the difference between the

values of the strati®cation variable in two consecutive clusters is constant (1,000), we

could form J � 27 intervals by letting each cluster be an interval. With this J, the Dale-

nius-Hodges rule gave the same boundaries as the extended Ekman rule (Table 6). If the

clusters are not equidistant, a modi®cation of the Dalenius-Hodges rule must be used, see

Cochran (1977, p. 130).

6. Conclusion

Univariate strati®cation plays an important part in the everyday life of a survey statistician.

Many approximate rules for optimum univariate strati®cation have been proposed, the best

known being the Dalenius-Hodges rule. However, there is some arbitrariness in what

stratum boundaries you obtain with it, which makes this rule intricate to program. It is

well reported that the Ekman rule gives strati®cations just as good or better as those of

the Dalenius-Hodges rule. Examples in this report show its good performance even for

a population of extreme skewness.
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Fig. 4. Stratum 1 as obtained by the extended Ekman rule applied to LOGNORM2.

Table 6. Stratum boundaries of LOGNORM2 found by the extended Ekman rule

Stratum bh Nh Cumulated number of units

1 0 1,590 1,590
2 5,000 315 1,905
3 26,000 71 1,976

Sum 1,976



A shortcoming of the Ekman rule is that there rarely is an exact solution to the set of

equations that constitutes the Ekman rule. This means that if an approximate solution is

found, one cannot know for sure whether there is a better solution or not. This article

extends the Ekman rule to a set of equations, referred to as the extended Ekman rule, which
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Table 7. Stratum boundaries found by the Dalenius-Hodges rule, J � 80

Stratum bh Nh Cumulated number of units

1 2,000 1,783 1,783
2 7,000 136 1,919
3 26,000 57 1,976

Sum 1,976

Table 8. Some details from the iterative process of determining the stratum boundaries of the LOGNORM2

population

Iteration b0
1 b�

1 b00
1 Stratum 1 Stratum 2 Stratum 3

1 0.0 13,988.0 27,976.0 bh 13,988.0 . 27,976.0
too large N�bh� 1,949.0 . 1,976.0

x�bh� 12,039.0 . 26,000.0
Eh 23,464,011.0 . .

2 0.0 6,994.0 13,988.0 bh 6,994.0 . 27,976.0
too large N�bh� 1,905.0 . 1,976.0

x�bh� 5,089.0 . 26,000.0
Eh 9,694,545.0 . .

3 0.0 3,497.0 6,994.0 bh 3,497.0 20,562.8 27,976.0
too large N�bh� 1,782.0 1,963.0 1,976.0

x�bh� 1,715.0 18,599.8 26,000.0
Eh 3,056,130.0 3,056,139.9 96,203.2

4 0.0 1,748.5 3,497.0 bh 1,748.5 3,252.8 27,976.0
too small N�bh� 1,590.0 1,782.0 1,976.0

x�bh� 158.5 1,470.8 26,000.0
Eh 252,015.0 251,971.5 4,758,654.8

5 1,748.5 2,622.8 3,497.0 bh 2,622.8 8,432.2 27,976.0
too large N�bh� 1,622.8 1,917.0 1,976.0

x�bh� 1,000.0 6,515.2 26,000.0
Eh 1,622,750.0 1,622,855.0 1,149,601.7

..

.

14 2,503.2 2,504.9 2,506.6 bh 2,504.9 7,438.2 27,976.0
too large N�bh� 1,590.0 1,905.0 1,976.0

x�bh� 914.9 5,533.2 26,000.0
Eh 1,454,740.3 1,454,743.0 1,453,145.4

15 2,503.2 2,504.1 2,504.9 bh 2,504.1 7,432.8 27,976.0
good N�bh� 1,590.0 1,905.0 1,976.0

x�bh� 914.1 5,527.8 26,000.0
Eh 1,453,382.4 1,453,325.9 1,453,525.5



gives under general conditions the best solution to the Ekman equations. The extended

Ekman rule worked well even when applied to a population with 1,976 units but only

27 distinct values of the strati®cation variable.

This article gives an algorithm for the extended Ekman rule. The algorithm put forward

here converges necessarily to the solution under very general conditions. The convergence

appears to be adequately fast. However, if this is not the case for large populations, a more

ef®cient numerical method for solving an equation than the bisection method could be

used.

Appendix

The SAS-program below created the two lognormal populations used in the simulation

studies. The program was run on SAS version 6.11 under Windows 95.

data lognorm1;

do i�1 to 2000;

x�exp(4�2.7*normal(10));

output;

end;

drop i;

run;

data lognorm2;

do i�1 to 2000;

x�round(exp(4�2.7*normal(10)),1000);

output;

end;

drop i;

run;
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