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Selective editing is often used for the data of structural business surveys. Records containing
potentially influential errors are edited manually, whereas the other, noncritical records can be
edited automatically. At Statistics Netherlands, the automatic editing is performed by an
advanced software package called SLICE. Prior to this several types of obvious
inconsistencies are detected and corrected deductively. This article describes two additional
types of frequently occurring obvious inconsistencies, sign errors and rounding errors. Simple
algorithms are given that detect and correct these errors. Correction of these errors in a
separate step will increase the efficiency of the subsequent editing process, because more
records will be eligible (and suitable) for automatic editing. By way of illustration, the
algorithms are applied to real data from the Dutch structural business survey.
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1. Introduction

It is well-known that data collected in a survey or register contains errors. In the case of a

survey, these errors may be introduced when the respondent fills in the questionnaire or

during the processing of survey forms at the statistical office. It is important to resolve the

errors by editing the data, because figures based on erroneous data may be biased or

logically inconsistent. For the structural business statistics, all survey variables are

quantitative and many (linear) relationships between them can be formulated. Thus, a set

of constraints called edit rules is established. Two examples of edit rules are

profit ¼ turnover 2 costs

and

number of employees ðin personsÞ$ number of employees ðin full time equivalent ðfteÞÞ

If the data in a particular record violates an edit rule, the record is found to be inconsistent

and it is deduced that some variable(s) must be in error.

q Statistics Sweden

1 Statistics Netherlands, P.O. Box 24500, 2490 HA The Hague, The Netherlands. Email: sshs@cbs.nl
Acknowledgments: The author wants to thank Jacco Daalmans, Bram Duyx, Jeroen Pannekoek, Caren
Tempelman and Ton de Waal at Statistics Netherlands for many helpful contributions and suggestions. He also
thanks the Associate Editor and four anonymous referees for their comments on the first draft, which have greatly
improved this article. The views expressed in this article are those of the author and do not necessarily reflect the
policies of Statistics Netherlands.

Journal of Official Statistics, Vol. 27, No. 3, 2011, pp. 467–490



A distinction is often made between systematic errors and random errors. According to

Eurostat (2007, §3.3.1), an error is systematic if it is reported consistently over time by

different respondents. This type of error occurs when respondents consistently

misunderstand a survey question, e.g. by reporting financial amounts in Euros rather

than the requested multiples of 1,000 Euros (this example is called a unity measure error,

cf. Di Zio et al. 2005). A structural fault in the data processing system might also introduce

systematic errors. Since it is reported consistently by a number of respondents, an

undiscovered systematic error can lead to biased aggregates. Once identified, a systematic

error can be corrected deductively, because the underlying error mechanism is assumed to

be known. Random errors on the other hand do not have a structural cause. An example of

a random error occurs when a particular “1” on a particular survey form is accidentally

keyed in as a “7” during data processing.

At Statistics Netherlands, selective editing is used to clean the data collected for

structural business statistics (De Jong 2002). This means that only records containing

potentially influential errors are edited manually by subject-matter specialists, whereas the

remaining records are edited automatically. For the latter step, many statistical institutes

have implemented error localisation algorithms based on a generalisation of the Fellegi-

Holt paradigm (Fellegi and Holt 1976), which states that the smallest possible (weighted)

number of variables should be labelled erroneous such that the record can be made

consistent with every edit rule. This paradigm is based on the assumption that the data

contains only random errors.

Examples of software packages for automatic editing based on the Fellegi-Holt

paradigm are: GEIS (see Kovar and Withridge 1990) and its successor Banff (see Banff

Support Team 2003), SPEER (see Winkler and Draper 1997), DISCRETE (see Winkler

and Petkunas 1997) and AGGIES (see Todaro 1999). At Statistics Netherlands, the

software package SLICE was developed for automatic editing. SLICE also uses an error

localisation algorithm based on the Fellegi-Holt paradigm; a description of this algorithm

can be found in De Waal and Quere (2003) and De Waal (2003).

A plausibility indicator is calculated for each record to assess whether it may contain

influential errors and should be edited manually (Hoogland 2006). The plausibility

indicator is calibrated such that all records that receive a score above a certain threshold

are deemed suitable for automatic editing. Only the records with the lowest scores on the

plausibility indicator are edited manually. In addition to this, the data of very large

companies is always edited manually, since it is considered impossible to construct

meaningful aggregates unless this part of the data set is error-free.

Selective editing leads to a more efficient editing process than traditional editing (where

every record is edited by hand), because part of the data stream is not reviewed by subject-

matter specialists any more. However, Fellegi-Holt-based algorithms for automatic error

localisation are not considered suitable for editing records that contain either influential or

systematic errors. In particular, the correction of systematic errors often requires changing

more variables than the Fellegi-Holt paradigm suggests. For instance, a unity measure

error affects all financial variables on the survey form, but it leads to few violated edit

rules. Furthermore, in practice the automatic error localisation problem becomes too

complicated if many variables contain erroneous values and/or if many edit rules are

violated (De Waal and Quere 2003). For the Dutch structural business survey, because of
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the large number of edit rules involved, the error localisation problem tends to be too

complex to solve with SLICE if more than, say about 15 variables have to be changed.

To preserve the quality of the statistical output, only records that contain a limited

number of noninfluential random errors should be edited automatically. Ideally, the

plausibility indicator filters out all records containing influential errors or too many

inconsistencies. Prior to this, several types of obvious errors can be detected and resolved

automatically in a separate step. A systematic error is called obvious if it can be detected

“easily”, i.e. by applying some basic, specific search algorithm. Obvious errors are easy to

correct, because the underlying cause of the error is detectable. An example of such an

error is the unity measure error, which can be detected by comparing the reported amounts

with reference values (see Section 2).

It is useful to detect and correct obvious inconsistencies as early as possible in the

editing process, since it is a waste of resources if subject-matter specialists have to deal

with them. When obvious inconsistencies are corrected in a separate step, before the

plausibility indicator is calculated, the efficiency of the selective editing process increases

because more records will be eligible for automatic editing. Moreover, solving the error

localisation problem becomes easier once obvious inconsistencies have been removed,

since the number of violated edit rules becomes smaller.

Furthermore, since obvious inconsistencies are systematic errors, they can be corrected

more accurately by a specific, deductive algorithm than by a general error localisation

algorithm based on the Fellegi-Holt paradigm. The deductive algorithm uses knowledge of

the underlying cause of the error, so that the corrected values are true values, assuming that

the error has been detected correctly. By contrast, the Fellegi-Holt-based algorithm does

not use this knowledge, and the values returned by this algorithm are consistent with

respect to the edit rules but are not necessarily true values. Hence, if a certain type of

systematic error is expected to occur commonly and if a specific, reliable search routine is

available to detect and correct it, it makes sense to apply this routine rather than to rely on

the general algorithm used by SLICE. After all, if the error is left in the data to be resolved

by SLICE, at best the general algorithm will detect and correct the error the same way the

simple algorithm would have done, but at a much higher computational cost.

The currently implemented editing process for the structural business statistics at

Statistics Netherlands contains a step during which three obvious systematic errors are

treated. Section 2 provides a brief description of this step. Other obvious inconsistencies

have been discovered by comparing raw and manually edited data from past cycles of the

structural business survey. This study has resulted in several new deductive correction

methods (Scholtus 2008; 2009).

The purpose of this article is to present new algorithms for the detection and correction

of two types of errors. Section 3 deals with so-called sign errors and interchanged revenues

and costs. Section 4 describes a heuristic method for correcting rounding errors. Rounding

errors are not obvious inconsistencies in the true sense of the word (they can be considered

as random errors), but the efficiency of the editing process is expected to increase if these

errors are also treated separately. Section 5 presents some results of an application of the

two algorithms to real-world data. Finally, a few concluding remarks follow in Section 6.

Due to item nonresponse, the unedited data contains a substantial number of missing

values. The algorithms described in this article assume that these missing values have been
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temporarily replaced with zeros. This is merely a precondition for determining which edit

rules are violated and which are satisfied, and should not be considered a full imputation.

When the obvious inconsistencies have been corrected, all placeholder zeros should be

replaced by missing values again, to be imputed by a valid method later. Clearly, this

requires that placeholder zeros can be distinguished from actually reported zeros.

2. Current Approach at Statistics Netherlands

The currently implemented editing process for structural business statistics at Statistics

Netherlands contains a step in which three kinds of obvious systematic errors are detected.

These errors are treated deductively before any other correction is made in the data of the

processed survey forms.

The first of these obvious inconsistencies is the unity measure error from Section 1: the

amounts on the survey form are sometimes reported in Euros instead of in 1,000 Euros.

This particular unity measure error is also referred to as a uniform 1,000-error. It is

important to detect this error because otherwise publication figures of all financial items

will be overestimated. Depending on which auxiliary information is available, two

methods are used to detect uniform 1,000-errors. If the respondent is present in the VAT

register, the amount of turnover in the register is compared to the reported turnover in the

survey. For the other respondents, the amount of reported turnover per reported number of

employees (in fte) is compared to its median in the edited data of the previous year. If a

large discrepancy is found by either method, all financial amounts reported by the

respondent are divided by 1,000. This is how uniform 1,000-errors are currently detected

at Statistics Netherlands. Different methods are suggested by Di Zio et al. (2005) and

Al-Hamad et al. (2008).

The second obvious inconsistency occurs when a respondent adds a redundant minus

sign to a reported value. This sometimes happens with variables that have to be subtracted,

even though there already is a printed minus sign on the survey form. As a result, the value

of the variable becomes incorrectly negative after data processing. The resulting

inconsistency can be detected and corrected easily: the reported amount is simply replaced

by its absolute value.

The third and final obvious inconsistency occurs when respondents report component

items of a sum but leave the corresponding total blank. When this is detected, the total

value is calculated from the reported items and filled in automatically.

3. Sign Errors

3.1. The Profit-and-loss Account

The profit-and-loss account is a part of the questionnaire used for structural business

statistics where the respondent has to fill in a number of balance amounts. These balance

variables are denoted by x0; x1; : : : ; xn21. A final balance amount xn called the pretax

results is found by adding up the other balance variables. That is, the data should conform

to the following edit rule:

x0 þ x1 þ · · · þ xn21 ¼ xn ð3:1Þ
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Rule (3.1) is sometimes referred to as the external sum. A balance variable is defined as the

difference between a revenue item and a cost item. If these items are also asked in the

questionnaire, the following edit rule should hold:

xk;r 2 xk;c ¼ xk ð3:2Þ

where xk;r denotes the revenue item and xk;c the cost item. Rules of this form are referred to

as internal sums.

A statistical office may decide not to ask the revenues and costs for every balance

variable in the survey, to limit the burden on respondents. To keep the notation simple but

sufficiently general, it is assumed that the balance variables are arranged such that only

x0; x1; : : : ; xm are split into revenues and costs, for some m [ {0; 1; : : : ; n2 1}. Thus,

the following set of edit rules is used:

x0 ¼ x0;r 2 x0;c

..

.

xm ¼ xm;r 2 xm;c

xn ¼ x0 þ x1 þ · · · þ xn21

8>>>>>><
>>>>>>:

ð3:3Þ

In this notation the 0th balance variable x0 stands for operating results, and x0;r and x0;c

represent operating returns and operating costs, respectively.

3.2. Sign Errors and Interchanged Revenues and Costs

Table 1 displays the structure of the profit-and-loss account from the structural business

statistics questionnaire that was used at Statistics Netherlands until 2005. The associated

edit rules are given by (3.3), with n ¼ 4 and m ¼ n2 1 ¼ 3. Table 1 also displays four

example records that are inconsistent. The first three example records have been

Table 1. Structure of the profit-and-loss account in the structural business statistics until 2005, with four

example records, (a) – (d)

Variable Full name (a) (b) (c) (d)

x0;r Operating returns 2,100 5,100 3,250 5,726
x0;c Operating costs 1,950 4,650 3,550 5,449
x0 Operating results 150 450 300 276

x1;r Financial revenues 0 0 110 17
x1;c Financial expenditure 10 130 10 26
x1 Financial result 10 130 100 10

x2;r Provisions rescinded 20 20 50 0
x2;c Provisions added 5 0 90 46
x2 Balance of provisions 15 20 40 46

x3;r Exceptional income 50 15 30 0
x3;c Exceptional expenses 10 25 10 0
x3 Exceptional result 40 10 20 0

x4 Pretax results 195 610 2140 221
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constructed for this article with nice “round” amounts to improve readability, but the types

of inconsistencies present were taken from actual records from the structural business

statistics of 2001. The fourth example record contains realistic values.

In Example (a) two edit rules are violated: the external sum and the internal sum with

k ¼ 1. In this case, the profit-and-loss account can be made fully consistent with all edit

rules by just changing the value of x1 from 10 to 210 (see Table 2). This is the natural way

to obtain a consistent profit-and-loss account here, since any other explanation would

require more variables to be changed. Moreover, it is quite conceivable that the minus sign

in x1 was left out by the respondent or “lost” during data processing.

Two internal sums are violated in example (b), but the external sum holds. The natural

way to obtain a consistent profit-and-loss account here is by interchanging the values of

x1;r and x1;c, and also of x3;r and x3;c (see Table 2). By treating the inconsistencies this way,

full use is made of the amounts actually filled in by the respondent and no imputation of

synthetic values is necessary.

The two types of errors found in Examples (a) and (b) are referred to as sign errors and

interchanged revenues and costs, respectively. For the sake of brevity, the term sign error is

also used to refer to both types. In an evaluation study at Statistics Netherlands, which

compared raw data to manually edited data, it was found that a substantial number of

respondents made these errors. Moreover, it was found that these errors were often not

correctly identified by SLICE and hence resolved in a different way during automatic

editing. In particular, it is very difficult to handle interchanged revenues and costs correctly

by means of the Fellegi-Holt paradigm, because this requires changing two variables where

it would actually suffice to change one. Therefore, it seems advantageous to add a separate

detection step for sign errors at the beginning of the automatic editing process.

Sign errors and interchanged revenues and costs are closely related and should therefore

be searched for by one detection algorithm. In the remainder of this section such an

algorithm is formulated, working from the assumption that if an inconsistent record can be

made to satisfy all edit rules in (3.3) by only changing signs of balance variables and/or

Table 2. Corrected versions of the example records from Table 1. Changes are shown in boldface

Variable Full name (a) (b) (c) (d)

x0;r Operating returns 2,100 5,100 3,250 5,726
x0;c Operating costs 1,950 4,650 3,550 5,449
x0 Operating results 150 450 2300 276

x1;r Financial revenues 0 130 110 17
x1;c Financial expenditure 10 0 10 26
x1 Financial result 210 130 100 210

x2;r Provisions rescinded 20 20 90 0
x2;c Provisions added 5 0 50 46
x2 Balance of provisions 15 20 40 246

x3;r Exceptional income 50 25 30 0
x3;c Exceptional expenses 10 15 10 0
x3 Exceptional result 40 10 20 0

x4 Pretax results 195 610 2140 221
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interchanging revenue items and cost items, this is indeed the way the record should be

corrected.

It should be noted that operating returns (x0;r) and operating costs (x0;c) differ from the

other variables in the profit-and-loss account in the sense that they are also present in other

edit rules, connecting them to items from other parts of the survey. For instance, operating

costs should equal the sum of total labour costs, total machine costs, etc. If x0;r and x0;c

were interchanged to suit the 0th internal sum, other edit rules might be violated. It is

therefore not allowed to interchange x0;r and x0;c when detecting sign errors. Because of

the way the questionnaire is designed, it seems highly unlikely that any respondent would

mix up these two amounts anyway.

As stated above, a record contains a sign error if it satisfies the following two conditions:

. at least one edit rule in (3.3) is violated;

. it is possible to satisfy (3.3) by only changing the signs of balance amounts and/or

interchanging revenue and cost items other than x0;r and x0;c.

An equivalent way of formulating this is to say that an inconsistent record contains a sign

error if the following set of equations has a solution:

x0s0 ¼ x0;r 2 x0;c

x1s1 ¼ ðx1;r 2 x1;cÞt1

..

.

xmsm ¼ ðxm;r 2 xm;cÞtm

xnsn ¼ x0s0 þ x1s1 þ · · · þ xn21sn21

ðs0; : : : ; sn; t1; : : : ; tmÞ [ { 2 1; 1}nþmþ1

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3:4Þ

Note that in (3.4) the x’s are used as known constants rather than unknown variables. Thus,

a different set of equations in ðs0; : : : ; sn; t1; : : : ; tmÞ is found for each record.

Moreover, once a solution to (3.4) has been found, it is immediately clear how to obtain

a consistent profit-and-loss account: if sj ¼ 21 then the sign of xj must be changed, and if

tk ¼ 21 then the values of xk;r and xk;c must be interchanged. It is easy to see that the

resulting record satisfies all edit rules (3.3). Since x0;r and x0;c may not be interchanged, no

variable t0 is present in (3.4).

Example Consider (3.4) for Example (c) from Table 1:

300s0 ¼ 2300

100s1 ¼ 100t1

40s2 ¼ 240t2

20s3 ¼ 20t3

2140s4 ¼ 300s0 þ 100s1 þ 40s2 þ 20s3

ðs0; s1; s2; s3; s4; t1; t2; t3Þ [ { 2 1; 1}8

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3:5Þ

This system has the (unique) solution ðs0 ¼ 21; s1 ¼ 1; s2 ¼ 1; s3 ¼ 1; s4 ¼ 1;

t1 ¼ 1; t2 ¼ 21; t3 ¼ 1Þ. This solution shows that the value of x0 should be changed
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from 300 to 2300 and that the values of x2;r and x2;c should be interchanged. This

correction indeed yields a fully consistent profit-and-loss account with respect to (3.3), as

can be seen in Table 2. O

An important question is: does system (3.4) always have a unique solution? Scholtus

(2008) derives the following sufficient condition for uniqueness: if x0 – 0, xn – 0, and if

the equation

l0x0 þ l1x1 þ · · · þ ln21xn21 ¼ 0

does not have any solution ðl0; l1; : : : ; ln21Þ [ { 2 1; 0; 1}n for which at least one term

ljxj – 0, then an inconsistency in the record can be resolved by changing signs and/or

interchanging revenues and costs in at most one way. It appears that this condition is

usually satisfied; in the data examined at Statistics Netherlands, the condition holds for

over 95 per cent of all records. In the rare case that system (3.4) has more than one

solution, it makes sense to assume that most of the original values were reported correctly

by the respondent and therefore choose the solution with the smallest number of 21’s

among sj and tk. This assumption will indeed be made in the next subsection.

3.3. A Binary Linear Programming Problem

Detecting a sign error in a given record is equivalent to solving the corresponding system

(3.4). Therefore, all that is needed to implement the detection of sign errors is a

systematic method to solve this system. Before addressing this point, it is convenient to

write (3.4) in matrix notation to shorten the expressions. Define the ðmþ 2Þ £ ðnþ 1Þ-

matrix U by

U ¼

x0 0 · · · 0 0 · · · 0 0

0 x1 · · · 0 0 · · · 0 0

..

. ..
. . .

. ..
. ..

. . .
. ..

. ..
.

0 0 · · · xm 0 · · · 0 0

x0 x1 · · · xm xmþ1 · · · xn21 2xn

2
6666666664

3
7777777775

and define the ðmþ 2Þ £ ðmþ 1Þ-matrix V by

V ¼

x0;r 2 x0;c 0 · · · 0

0 x1;r 2 x1;c · · · 0

..

. ..
. . .

. ..
.

0 0 · · · xm;r 2 xm;c

0 0 · · · 0

2
6666666664

3
7777777775
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Note that the bottom row of V consists entirely of zeros. Moreover, define s ¼

ðs0; s1; : : : ; snÞ
0 and t ¼ ð1; t1; : : : ; tmÞ

0. Using this notation, (3.4) can be rewritten as:

Us2 Vt ¼ 0;

s [ { 2 1; 1}nþ1;

t [ {1} £ { 2 1; 1}m;

8>><
>>: ð3:6Þ

where 0 denotes the ðmþ 2Þ-vector of zeros.

The least sophisticated way of finding a solution to (3.6) would be to simply try all

possible vectors s and t. Since m and n are small in this situation, the number of

possibilities is not very large and this approach is actually quite feasible. However, it is

also possible to reformulate the problem as a so-called binary linear programming

problem. This has the advantage that standard software may be used to implement the

method. Moreover, it will be seen presently that this formulation can be adapted easily to

accommodate possible rounding errors present in the data.

The following binary variables are introduced to reformulate the problem:

sj ¼
1 2 sj

2
; j [ {0; 1; : : : ; n}

tk ¼
1 2 tk

2
; k [ {1; : : : ;m}

Finding an optimal solution to (3.6) may be restated as follows:

min
Xn

j¼0
sj þ

Xm

k¼1
tk

such that :

Uð12 2sÞ2 Vð12 2tÞ ¼ 0;

s [ {0; 1}nþ1; t [ {0} £ {0; 1}m;

ð3:7Þ

where 1 is a vector of ones, s ¼ ðs0;s1; : : : ;snÞ
0 and t ¼ ð0; t1; : : : ; tmÞ

0.

Observe that in this formulation the number of variables sj and tk that are equal to 21 is

minimised, i.e., the solution is searched for that results in the smallest number of changes

being made in the record. Obviously, if a unique solution to (3.6) exists, then this is also

the solution to (3.7). The binary linear programming problem may be solved by applying a

standard branch and bound algorithm. Since n and m are small, very little computation

time is needed to find the solution.

3.4. Allowing for Rounding Errors

It often happens that balance edit rules are violated by a very small difference. For

instance, a reported total value is just one or two units smaller or larger than the sum of the

reported item values. These inconsistencies are called rounding errors if the absolute

difference is no larger than d units. In the examples in this article, d is chosen equal to 2. In

the profit-and-loss account, rounding errors can occur in two ways. Firstly the pretax

results may differ slightly from the sum of the balance amounts (a rounding error in the

external sum), and secondly a balance amount may just disagree with the difference

between the reported revenue and cost items (a rounding error in an internal sum).
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Rounding errors often occur in conjunction with other errors. In particular, a record

might contain a sign error that is obscured by a rounding error. Column (d) in Table 1

shows an example of such a record. If the method described in the previous subsection is

applied directly, the sign error will not be detected.

Fortunately, the binary linear programming problem (3.7) can be adapted to take the

possibility of rounding errors into account. This leads to the following problem:

min
Xn

j¼0
sj þ

Xm

k¼1
tk

such that :

2d # Uð12 2sÞ2 Vð12 2tÞ # d;

s [ {0; 1}nþ1; t [ {0} £ {0; 1}m;

ð3:8Þ

where d is a vector of d’s and the rest of the notation is obtained as before. Problem (3.7) is

obtained by taking d ¼ 0, i.e., by assuming that no rounding errors occur.

Example If (3.8) is set up for Example (d) from Table 1, with d ¼ 2, the following

solution is found: ðs0 ¼ 0;s1 ¼ 1;s2 ¼ 1;s3 ¼ 0;s4 ¼ 0; t1 ¼ 0; t2 ¼ 0; t3 ¼ 0Þ.

Recalling that sj ¼ 1 if and only if sj ¼ 21 (and a similar expression for tk and tk), the

sign error may be removed by changing the signs of both x1 and x2. As can be seen in

Table 2, this correction indeed eliminates the sign error. It does not lead to a fully

consistent profit-and-loss account, however, because there are rounding errors left in the

data. To remove these, a separate method is needed. This problem will be discussed in

Section 4. O

3.5. Summary

The following plan summarises the correction method for sign errors and interchanged

revenues and costs. The input consists of a record that does not satisfy (3.3) and a choice

for d.

1. Determine the matrices U and V and set up the binary linear programming problem

(3.8).

2. Solve (3.8). If no solution is possible, then the record does not contain a sign error.

If a solution is found, continue.

3. Replace xj by 2xj for every sj ¼ 1 and interchange xk;r and xk;c for every tk ¼ 1.

If Step 3 is performed, the resulting record satisfies (3.3) barring possible rounding errors.

4. Rounding Errors

4.1. Introduction

It was mentioned in the previous section that very small inconsistencies with respect to

balance edit rules often occur, e.g. a total value is just one unit smaller or larger than the

sum of the component items. Such inconsistencies are called rounding errors, because they

may be caused by values being rounded off to multiples of 1,000. It is not straightforward

to obtain a so-called consistent rounding, i.e., to make sure that the rounded-off values
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have the same relation as the original values. For example, if the terms of the sum

2:7 þ 7:6 ¼ 10:3 are rounded off to natural numbers the ordinary way, then the additivity

is destroyed: 3 þ 8 – 10. Several algorithms for consistent rounding are available in the

literature; see e.g. Salazar-González et al. (2004). Obviously, very few respondents are

even aware of these methods, let alone inclined to use them while filling in a questionnaire.

By their nature, rounding errors have virtually no influence on aggregates, and in this

sense the choice of method to correct them is unimportant. However, as mentioned in

Section 1, the complexity of the automatic error localisation problem in SLICE increases

rapidly as the number of violated edit rules becomes larger, irrespective of the magnitude

of the violations. Thus, a record containing many rounding errors and few “real” errors

might not be suitable for automatic editing by means of a Fellegi-Holt-based approach and

might have to be edited manually. This is clearly a waste of resources. It is therefore

advantageous to resolve all rounding errors in the early stages of the editing process, for

instance immediately after the correction of obvious inconsistencies. Given the

uninfluential nature of rounding errors, it might seem like a good approach to not correct

them at all during automatic editing. Using SLICE, the only way to achieve this is by

replacing each balance edit rule by two inequality edit rules that bound the difference of

the total amount and its items between, say, 22 and 2. Unfortunately, this would make the

automatic editing much more computationally demanding, because the error localisation

algorithm of SLICE can handle equalities more efficiently than inequalities (De Waal and

Quere 2003). On balance, it is actually more efficient to handle rounding errors in a

separate step.

In the remainder of this section, a heuristic method is described to resolve rounding

errors in business survey data. This method is called a heuristic method because it does not

return a solution that is “optimal” in some sense, e.g. that the number of changed variables

or the total change in values is minimised. The rationale for using such a method is that the

adaptations needed to resolve rounding errors are very small, and that it is therefore not

necessary to use a sophisticated and potentially time-consuming search algorithm.

Although the idea behind the method is quite simple, some results from matrix algebra

are needed to explain why it works. The necessary background will be briefly summarised

in Section 4.2.

4.2. Matrix Theory

Recall that Cramer’s Rule is a theorem named after the Swiss mathematician

Gabriel Cramer (1704–1752) which states the following. Let A ¼ ½aij� be an invertible

p £ p-matrix. The unique solution x ¼ ½x1; : : : ; xp�
0 to the system Ax ¼ b is given by:

xk ¼
detBk

detA
; k ¼ 1; : : : ; p;

where Bk denotes the matrix found by replacing the kth column of A by b. An alternative

way of formulating this, is that for any invertible matrix A,

A21 ¼
1

detA
A†; ð4:1Þ

where A† denotes the adjoint matrix of A. The adjoint matrix is found by transposing the
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matrix of cofactors: ðA†Þji ¼ ð21ÞiþjdetCij, where Cij is the matrix A with the ith row and

the jth column removed. For a proof of (4.1), see e.g., Harville (1997, Section 13.5).

A square matrix is called unimodular if its determinant is equal to 1 or 21. The

following property is an immediate consequence of Cramer’s Rule.

Property 4.1 If A is an integer-valued unimodular matrix and b is an integer-valued

vector, then the solution to the system Ax ¼ b is also integer-valued.

A (not necessarily square) matrix for which the determinant of every square submatrix

is equal to 0, 1 or 21 is called totally unimodular. That is to say, every square submatrix of

a totally unimodular matrix is either singular or unimodular. Clearly, in order to be totally

unimodular, a matrix must have all elements equal to 0, 1 or 21. A stronger version of

Property 4.1 can be proved for the submatrices of a totally unimodular matrix.

Property 4.2 Let B be a square submatrix of a totally unimodular matrix. If B is

invertible, all elements of B21 are in { 2 1; 0; 1}.

Proof This is easily seen using the adjoint matrix B †. Since jdetBj ¼ 1 and all cofactors

are equal to 0, 1 or 21, the property follows immediately from Equation (4.1). B

Verifying whether a matrix is totally unimodular by directly applying the definition is

usually impossible – unless the matrix happens to be very small – because the number of

determinants to evaluate is simply too high. Scholtus (2008) lists some results on total

unimodularity that may be used in practice to determine whether a given matrix is totally

unimodular without computing determinants.

4.3. The Scapegoat Algorithm

4.3.1. Basic Idea

When the survey variables are denoted by the vector x ¼ ½x1; : : : ; xp�
0, the balance edit

rules can be written as a linear system

Rx ¼ a ð4:2Þ

where each row of the r £ p-matrix R defines an edit rule and each column corresponds to a

survey variable. The vector a ¼ ½a1; : : : ; ar�
0 contains any constant terms that occur in the

edit rules. Denoting the ith row of R by r0i, an edit rule is violated when jr 0ix2 aij . 0. The

inconsistency is called a rounding error when 0 , jr 0ix2 aij # d, where d . 0 is small.

Similarly, the edit rules that take the form of a linear inequality can be written as

Qx $ b ð4:3Þ

where each edit rule is defined by a row of the q £ p-matrix Q together with a constant from

b ¼ ½b1; : : : ; bq�
0. It is assumed until Section 4.3.4 that only balance edit rules are given.

The idea behind the heuristic method is as follows. For each record containing rounding

errors, a set of variables is selected beforehand. Next, the rounding errors are resolved by

only adjusting the values of these selected variables. Hence, the name scapegoat algorithm

seems appropriate. The name “scapegoat algorithm” was coined by Léander

Kuijvenhoven (Statistics Netherlands).
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In fact, the algorithm performs the selection in such a way that exactly one choice of

values exists for the selected variables such that all rounding errors are resolved. Different

variables are selected for each record to minimise the effect of the adaptations on

aggregates.

It is assumed that the r £ p-matrix R satisfies r # p and rank ðRÞ ¼ r, that is: the number

of variables should be at least as large as the number of restrictions and no redundant

restrictions may be present. Clearly, these are very mild assumptions. Additionally, the

scapegoat algorithm becomes simpler if R is a totally unimodular matrix. At Statistics

Netherlands, it was found that matrices of balance edit rules used for structural business

statistics are always of this type. A similar observation is made by De Waal (2002, §3.4.1).

An inconsistent record x is given, possibly containing both rounding errors and other

errors. In the first step of the scapegoat algorithm, all rows of R for which jr 0ix2 aij . d

are removed from the matrix and the associated constants are removed from a. The

resulting r0 £ p-matrix is denoted by R0 and the resulting r0-vector of constants by a0. It

may happen that the record satisfies the remaining balance edit rules R0x ¼ a0. In that

case, the algorithm stops here.

It is easy to see that if R satisfies the assumptions above, then so does R0. Hence

rank ðR0Þ ¼ r0 and R0 has r0 linearly independent columns. The r0 leftmost linearly

independent columns may be found by putting the matrix in row echelon form through

Gaussian elimination, as described by Fraleigh and Beauregard (1995, §2.2), or

alternatively by performing a QR-decomposition with column pivoting, as discussed by

Golub and Van Loan (1996, §5.4). (How these methods work is irrelevant for the present

purpose.) Since the choice of scapegoat variables and hence of columns should vary

between records, a random permutation of columns is performed beforehand, yielding
~R0. The variables of x are permuted accordingly to yield ~x.

Next, ~R0 is partitioned into two submatrices R1 and R2. The first of these is an r0 £ r0-

matrix that contains the leftmost linearly independent columns of ~R0, the second is an

r0 £ ð p2 r0Þ-matrix containing all other columns. The vector ~x is also partitioned into

subvectors x1 and x2, containing the variables associated with the columns of R1 and R2,

respectively. Thus

~R0 ~x ¼ a0 becomes
�
R1 R2

� x1

x2

" #
¼ a0

At this point, the variables from x1 are selected as scapegoat variables and the variables

from x2 remain fixed. Therefore the values of x2 are filled in from the original record to

obtain the following system:

R1x1 ¼ a0 2 R2x2 ; c ð4:4Þ

where c is a vector of known constants.

By construction, the square matrix R1 is of full rank and therefore invertible. Thus (4.4)

has the unique solution x̂1 ¼ R21
1 c. In general, this solution might contain fractional

values, whereas most business survey variables are restricted to be integer-valued. If this is

the case, a controlled rounding algorithm similar to the one described in Salazar-González

et al. (2004) can be applied to the values of ½x̂ 01; x
0
2�

0 to obtain an integer-valued solution to
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R0x ¼ a0. Note however that this is not possible without slightly changing the value of at

least one variable from x2 too.

If R happens to be a totally unimodular matrix, this problem does not occur. In that case

detR1 is equal to 21 or 1, and Property 4.1 says that x̂1 is always integer-valued. In the

remainder of this article, it is assumed that R is indeed totally unimodular.

4.3.2. An Example

To illustrate the scapegoat algorithm, a small-scale example now follows. Suppose a data

set contains records of eleven variables x1; : : : ; x11 that should conform to the following

five balance edit rules:

x1 þ x2 ¼ x3

x2 ¼ x4

x5 þ x6 þ x7 ¼ x8

x3 þ x8 ¼ x9

x9 2 x10 ¼ x11

9>>>>>>>>=
>>>>>>>>;

ð4:5Þ

These edit rules may be written as Rx ¼ 0, with x ¼ ½x1; : : : ; x11�
0 and

R ¼

1 1 21 0 0 0 0 0 0 0 0

0 1 0 21 0 0 0 0 0 0 0

0 0 0 0 1 1 1 21 0 0 0

0 0 1 0 0 0 0 1 21 0 0

0 0 0 0 0 0 0 0 1 21 21

2
66666664

3
77777775

ð4:6Þ

Thus a ¼ 0 here. It is easily established that rank ðRÞ ¼ 5. Moreover, it can be seen that R

is totally unimodular by repeatedly applying the following property: a matrix containing

only elements from { 2 1; 0; 1} is totally unimodular, if and only if the submatrix found by

removing all columns or rows with less than two non-zero elements is totally unimodular

(see Scholtus 2008 for a proof).

The following record is inconsistent with respect to (4.5):

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

12 4 15 4 3 1 8 11 27 41 213

This record violates all edit rules, except for x2 ¼ x4. In each instance, the violation is

small enough to qualify as a rounding error. Thus in this example R0 is identical to R.

A random permutation is applied to the elements of x and the columns of R. Suppose

that the permutation is given by

1 ! 11; 2 ! 8; 3 ! 2; 4 ! 5; 5 ! 10; 6 ! 9; 7 ! 7; 8 ! 1; 9 ! 4;

10 ! 3; 11 ! 6:

Journal of Official Statistics480



This yields the following result:

~R ¼

0 21 0 0 0 0 0 1 0 0 1

0 0 0 0 21 0 0 1 0 0 0

21 0 0 0 0 0 1 0 1 1 0

1 1 0 21 0 0 0 0 0 0 0

0 0 21 1 0 21 0 0 0 0 0

2
66666664

3
77777775

It so happens that the first five columns of ~R are linearly independent. Thus R1 consists

of the first five columns of ~R, and R2 consists of the remaining six columns. The scapegoat

variables are those that correspond to the columns of R1, that is to say

x8; x3; x10; x9 and x4. The original values from the record are filled in for the non-

scapegoat variables to calculate the constant vector c:

c ¼ 2R2

x11

x7

x2

x6

x5

x1

2
66666666664

3
77777777775
¼ 2

0 0 1 0 0 1

0 0 1 0 0 0

0 1 0 1 1 0

0 0 0 0 0 0

21 0 0 0 0 0

2
66666664

3
77777775

213

8

4

1

3

12

2
66666666664

3
77777777775
¼

216

24

212

0

213

2
66666664

3
77777775

Thus, the following system in x1 is obtained:

R1x1 ¼

0 21 0 0 0

0 0 0 0 21

21 0 0 0 0

1 1 0 21 0

0 0 21 1 0

2
66666664

3
77777775

x8

x3

x10

x9

x4

2
666666664

3
777777775
¼

216

24

212

0

213

2
66666664

3
77777775
¼ c

Solving this system yields: x̂3 ¼ 16; x̂8 ¼ 12; x̂9 ¼ 28; x̂4 ¼ 4 and x̂10 ¼ 41. When the

original values of the variables in x1 are replaced by these values, the record becomes

consistent with respect to (4.5):

x1 x2 x̂3 x̂4 x5 x6 x7 x̂8 x̂9 x̂10 x11

12 4 16 4 3 1 8 12 28 41 213

Observe that in this example it was not necessary to change the value of every scapegoat

variable. In particular, x4 and x10 have retained their original values.

4.3.3. On the Size of the Adjustments

The solution vector x̂1 is constructed by the scapegoat algorithm without any explicit use

of the original vector x1. Therefore, it is not completely trivial that the adjusted values

remain close to the original values, which is obviously desirable. In order to demonstrate
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this property, two upper bounds on the size of the adjustments are now derived, under the

assumption that R is totally unimodular.

Recall that the maximum norm of a vector v ¼ ½v1; : : : ; vp�
0 is defined as

jvj1 ¼
j¼1; : : : ;p

max jvjj

The associated matrix norm is (cf. Stoer and Bulirsch 2002, §4.4):

kAk1 ¼
i¼1; : : : ;m

max
Xp
j¼1

jaijj

with A ¼ ½aij� any m £ p-matrix. It is easily shown that

jAvj1 # kAk1jvj1 ð4:7Þ

for every m £ p-matrix A and every p-vector v.

Turning to the scapegoat algorithm, it holds by construction that R1x̂1 ¼ c. The original

vector x1 satisfies R1x1 ¼ c*, with c* – c. Thus

x̂1 2 x1 ¼ R21
1 ðc2 c*Þ ð4:8Þ

It follows from (4.7) and (4.8) that

jx̂1 2 x1j1 # kR21
1 k1jc2 c*j1 # r0jc2 c*j1 ð4:9Þ

where the last inequality is found by observing that Property 4.2 implies

kR21
1 k1 ¼

i¼1; : : : ;r0

max
Xr0

j¼1

��� R21
1

� �
ij

��� # r0

Writing x̂ ¼ ½x̂01; x
0
2�

0 and observing that

c2 c* ¼ R1x̂1 2 R1x1

¼ R1x̂1 þ R2x2 2 a0 2 ðR1x1 þ R2x2 2 a0Þ

¼ ~R0x̂2 a0 2 ðR0x2 a0Þ

¼ 2ðR0x2 a0Þ

it is seen that jc2 c*j1 ¼ jR0x2 a0j1 ¼ dmax, where dmax # d is the magnitude of the

largest rounding error that occurs for this particular record. Plugging this into (4.9) yields

jx̂1 2 x1j1 # r0dmax ð4:10Þ

This upper bound on the maximum difference between elements of x̂1 and x1 shows that

the solution found by the scapegoat algorithm cannot be arbitrarily far from the original

record. The fact that (4.10) is proportional to the order of R1 suggests that ever larger

adjustments should be expected as the number of balance edit rules increases, which is

somewhat worrying. However, in practice much smaller adjustments than r0dmax are

found. For instance, in the example from Section 4.3.2 the maximal absolute difference

according to (4.10) equals 5, but actually no value was changed by more than one unit.
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Nevertheless, it is possible to construct a pathological example for which the upper bound

(4.10) becomes exact. Scholtus (2008) provides such an example for the case dmax ¼ 2,

which can easily be generalised to work for any value of dmax .

In practice, a more interesting view on the size of the adjustments may be provided by

the quantity

1

r0

Xr0

i¼1

jðx̂1 2 x1Þij

which measures the average size of the adjustments, rather than the maximum. Starting

from (4.8), it is seen that

jðx̂1 2 x1Þij ¼
Xr0

j¼1

R21
1

� �
ij
ðc2 c*Þj

�����
����� #

Xr0

j¼1

R21
1

� �
ij

��� ������ðc2 c*Þj

���
Using again that jc2 c*j1 ¼ dmax yields

1

r0

Xr0

i¼1

jðx̂1 2 x1Þij #
dmax

r0

Xr0

i¼1

Xr0

j¼1

R21
1

� �
ij

��� ��� ; gðR1Þdmax ð4:11Þ

where gðR1Þ ¼ ð1=r0Þ
Pr0

i¼1

Pr0

j¼1 R21
1

� �
ij

��� ���.
This upper bound on the average adjustment size can be evaluated before the scapegoat

algorithm is applied to an actual data set. Namely, suppose that a set of balance edit rules

(4.2) is given. Restricting oneself to the case r0 ¼ r; gðR1Þ can be computed for various

invertible r £ r-submatrices of R to assess the magnitude of the upper bound in (4.11).

It can be shown (see Scholtus 2008) that there exist exactly detðRR 0Þ of these submatrices.

In practice, this number is very large and it is infeasible to compute gðR1Þ for all matrices

R1. In that case, a random sample of reasonable size can be taken, by repeatedly

performing the part of the scapegoat algorithm that constructs R1.

Example For the 5 £ 11-matrix from Section 4.3.2, detðRR 0Þ ¼ 121, so R has 121

invertible 5 £ 5-submatrices. Since this number is not too large, it is possible to evaluate

gðR1Þ for all these matrices. The mean value of gðR1Þ turns out to be 1.68, with a standard

deviation of 0.39. Since dmax ¼ 1 in this example, according to (4.11) the average

adjustment size is bounded on average by 1.68. O

Section 4.4 examines the adjustments in a real-world example. These turn out to be

quite small.

4.3.4. Critical Variables

In addition to balance edit rules, business survey variables usually have to satisfy a large

number of edit rules that take the form of linear inequalities. For instance, it is very

common that most variables are restricted to be nonnegative. The scapegoat algorithm as

described above does not take this into account. A nonnegative variable might therefore be

changed by the algorithm from 0 to 21, resulting in a new violation of an edit rule. The

present section extends the algorithm to prevent this.

Suppose that in addition to the balance edit rules (4.2), the data also has to satisfy the

inequalities (4.3). For a given record, a variable will be called critical if it occurs in an
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inequality that (almost) holds with exact equality when the current values of the survey

variables are filled in:

xj is a critical variable iff 0 # q 0
ix2 bi # 1i for some i with qij – 0 ð4:12Þ

where q 0
i denotes the ith row of Q and 1i marks the margin chosen for the ith restriction.

As a particular case, xj is called critical if it must be nonnegative and currently has a value

between 0 and 1ið jÞ, with ið jÞ the index of the row in Q corresponding to the nonnegativity

constraint for xj. To prevent the violation of edit rules in (4.3), no critical variable should

be selected for change during the execution of the scapegoat algorithm.

A way to achieve this works as follows. Rather than randomly permuting all variables

(and all columns of R0), two separate permutations should be performed for the noncritical

and the critical variables. The permuted columns associated with the noncritical variables

are then placed to the left of the columns associated with the critical variables. This

ensures that linearly independent columns are found among those that are associated with

noncritical variables, provided the record contains a sufficient number of noncritical

variables. In practice, this is typically the case, because the number of survey variables is

much larger than the number of balance edit rules.

If a record contains many critical variables, some of these might still be selected as

scapegoat variables. This is not necessarily a problem, because usually not all scapegoat

variables are changed by the algorithm. This is, in fact, the reason why the critical

variables are also randomly permuted: it is unimportant whether a solution to (4.4)

contains critical variables, provided that no inequality edit rules are violated as a result. It

is therefore sufficient to build in a check at the end of the algorithm that rejects the solution

if a new violation of an edit rule from (4.3) is detected. If this does happen, it seems

advantageous to let the record be processed again, because a different permutation of

columns may yield a feasible solution. To prevent the algorithm from getting stuck, the

number of attempts should be maximised by a preset constant K. If no feasible solution has

been found after K attempts, the record remains untreated.

Good values of 1i and K have to be determined in practice. However, not too much

effort should be put into this, because these parameters only affect a limited number of

records. In the real-world example to be discussed in Section 4.4, only a handful of

infeasible solutions were found before the improvements of the current section were

included in the algorithm.

4.3.5. Exceptional Variables

In practice, the data may contain some variables that should not be changed by the

scapegoat algorithm at all. An example of such a variable in the structural business

statistics is number of employees. This variable occurs in a balance edit rule that is often

inconsistent because of a very small violation, but this violation cannot be the result of

inconsistent rounding; this variable is asked as a number, not as a multiple of 1,000 Euros.

Moreover, the impact of changing the number of employees to suit the balance edit rule can

be considerable, particularly for very small companies. Therefore, at this stage it seems

preferable to leave the inconsistency as it is, to be resolved later by either a subject-matter

specialist or SLICE.
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This can be achieved by removing the balance edit rules concerning these exceptional

variables from R. The variables themselves should not be removed from x, however, as

they may also occur in edit rules in (4.3). (For instance, number of employees times a

constant is used to maximise the total labour costs.) The values of the exceptional

variables therefore play a role in determining the critical variables. Note that it is not

necessary to remove the exceptional variables from x anyway, because the columns that

correspond with these variables contain only zeros in the new version of R.

4.3.6. Summary

The following plan summarises the scapegoat algorithm. The input consists of an

inconsistent record x with p variables, a set of r balance edit rules Rx ¼ a, a set of q

inequalities Qx $ b and parameters d; 1i ði ¼ 1; : : : ; qÞ andK. Edit rules concerning

exceptional variables (as described in Section 4.3.5) have been removed from Rx ¼ a

beforehand.

1. Remove all edit rules for which jr 0ix2 aij . d. The remaining system is denoted as

R0x ¼ a0. The number of rows in R0 is called r0. If R0x ¼ a0 holds: stop. Otherwise:

determine the critical variables according to (4.12).

2.

(a) Perform random permutations of the critical and noncritical variables

separately. Then permute the corresponding columns of R0 the same way. Put

the noncritical variables and their columns before the critical variables and

their columns.

(b) Determine the r0 leftmost linearly independent columns in the permuted

matrix ~R0. Together, these columns are a unimodular matrix R1 and the

associated variables form a vector x1 of scapegoat variables. The remaining

columns are a matrix R2 and the associated variables form a vector x2.

(c) Fix the values of x2 from the record and compute c ¼ a0 2 R2x2.

3. Solve the system R1x1 ¼ c.

4. Replace the values of x1 by the solution just found. If the resulting record does not

violate any other edit rule from Qx $ b, the algorithm outputs the adjusted record

and terminates. Otherwise, return to step 2a, unless this has been the Kth attempt.

In that case, the record is not adjusted.

In this description, it is assumed that R is totally unimodular.

4.4. A Real-world Application

In Section 5, results will be discussed of an application of the two algorithms from this

study to a large data set from the Dutch structural business statistics. These results focus on

the impact of the algorithms on the efficiency of the editing process. In the current

subsection some earlier test results are presented that focus more on technical aspects of

the scapegoat algorithm.

The scapegoat algorithm has been tested using data from the wholesale structural

business statistics of 2001. There are 4,725 records containing 97 variables each. These

variables should conform to a set of 28 balance edit rules and 120 inequalities, of which
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92 represent nonnegativity constraints. After exclusion of edit rules that affect exceptional

variables, 26 balance edit rules remain. The resulting 26 £ 97-matrix R is totally

unimodular, as can be determined very quickly using the method of removing columns and

rows mentioned in Section 4.3.2. Note that it would be practically impossible to determine

whether a matrix of this size is totally unimodular just by computing all the relevant

determinants.

An implementation of the algorithm in S-Plus was used to treat the data. The parameters

used were: d ¼ 2; 1i ¼ 2 ði ¼ 1; : : : ; 120Þ andK ¼ 10. The total computation time on an

ordinary desktop PC was less than three minutes.

Table 3 summarises the results of applying the scapegoat algorithm. No new violations

of inequalities were found. In fact, the adjusted data happens to satisfy four additional

inequalities.

According to (4.10) the size of the adjustments made by the algorithm is theoretically

bounded by 26 £ 2 ¼ 52, which is rather high. A random sample of 10,000 invertible

26 £ 26-submatrices of R was drawn to evaluate (4.11). The sample mean of gðR1Þ is 1.89,

with a standard deviation of 0.27. Thus, the average adjustment size is bounded on average

by 1:89 £ 2 < 3:8. Note that this value of gðR1Þ is only marginally higher than the one

obtained for the much smaller restriction matrix from the example in Section 4.3.2.

Table 4 displays the adjustment sizes that were actually found for the wholesale data.

These turn out to be very reasonable.

5. Application to the Dutch Structural Business Statistics of 2007

The algorithms from Sections 3 and 4 have been applied in an experiment using data from

the Dutch structural business statistics of 2007. The data was collected by Statistics

Table 3. Results of applying the scapegoat algorithm to the wholesale data

Number of records 4,725
Number of variables per record 97
Number of adjusted records 3,176
Number of adjusted variables 13,531
Number of violated edit rules (before) 34,379

Balance edit rules 26,791
Inequalities 7,588

Number of violated edit rules (after) 23,054
Balance edit rules 15,470
Inequalities 7,584

Table 4. Distribution of the adjustments (in absolute value)

Magnitude Frequency

1 11,953
2 1,426
3 134
4 12
5 4
6 2

Journal of Official Statistics486



Netherlands from businesses in various sectors, including wholesale, construction and

audiovisual services. The algorithms were run using the original, unedited data.

Table 5 displays the structure of the profit-and-loss account in the structural business

survey that was used in 2007. This differs from the examples in Section 3, because the

questionnaire was redesigned after 2005. The associated edit rules are given by (3.3), with

n ¼ 5 and m ¼ 1.

The results of applying the algorithm that corrects sign errors and interchanged

revenues and costs are displayed in Table 6. As can be seen, the fraction of profit-and-loss

accounts requiring editing is low: almost 90 percent of the accounts are reported without

error. This can be explained by the fact that in 2007 the majority of businesses reported by

electronic questionnaire. Some of the edit rules were built into this questionnaire, so that

respondents received a warning message if the reported amounts were inconsistent. In this

way, many errors that would occur on a paper questionnaire could be avoided during

electronic data collection (Giesen 2007).

On the other hand, among the profit-and-loss accounts that do require editing, the

fraction of accounts containing sign errors is substantial: about one in five. This means

that, as far as the profit-and-loss account is concerned, using the algorithm of Section 3

substantially reduces the amount of work remaining for either manual editing or automatic

editing by SLICE. It should also be mentioned that the majority of errors corrected by the

algorithm were in fact interchanged revenues and costs. As noted in Section 3, this type of

error is difficult to handle using an automatic editing method based on the Fellegi-Holt

paradigm.

The scapegoat algorithm was applied to the data using the same parameter settings as in

the real-world application of Section 4.4. The results are displayed in Table 7. Please note

Table 5. An example of structure of the profit-and-loss account in the structural business statistics survey of

2007, with interchanged revenues and costs

Variable Full name Original data Corrected data

x0;r Operating returns 49,110 49,110
x0;c Operating costs 46,550 46,550
x0 Operating results 2,560 2,560

x1;r Provisions rescinded 340 0
x1;c Provisions added 0 340
x1 Balance of provisions 2340 2340

x2 Book profit/loss 290 290

x3 Financial result 30 30

x4 Exceptional result 0 0

x5 Pretax results 2,160 2,160

Table 6. Results of applying the correction algorithm for sign errors to the 2007 data

Total number of profit-and-loss accounts 17,258
Without inconsistencies 15,465 (89.6%)
With inconsistencies 1,793 (10.4%)

Corrected by the algorithm 392 (21.9%)
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that the total number of records and the number of records with/without inconsistencies are

not comparable to the corresponding numbers in Table 6, because both records with an

empty profit-and-loss account and inconsistencies outside the profit-and-loss account are

not counted in Table 6.

Again, the large percentage of records without inconsistencies is due to the use of

electronic data collection. This can be seen from the marked difference between the

relative number of inconsistencies in the survey data of 2001 (shown in Table 3) and 2007

(shown in Table 7). In 2001, all data collection was still done through paper

questionnaires.

Of the records that do contain inconsistencies, about one in five contains at least one

rounding error. Moreover, the scapegoat algorithm succeeds in resolving 1,471 of the

11,584 violations of balance edits in the original data set, i.e. about one in eight. This

entails a substantial reduction of the amount of editing that remains to be done either

manually or automatically by SLICE.

The figures in Table 7 were obtained by applying the scapegoat algorithm directly to the

unedited data. In practice, it would be better to first correct sign errors and then rounding

errors, because an application of the algorithm from Section 3 may reveal “hidden”

rounding errors; see Example (d) in Tables 1 and 2.

6. Conclusion

The main purpose of this study has been to discuss the use of deductive methods for

correcting obvious inconsistencies in business survey data, i.e. inconsistencies where the

underlying error mechanism can be recognised easily. In particular, algorithms have been

described that detect and correct two types of inconsistencies that occur in data collected

for the Dutch structural business statistics: sign errors and rounding errors. Other errors are

discussed by Scholtus (2008; 2009).

Deductive algorithms are intended to be applied at the beginning of the data editing

process, before manual editing and regular automatic editing with SLICE take place. In

this way, the efficiency of the editing process is expected to increase, because more

records will be eligible for automatic editing. In particular, the presence of obvious errors

and rounding errors may cause a record to be submitted to manual editing, because the

automatic error localisation problem is too difficult to solve, when in fact the record can be

handled automatically by SLICE once the obvious errors have been removed. Moreover,

in many cases the use of a deductive algorithm for obvious errors also increases the quality

of the edited data, because systematic errors are often handled incorrectly by SLICE. This

is for example true for sign errors.

Table 7. Results of applying the scapegoat algorithm to the 2007 data

Total number of records 17,297
Without inconsistencies 11,183 (64.6%)
With inconsistencies 6,114 (35.4%)

Corrected by the algorithm 1,295 (21.2%)
Number of violated balance edit rules (before) 11,584
Number of violated balance edit rules (after) 10,113
Number of resolved violations 1,471 (12.7%)
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Often, the presence of errors with a structural cause in survey data signifies that many

respondents find it difficult to answer correctly because of a certain aspect of the

questionnaire design. An alternative way to handle systematic errors is, therefore, to try to

prevent them during data collection, e.g. by improving the wording of questions or the

design of answer boxes, or by adding explanatory notes, or – in the case of electronic data

collection – by means of warning messages. If this approach succeeds in removing the

underlying cause of the systematic error, then the need for a deductive correction

algorithm vanishes.

Nevertheless, in practice, deductive correction methods can still play an important part

in the editing process. Firstly, it is not always possible to prevent systematic errors through

an improved form of data collection. For instance, unity measure errors have been

observed for many years in data collected by statistical offices but, so far, no conclusive

method has been found to stop respondents from making this type of error. Secondly,

changes in the questionnaire design are costly, because the new questionnaire has to be

extensively tested, and they can adversely influence the comparability of statistics over

time. Hence, they should not be implemented too often. By contrast, implementing a

deductive correction algorithm is cheap and straightforward. If a new systematic error is

discovered in the data, it can therefore be advantageous to correct this error deductively at

first, until a major revision of the data collection strategy is due.

The algorithms for correcting sign errors and rounding errors described in this article

have been implemented as part of the R package deducorrect, which is available for

download from the Comprehensive R Archive Network (http://cran.r-project.org). See

Van der Loo et al. (2001) for more details.
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