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This article extends the Bayesian bootstrap analysis, applied to studies of single finite
population survey data in Hartley and Rao (1968), Ericson (1969), and Rubin (1981), to
regression models for numerically-valued response variables in stratified and clustered
samples.

This extension provides an alternative Bayesian analysis of complex finite population
survey data which for some applications requires only standard statistical modeling software
to implement.
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1. Introduction

The Bayesian bootstrap approach to inference in finite population survey sampling was

described by Hartley and Rao (1968), Ericson (1969), and Rubin (1981). This approach

does not use a parametric model assumption for the distribution of a numerically-valued

response variable Y in the finite population of size N. Instead, the key to the approach is

the multinomial model for the finite population, when tabulated by the distinct values

Y1 , · · · , YJ , · · · , YD which the variable Y can take. As these values are always

measured with finite precision, denoted by d, the possible values of Y form an equally

spaced discrete grid of values YJ with step-length d, with counts NJ and proportions

pJ ¼ NJ=N at YJ. Population parameters like the mean and variance can be expressed as

functions of the proportions pJ

m ¼
J

X
pJYJ

s2 ¼
J

X
pJðYJ 2 mÞ2

A simple random sample from the population can be correspondingly expressed through

the sample counts nJ at YJ (most of these will be zero). If the sample size n is small
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compared to the population size N, (the alternative case is considered later), so that

sampling with replacement accurately approximates sampling without replacement, the

multinomial probability of the sample counts nJ is

Prðn1; : : : ; nDÞ ¼ mðn; p1; : : : ; pDÞ ¼
n!QD
J¼1nj!

YD
J¼1

pnJJ

Given the sample counts, the likelihood is the multinomial likelihood

Lð p1; : : : ; pDÞ ¼
YD
J¼1

pnJJ

where the term n!=
QD

J¼1nj! is a known constant and can be omitted from the likelihood.

Formally, we need to know the smallest and largest values of Y, and the number of

distinct values D in the population, to be able to compute this likelihood, but for any

unobserved values of YJ the corresponding nJ is zero, so the likelihood can be reexpressed

in terms of the pj for only the observed YJ. Thus the pJ for the unobserved YJ do not

contribute to the likelihood, and so these YJ do not need to be known unless the prior gives

them nonzero weight.

Maximizing the multinomial likelihood over the pJ for a fixed m gives the “empirical”

profile likelihood in m (Owen 1988), discussed extensively in Owen (2001). A fully

Bayesian analysis follows from the specification of a prior for the pJ; a very convenient

choice is the natural conjugate Dirichlet prior, used by Hartley and Rao (1968), Ericson

(1969), and Rubin (1981), which has density

p ð p1; : : : ; pDÞ ¼ Cða1; : : : ; aDÞ
YD
J¼1

paJ21
J

over the D-dimensional simplex pJ . 0;
PD

J¼1pJ ¼ 1, where Cða1; : : : ; aDÞ is the

normalizing constant

Cða1; : : : ; aDÞ ¼
G
XD

1
aJ

� �
QD

1 GðaJÞ

The posterior distribution is again Dirichlet

p ð p1; : : : ; pDjyÞ ¼ Cðn1 þ a1; : : : ; nD þ aDÞ
YD

1

pnJþaJ21
J

Priors and posteriors for functions of the pJ follow automatically from the Dirichlet

prior for the pJ: no additional prior specifications are necessary (for example, for the

mean m).

The Dirichlet is a special case of the Dirichlet process prior (Ferguson 1973); this was

used by Binder (1982) for the more general case of finite population values which are

arbitrary real numbers. However for most real sampled populations with fixed
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measurement or recording precision, the simpler equally spaced grid of population values

is sufficient, and we restrict consideration to this case. The multinomial/Dirichlet model

and prior have been proposed recently as the fundamental nonparametric distribution and

prior model, in the work of Gutierrez-Pena and Walker (2005, 2007).

Since even in large samples many of the positive values of nJ will be 1 or a small

integer, the choice of prior is more important than usual in parsimonious parametric

models. The effective information provided by the prior is easily seen from the form of the

posterior: the sample counts nJ are augmented by the prior “weights” aJ. The “total prior

weight” a ¼
P

J aJ augments the total sample weight n ¼
P

J nJ .

Ericson (1969) considered the proper prior with aJ ¼ eJ with e ¼
P

J eJ “small”, of the

order of 1. He showed that many standard survey sampling results followed as limiting

cases as e ! 0, though he expressed reservations about the properties of such an

unrealistically “rough” prior.

Rubin (1981) introduced the term Bayesian bootstrap for posterior inference with the

improper Haldane prior with aJ ¼ 0;J. This prior is used by Gutierrez-Pena and Walker

(2005, 2007).

It leaves the total sample weight unchanged, but has the curious property that for any

value YJ not observed in the sample, the posterior distribution for the corresponding pJ has

a nonintegrable spike at the zero value of these pJ. This is equivalent to assigning zero

prior probability to these unobserved values. The computation of the posterior distribution

can then be restricted to the d observed distinct sample values yJ rather than the D distinct

population values, a great saving. This saving is shared with Owen’s empirical likelihood:

the construction of the empirical profile likelihood depends only on the observed sample

values and their sample frequencies.

The term “Bayesian bootstrap” comes from the analogy with the frequentist bootstrap,

which resamples from the observed sample. The Bayesian bootstrap also uses only the

observed sample, but it resamples from the posterior distribution of the probabilities

attached to each observed value, rather than from the values themselves.

Rubin (1981, pp. 133–134) highlighted the difficulty with the Haldane prior approach:

“ : : : First, is it reasonable to use a model specification that effectively assumes all

possible distinct values of [Y ] have been observed?”

“ : : : Second, even assuming all distinct values of [Y ] have been observed, is it

reasonable to assume a priori independent parameters, constrained only to sum to 1, for

these values? If two values of [Y ] are “close,” isn’t it often realistic to assume that the

associated probabilities of their occurrence should be similar? Shouldn’t the parameters be

smoothed in some way?”

Banks (1988) took up these criticisms by developing a smoothing of the Dirichlet

posterior: given the Haldane prior, he proposed generating a random value of pJ for each

observed YJ, and then spreading it uniformly over this YJ and all unobserved values to the

left of this YJ down to the next observed value. In this way the posterior mass was spread

over the whole sample range from y(1) to y(n), though in an ad hoc way.

An apparently unreasonable model specification could be expected to perform poorly.

We demonstrate the contrary with a simulation study of several methods. This evaluates

the frequentist performance of the Bayesian bootstrap relative to other frequentist

procedures, following the precept that to be useful, Bayes procedures need to be
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well calibrated in the frequentist sense (Rubin 1987, p. 62). In large samples from

parsimonious regular parametric models giving normal likelihoods, it is easily shown that

with flat priors, 100(1 2 a)% credible intervals or regions are identical to 100(1 2 a)%

likelihood-based confidence intervals or regions, and so have repeated-sampling

confidence coverage of 100(1 2 a)%. However the multinomial/Dirichlet model is

nonparsimonious and the sample size at each sample support point is very small, so this

result may not apply to credible intervals from the Bayesian bootstrap for derived

parameters.

We first give a brief example.

1.1. Example – Income Population

The following simple random sample of n ¼ 40 values of family income Y (in hundreds of

1962 dollars) at the birth of a child come from the StatLab boy population (Hodges, Krech,

and Crutchfield 1975) of N ¼ 648 families with a boy baby:

The sample mean is �y ¼ 67:1 and the (unbiased) variance is s2 ¼ 500:87. Figure 1

shows the full income population as a maximum resolution histogram. The classical large-

sample 95% confidence interval for the mean is �y^ 1:96s=
ffiffiffi
n

p
, which is [60.1, 74.0]; this is

nearly identical to the t-interval [60.0, 74.2] assuming a normal distribution for income.

The design-based interval using the finite population correction of (1 2 40/648) ¼ 0.938

gives the slightly shorter interval [60.6, 73.6]. If income could be assumed to be normally

distributed, the equal-tailed 95% confidence interval based on the x2
39 distribution for the

income variance would be [336.1, 825.9].

For the Bayesian bootstrap analysis we tabulate the sample by the distinct values of Y.

We first make an analogous notational change: since we use only the d ordered distinct

sample values, we will denote them by yj with sample frequencies nj.

Simulation of the pj, and therefore of any marginal function of the pj, from the Dirichlet

posterior with the Haldane prior is particularly simple: for a single simulation we generate

Family incomes for random sample of 40 families (hundreds of dollars)

26 35 38 39 42 46 47 47 47 52 53 55 55 56
58 60 60 60 60 60 65 65 67 67 69 70 71 72
75 77 80 81 85 93 96 104 104 107 119 120

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

yj 26 35 38 39 42 46 47 52 53 55 56 58 60 65 67 69

nj 1 1 1 1 1 1 3 1 1 2 1 1 5 2 2 1

j 17 18 19 20 21 22 23 24 25 26 27 28 29 30

yj 70 71 72 75 77 80 81 85 93 96 104 107 119 120

nj 1 1 1 1 1 1 1 1 1 1 2 1 1 1

Journal of Official Statistics24



d ¼ 30 independent U(0,1) values Uj, transform them to d independent gamma variables

Gj with parameters 1 and nJ, and then define pj ¼ Gj=
P

j Gj. Repeating the simulations M

times gives M simulated values p½m�j of the pj, and hence M simulated values

m ½m� ¼
j

X
p½m�j yj

from the marginal posterior distribution of m.

We show in Figure 2 the posterior cdf of the mean m from a simulation of size

M ¼ 10; 000, and in Figure 3 a kernel density estimate using a bandwidth of 1.0, together

with the simulated values.

(Approximate) percentiles of the posterior distribution can be read directly from

Figure 2 (or from the list of ordered values). The posterior density in Figure 3 has only

very mild skew. The sample median is 67.0, and the sample mean is 67.1. The 95% equal-

tailed credible interval is [60.6, 74.2]; it is slightly shorter than the t-interval and slightly

asymmetric.

Simulation is not restricted to the mean m – we can simulate any parametric function of

the pJ – the variance or standard deviation and higher moments are just as simple.

Figures 4 shows the joint marginal scatter of the M ¼ 10; 000 values of m and s for the

income sample, and Figure 5 shows the joint posterior scatter of the standardized third and

fourth cumulants of the income distribution. The point (0,0) is in the extreme edge of the

point scatter in Figure 5: there is no question that the population is both skewed and heavy-

tailed.

The 95% equal-tailed credible interval for the variance is [308.3, 708.0], substantially

different from the normal-based interval, and the corresponding interval for the standard

deviation is [17.6, 26.6].

Fig. 1. Income histogram
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1.2. Simulation Study

In the study we compared coverage of intervals for the mean based on the Bayesian

bootstrap central credible intervals using the Haldane prior, with confidence intervals

based on the gamma and normal distributions (the latter closely equivalent to the survey

sampling intervals), and with (frequentist) bootstrap percentile intervals. As noted in the

Fig. 2. Posterior cdf, income mean

Fig. 3. Posterior density, income mean
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Introduction, we evaluate the frequentist performance of the Bayesian bootstrap relative to

other frequentist procedures.

We drew 1,000 random samples of size 40 from the StatLab boy population of

N ¼ 648, and constructed 80%, 90%, and 95% confidence intervals for the mean

Fig. 4. Joint posterior, income mu and sigma

Fig. 5. Joint posterior, income k3 and k4

Aitkin: Applications of the Bayesian Bootstrap 27



m based on a normal income distribution (using t percentage points), and corresponding

intervals based on a gamma income distribution with scale parameter r, from the

sample mean and its estimated standard error �y=
ffiffiffiffiffi
nr̂

p
using the MLE r̂, and using t rather

than the normal percentage points. (This choice provides an approximate “small-

sample” adjustment to the asymptotic normal percentage points which also allows a

direct comparison with the normal income distribution intervals – see below.) The

StatLab income population is chosen for the simulation as it is a real one, and also has

features which may be expected in other real populations, like irregularity, rounding

and preference for multiples of 5 and 10.

For each sample we drew 10,000 bootstrap samples (sampling with replacement)

and constructed the empirical 80%, 90%, and 95% bootstrap percentile intervals (equal-

tailed) for the mean, and drew 10,000 Bayesian bootstrap samples from the posterior

distribution of the mean based on the Haldane prior. We also extended the support to the

full range of the observed sample, and used an Ericson-type Dirichlet prior with

parameters 1/l, where l is the number of support points in the grid from y(1) to y(n). The last

prior gives an equivalent prior weight of 1 compared to the sample weight of 40. From

these samples we constructed the equal-tailed 80%, 90%, and 95% credible intervals for

the mean.

We give in Table 1 below, in the first panel the average length of the intervals across the

1,000 samples, and in the second panel the actual coverage (c) of the intervals, as well as

the proportion of left (lnc) and right (rnc) noncoverage.

Apart from the Ericson prior, the table shows a consistent pattern: the interval

lengths decrease slightly across the columns, and the coverages decrease slightly. The

intervals based on the Ericson prior on the extended observed support behave

qualitatively differently: compared with the Haldane prior, interval lengths increase but

coverages decrease. Larger prior weight on the unobserved values accentuates this

effect (results not shown): the effect of further increasing prior weight on unobserved

values of Y is to further decrease the coverage and increase the length of the

credible intervals.

Table 1. Average interval length and coverage, n ¼ 40

Coefficient Normal Gamma Boot Haldane Ericson

80% 11.90 11.68 11.54 11.26 11.32
90% 15.38 15.09 14.81 14.57 14.63
95% 18.46 18.12 17.64 17.49 17.55

c 0.799 0.789 0.777 0.770 0.767
80% lnc 0.079 0.085 0.092 0.097 0.112
rnc 0.122 0.126 0.131 0.133 0.121

c 0.890 0.892 0.879 0.876 0.872
90% lnc 0.038 0.039 0.046 0.047 0.056
rnc 0.072 0.069 0.075 0.077 0.072

c 0.945 0.941 0.933 0.927 0.925
95% lnc 0.017 0.020 0.023 0.030 0.034
rnc 0.038 0.039 0.044 0.043 0.041
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Two criticisms can be made of the Ericson prior:

. it biases the posterior mean towards the sample median, which is inappropriate since

the sample income distribution is clearly skewed;

. it cannot be assigned until the data are observed, so it is a post-data prior.

These criticisms illustrate the difficulty of the Dirichlet approach if it requires

prior assignment to unobserved values – how is this to be done? However, this comparison

shows that even a prior weight of 1, over a conservative range, compared to the

sample weight of 40 results in poorer coverage and longer intervals than the Haldane prior.

We now consider the comparison of the Haldane prior intervals with those from the other

methods.

The pattern of shorter interval lengths with reduced coverage makes it difficult to

compare the methods directly – would a method with lower coverage but shorter intervals

than another method have the same, better or worse coverage if the interval length were

increased to match that of the other method? We address this question by modeling the

coverage probabilities using a probit analysis with interval length as an explanatory

variable; the interval methods are an explanatory factor which is tested for significance in

the analysis. We regress the probits of the coverage probabilities against the interval

lengths for the sample size of 1,000, with method (5 levels) and nominal coverage

(3 levels) as explanatory factors.

This analysis shows that coverage probability is very strongly determined by interval

length; method and nominal coverage show no significant variation once interval length is

included; the simple interval length model has a goodness-of-fit x 2 value of 2.24 with 13

degrees of freedom.

Thus the methods are equivalent in coverage after adjustment for interval length: the

survey sampling, model-based gamma, frequentist bootstrap and Haldane prior interval

methods perform equally well in coverage, though the survey sampling and model-based

gamma methods have the closest to nominal coverage.

The apparently “unreasonable” Haldane prior provides the best set of credible intervals:

apparently more reasonable priors which do not exclude unobserved values perform less

well than the Haldane prior.

1.3. Extensions of the Bayesian Bootstrap

The above discussion of the Bayesian bootstrap analysis is limited to simple random

sampling and moment parameters of the multinomial distribution of Y. In the remainder of

this article we extend the Bayesian bootstrap approach in several directions. Section 2

extends the one-sample approach to sampling without replacement, using the approach of

Hoadley (1969). Section 3 discusses regression models and gives an example supported by

a simulation study. Section 4 extends the implicit multinomial model to multiple

subpopulations. This provides the analysis for stratified sampling in Section 5 and for

cluster sampling in Section 6. Section 7 discusses a complex example of regression in a

stratified and clustered sample. Section 8 has discussion and conclusions; it will be clear

from the extensions that the Bayesian bootstrap approach can handle survey designs of

considerable complexity.
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2. Sampling Without Replacement

The multinomial likelihood construction in Section 1 is based on the assumption that

the sample size n is small compared with the population size N. When this is not so,

we need a more careful construction of the likelihood. The probability that a sample

of size n contains nJ of the NJ values of YJ in the population is now the

hypergeometric

Prðn1; : : : ; nDÞ ¼
YD
J¼1

NJ

nJ

 !" #
=

N

n

 !

Given the sample values n1; : : : ; nD, the likelihood in the parameters N1; : : : ;ND is

the hypergeometric likelihood

LðN1; : : : ;NDÞ ¼
YD
J¼1

NJ

nJ

 !

where the known constant denominator is omitted, and the NJ must be larger than or equal

to nJ. Since
N

0

 !
¼ 1, the zero counts can again be omitted from the likelihood, which

can be expressed in terms of only the observed sample counts nj:

LðN1; : : : ;NdÞ ¼
Yd
j¼1

Nj

nj

 !

Thus the sample is again uninformative about the population counts at unobserved

values of Y. (Note that if all nj ¼ 1; LðN1; : : : ;NdÞ ¼ N1·N2·· · ··Nd, for the observed

values y1; : : : ; yd. This is informative about these values of Nj.)

The population counts are not free parameters: they must satisfy Nj $ nj. Write

N*
J ¼ NJ 2 nJ ; we take the N*

J $ 0 to be the unknown parameters, withPD
J¼1N

*
J ¼ N 2 n ¼ N *. The likelihood in the N*

j is

LðN*
1; : : : ;N

*
dÞ ¼

Yd
j¼1

N*
j þ nj

nj

0@ 1A
For this form of likelihood there is no simple conjugate prior distribution for the

N*
J . Following Hoadley (1969), we embed the model in two levels of prior

distribution.

Conditional on category proportions pj, we treat the d unobserved population counts N*
J

as drawn from a multinomial distribution

mðN *; p1; : : : ; pdÞ ¼
N *!Qd
j¼1N

*
j !

Yd
j¼1

p
N*

j

j
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in which the probabilities pj, conditional on the observed sample sizes nj, have the

Dirichlet distribution of Section 1:

p ð p1; : : : ; pdjn1; : : : ; ndÞ ¼
GðnÞQd
j¼1GðnjÞ

Yd
j¼1

p
nj21
j

Integrating out the pj gives a compound multinomial distribution as the posterior

distribution of the N*
j given the nj:

Pr½N*
1; : : : ;N

*
djn1; : : : ; nd�

¼

ð
· · ·

ð
Pr½N*

1; : : : ;N
*
djp1; : : : ; pd�·Pr½p1; : : : ; pdjn1; : : : ; nd�dp1: : :dpd

¼

ð
· · ·

ð
N *!Qd
j¼1N

*
j !

Yd
j¼1

p
N*

j

j ·
GðnÞQd
j¼1GðnjÞ

Yd
j¼1

p
nj21
j dp1: : :dpd

¼ c·
N *!Qd
j¼1N

*
j !

Yd
j¼1

GðN*
j þ njÞ

GðN * þ nÞ

This distribution does not lend itself to direct simulation, but its integral derivation

provides a very simple indirect sampling formulation for simulation of the mean m

(or other parameters):

. generate M values p½m�j of the pj as in Section 1;

. from these, generate M values N*½m�
j from the multinomial distributions

mðN *; p½m�1 ; : : : ; p½m�d Þ

. calculate the M values m ½m� ¼
Pd

j¼1ðN
*½m�
j þ njÞYj=

Pd
j¼1ðN

*½m�
j þ njÞ.

This approach avoids completely the awkward form of the posterior in the N*
j , and

requires only the additional multinomial simulation step. An alternative approach to the

unobserved Nj, not used in this article, is the Polya urn model (Ghosh and Meeden

1997, p. 42).

2.1. Simulation Study

We replicate part of the simulation study in Section 1, with the same sample size from the

StatLab population, to compare the posterior distributions of the mean for sampling with

and without replacement. We restrict the study to just the two posteriors based on the same

Haldane prior-based posterior for the pj. Results are given in Table 2.

The intervals based on the hypergeometric likelihood are shorter, but have lower

coverage, than those based on the multinomial likelihood. Adjusting again for interval

length, the coverages are equivalent – the deviance for the single interval length model is

0.046 on 4 df. Recognizing the finiteness of the population does not bring increased

precision in inference about its mean; the sample fraction of 40/648 ¼ 0.062 is not

sufficiently large to give the theoretical improvement.
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3. Regression Models

We want to relate an outcome variable Y to an explanatory variable X through a regression.

We use an example from Royall and Cumberland (1981) for illustration.

Royall and Cumberland (1981) discussed a finite population of 393 short-stay

hospitals for which data were available on the number of patients Y discharged in one year

and the number of hospital beds X in that year. The data came from the NCHS

Hospital Discharge Survey, a national sample of short-stay hospitals with fewer than

1,000 beds (Herson 1976). We treat this as the population for this study. A simple

random sample of size n ¼ 32 is shown in Figure 6 and the values of Y and X are given

below.

We are interested in the total number of short-stay patients across the population,

and we assume a simple proportionality of the number of such patients in each

hospital to the number of beds in that hospital. We know from administrative records

the number of beds X in each hospital and hence the total number of beds TX in all

Table 2. Average credible interval length and coverage, n ¼ 40

Coefficient With rep Without rep

80% 11.34 10.99
90% 14.67 14.21
95% 17.61 17.06

c 0.756 0.741
80% lnc 0.126 0.134
rnc 0.118 0.125

c 0.858 0.846
90% lnc 0.069 0.077
rnc 0.073 0.077

c 0.923 0.913
95% lnc 0.036 0.041
rnc 0.041 0.046

Number of patients Y and hospital beds X

Y 1,076 577 1,258 134 795 1,219 486 1,095
X 260 128 474 118 261 400 154 400

Y 1,040 297 22 625 955 1,948 1,084 57
X 418 74 20 192 228 461 247 10

Y 828 487 795 1,326 2,031 2,089 518 695
X 145 159 261 584 509 712 103 200

Y 247 635 1,231 609 337 490 389 479
X 57 185 374 265 145 244 110 180
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the hospitals ðTX ¼ 107; 956Þ, and draw an SRS of hospitals of size n, recording in

each hospital the number of short-stay patients and the number of beds. From the

sample data we want to estimate the total number TY of short-stay patients in all the

hospitals.

Figure 6 shows that the variance of Y is clearly increasing with X, so the ratio estimator

is an appropriate choice in the survey sampling approach. The ratio estimator is

T̂Y ¼

X
i

yiX
i

xi
·TX ¼

�y

�x
TX ¼ B̂TX

where B̂ ¼
P

i yi=
P

i xi. From a model-based viewpoint, this estimator would be optimal

(in the weighted least squares sense) under a model in which Y has mean BX and variance

s 2X.

3.1. Design-Based Approach

We introduce an additional notation, by indexing the population values by I * ¼ 1; : : : ;N,

and define the population ratio regression coefficient by

B ¼

X
I

YI *X
I

XI *

¼
TY

TX

¼
mY

mX

Fig. 6. Patients and beds for hospital sample
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and the population total TY estimate by T̂Y ¼ B̂TX . Let ZI * be the sample selection

indicators, with ZI * ¼ 1 if population member I * is included in the sample, and ZI * ¼ 0

otherwise. We have

B̂ ¼

X
I *

YI *ZI *X
I *

XI *ZI *

The sampling distribution of this ratio is complicated by the appearance of the ZI * in

both numerator and denominator. Exact results are not available, but and approximate

variance for B̂ is ð1 2 n=NÞs2
e=ðnm

2
XÞ (Lohr 1999, p. 68), where

s2
e ¼

i

X ð yi 2 B̂xiÞ
2

n2 1

and this can be used to construct approximate confidence intervals for B, and hence for TY.

An alternative robust sandwich variance estimate is obtained by replacing the normal

model variance estimate s2=
P

xi by

Var½B̂� ¼

X
i

Var½Yi�

X
i

xi

 !2 _¼

X
i

ð yi 2 B̂xiÞ
2

X
i

xi

 !2

where the variance model is not assumed to be correct.

3.2. Bayesian Bootstrap Approach

We follow the same approach as in the simple mean model. The population consists

of N pairs YI * ;XI * . We tabulate them conceptually into the D distinct pairs (YJ,XJ)

with frequency NJ. The probability that a randomly drawn sample value gives the pair

(YJ,XJ) is pJ ¼ NJ=N. Our interest is not in the pJ but in the ratio regression

coefficient

B ¼

X
J

pJYJX
J

pJXJ

We draw a random sample of size n (we assume with replacement) and obtain counts

nJ for the distinct values. The likelihood of the sample is as before (omitting the known

constant)

LðpÞ ¼
J

Y
pnJJ
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We use the Haldane Dirichlet D(0) prior with aJ ¼ 0 for all J, giving the Dirichlet

posterior D(n), now defined on the d distinct values in the observed support:

p ð p1; : : : ; pdjyÞ ¼
GðnÞQ
jGðnjÞ j

Y
p
nj21
j

We draw M ¼ 10; 000 random values pðmÞj of the pj for the observed support, and

compute the 10,000 values of B (m). The 95% central credible interval for B is computed

from the 250th and 9750th ordered values of B (m).

For the hospital example, the 10,000 values of B generated from the posterior

distribution of the pj give a median of 3.200 and a central 95% credible interval of [2.917,

3.515] (the population value is 2.966). The corresponding credible interval for TY is

[314,908, 379,465]. The true value is 320,159. The posterior cdf and density estimate for B

are shown in Figures 7 and 8; those for TY are just rescaled.

Note that any other function of the pJ could be simulated in the same way; for example,

if it were clear that the variance of Y was proportional to X 2 rather than X, while the mean

was linear in X, the estimate of B * would be

B̂* ¼
i

X yi=xi
n

� �

Fig. 7. Posterior cdf of ratio regression coefficient B
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implying a population definition of

B* ¼
J

X pJYJ

XJ

whose posterior distribution could be simulated at the same time as that of B.

3.3. Simulation Study

We used the hospital population in a simulation study of the performance of the survey

sampling estimate and approximate confidence interval, the confidence interval from the

normal model using the information-based standard error, the bootstrap confidence

interval and the credible interval using the Haldane prior.

We generated 1,000 random samples of size n ¼ 50 from the hospital population, and

for each sample constructed the 80%, 90%, and 95% confidence intervals for the

population ratio regression coefficient by five methods:

. the ML estimate assuming a normal model with variance proportional to X (the ML

estimate is identical to the ratio estimate) and with standard error from the normal

model information matrix;

. the ML estimate assuming a normal model with variance proportional to X but with

robust “sandwich” standard error from the normal model information matrix and the

squared residuals;

. the sample survey ratio estimate, with approximate standard error from the sampling

distribution of the ZI * ;

Fig. 8. Posterior density of ratio regression coefficient B
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. the bootstrap central percentile interval from 10,000 bootstrap samples;

. the central credible interval from 10,000 samples from the posterior distribution of B.

These are given in Table 3.

Apart from the normal intervals with the information-based standard error, all the

methods performed very similarly, with slight under-coverage at the higher confidence

levels. Relative coverage is not related to interval length in this example, and the only

significant effect in the probit analysis of coverage proportions is the lower coverage of the

first normal method. The information-based standard error appears to be too small,

probably a consequence of the variance of Y not being proportional to X.

3.4. Ancillary Information

It might appear that the Bayesian analysis could be strengthened by using the additional

information in the hospital bed population. We know the marginal proportions of hospitals

with exactly X beds. If the marginal sample proportions departed from these, then it would

appear that we should adjust the posterior distribution of TY (which was just that for B

scaled by TX) by scaling-up the predictions for each XJ by the actual population

proportions at these XJ. However, the scaling by TX already achieves this (since TX
incorporates these population proportions), so the marginal proportions of hospitals at

each bed number cannot provide more information. This result follows also from

incomplete data theory (Little and Rubin 1987): if the unobserved Y are “missing at

random” (that is, selection into the sample is not based on Y) then the full information

about B is contained in the observed sample pairs ( yj,xj), and the additional observed XJ

provide no further information about B, and hence about TY.

3.5. Sampling without Replacement

The analysis and simulations above assume that sampling is with replacement. We may

simply adapt the hypergeometric analysis in Section 2 to the regression model. As before,

Table 3. Average interval length and coverage, n ¼ 50

Coefficient Normal Sandwich Survey Boot Haldane

80% 0.2814 0.3337 0.3362 0.3300 0.3187
90% 0.3632 0.4307 0.4339 0.4232 0.4109
95% 0.4353 0.5162 0.5200 0.5036 0.4919

c 0.724 0.794 0.802 0.796 0.784
80% nlc 0.149 0.113 0.117 0.118 0.122
nrc 0.127 0.093 0.081 0.086 0.094

c 0.835 0.886 0.880 0.882 0.879
90% nlc 0.092 0.064 0.075 0.070 0.076
nrc 0.073 0.050 0.045 0.048 0.055

c 0.904 0.943 0.937 0.937 0.931
95% nlc 0.050 0.033 0.044 0.040 0.042
nrc 0.046 0.024 0.019 0.023 0.027
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the population consists of N pairs YI * ;XI * . We tabulate them conceptually into the D

distinct pairs (YJ,XJ) with frequency NJ. The probability that a randomly drawn sample

value gives the pair (YJ,XJ) is pJ ¼ NJ=N. The ratio regression coefficient is now

expressed as

B ¼

X
J

NJYJX
J

NJXJ

We draw a random sample of size n, now without replacement, and obtain counts nJ for

the distinct values. Given the sample values n1; : : : ; nD, the likelihood in the parameters

N1; : : : ;ND is the hypergeometric likelihood

LðN1; : : : ;NDÞ ¼
YD
J¼1

NJ

nJ

 !

which is expressed in terms of only the observed sample counts nj:

LðN1; : : : ;NdÞ ¼
Yd
j¼1

Nj

nj

 !

As before, write N*
J ¼ NJ 2 nJ , with

PD
J¼1N

*
J ¼ N 2 n ¼ N *. The likelihood in the

N*
j is

LðN*
1; : : : ;N

*
dÞ ¼

Yd
j¼1

N*
j þ nj

nj

0@ 1A
Conditional on category proportions pj, we treat the d unobserved population counts N*

J

as drawn from a multinomial distribution

mðN *; p1; : : : ; pdÞ ¼
N *!Qd
j¼1N

*
j !

Yd
j¼1

p
N*

j

j

in which the probabilities pj, conditional on the observed sample sizes nj, have the

Dirichlet distribution of Section 1:

p ð p1; : : : ; pdjn1; : : : ; ndÞ ¼
GðnÞQd
j¼1GðnjÞ

Yd
j¼1

p
nj21
j

Journal of Official Statistics38



Integrating out the pj gives a compound multinomial distribution as the posterior

distribution of the N*
j given the nj:

Pr½N*
1; : : : ;N

*
djn1; : : : ; nd�

¼

ð
· · ·

ð
Pr½N*

1; : : : ;N
*
djp1; : : : ; pd�·Pr½p1; : : : ; pdjn1; : : : ; nd�dp1: : :dpd

¼

ð
· · ·

ð
N *!Qd
j¼1N

*
j !

Yd
j¼1

p
N*

j

j ·
GðnÞQd
j¼1GðnjÞ

Yd
j¼1

p
nj21
j dp1: : :dpd

¼ c·
N *!Qd
j¼1N

*
j !

Yd
j¼1

GðN*
j þ njÞ

GðN * þ nÞ

We use the simple indirect sampling formulation for simulation of the ratio regression

coefficient:

. generate M values p½m�j of the pj as in Section 1;

. from these, generate M values N*½m�
j from the multinomial distributions

mðN *; p½m�1 ; : : : ; p½m�d Þ

. calculate the M values B ½m� ¼
Pd

j¼1ðN
*½m�
j þ njÞYj=

Pd
j¼1ðN

*½m�
j þ njÞXj

3.6. Simulation Study

We replicate part of the simulation study in Section 3.3, but with sample size 40 from the

hospitals population, to compare the posterior distributions of the ratio regression

coefficient for sampling with and without replacement. We restrict the study to just the two

posteriors based on the same Haldane prior-based posterior for the pj. Results are given in

Table 4.

The hypergeometric intervals are shorter, but have lower coverage, as in the single-

sample case. The probit analysis of actual coverage with length, method and nominal

Table 4. Average credible interval length and coverage, n ¼ 40

Coefficient With rep Without rep

80% 0.3551 0.3362
90% 0.4578 0.4337
95% 0.5481 0.5192

c 0.769 0.743
80% lnc 0.125 0.136
rnc 0.106 0.121

c 0.867 0.850
90% lnc 0.071 0.081
rnc 0.062 0.069

c 0.929 0.911
95% lnc 0.036 0.046
rnc 0.035 0.043

Aitkin: Applications of the Bayesian Bootstrap 39



coverage as explanatory variables shows that the simple interval length model is sufficient

to describe the results: the deviance of the single interval length model is 0.104 on 4 df, so

there is no improvement in coverage from the hypergeometric likelihood. The theoretical

gain in precision is again not visible with a sampling fraction of 0.10.

4. More General Regression Models

The approach in this section can be readily extended to general regression models. For

complex models we adopt the “working model” language of Valliant, Dorfman, and

Royall (2000, p. 50), in which the “working” probability model leads to an optimal

estimator under the model, which is then used without the working model being assumed

to hold.

Suppose that a working model has E½Yjx� ¼ B 0x; Var½Y� ¼ s2, leading to the usual

least squares estimate ðX 0XÞ21X 0y of B. This can be immediately treated in the same

Bayesian way, expressed by definition as B ¼ ðX 0PXÞ21X 0Py, where P is a diagonal

weight matrix of the population proportions at each support point in the (Y,x) space.

We simulate M values p½m�j from the posterior Dirichlet distribution of the pj, giving the

M values B½m� ¼ ðX 0P ½m�XÞ21X 0P ½m�y. This will in general require M matrix inversions of

the weighted SSP matrix. Nonconstant variance models can be easily incorporated.

The ability to use standard software for the Dirichlet analysis with an additional weight

vector greatly extends the generality of the Bayesian bootstrap analysis. We illustrate this

with the analysis of a complex example in Section 7.

5. The Multinomial Model for Multiple Populations

Consider a population of size N which is made up of S subpopulations indexed by

s ¼ 1; : : : ; S, with Ns members and proportion ps ¼ Ns=N in subpopulation s. A response

variable of interest Y takes values in the full population. As for the case of a single

population, we conceptually tabulate the full population by the distinct values

Y1 , · · · , YJ , · · · , YD. In subpopulation s the proportions of the subpopulation at

the values YJ are denoted by psJ ¼ NsJ=Ns where NsJ is the number of members at YJ in

subpopulation s. We do not assume that the proportions psJ are related across

subpopulations: the set of multinomial distributions is completely general.

The subpopulation means and variances of Y are

ms ¼
J

X
psJYJ ; s 2

s ¼
J

X
psJðYJ 2 msÞ

2

We draw a random sample of size ns from the sth subpopulation, with total sample size

n ¼
P

s ns, and obtain nsJ sample values at YJ in the sth subpopulation. The sample

fraction ps is the proportion ns=Ns drawn from the sth subpopulation.

The subpopulation sample means and variances are

�ys ¼
J

X nsJYJ

ns
; s2

s ¼
J

X nsJðYJ 2 �ysÞ
2

ns 2 1
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We consider first the case when the sample fractions are small, so that sampling with

and without replacement are equivalent. Large sample fractions require the hypergeo-

metric likelihood rather than the multinomial; the approach of Section 2 can be adapted to

the more general case here.

The overall population mean is

m ¼
XS
s¼1

Nsms

N
¼
XS
s¼1

psms

and the overall sample mean is

�y ¼
XS
s¼1

ns �ys

n

These are conveniently summarized in Table 5 below.

We make use of this structure for two different types of sampling.

6. Complex Sample Designs

6.1. Stratified Sampling

Stratified sampling is designed to reduce variability in estimation due to known population

heterogeneity – the population is made up of homogenous subpopulations with substantial

differences in mean and/or variance among them. If some of the subpopulations are small,

a simple random sample may miss them completely, or give only small subsamples from

them. Stratified sampling sometimes oversamples small strata to give comparable sample

sizes from all strata – the assessment of strata differences is most precise, for a fixed total

sample size, when the strata sample sizes are proportional to the strata variances (and so

are equal if the strata variances are equal).

We now identify the s label with stratum (usually denoted by h). For a single response

variable Y, we wish to estimate the stratum means ms and the overall population mean,

allowing for the different sampling fractions ps ¼ ns=Ns in the different strata. For

Bayesian inference about the individual ms, we proceed as for the single population mean

in Section 1. We draw M values p½m�sJ from the posterior Dirichlet distribution of the psJ on

the observed support in stratum s using the Haldane prior, and map these into M values

m½m�
s ¼

X
p½m�sJ YJ

Table 5. Subpopulation structure

Subpopulation Proportion Sample fraction Mean Variance

Population s ps ¼ Ns=N ms s2
s

Sample s ns /n ps ¼ ns=Ns �ys s2
s
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of the posterior distribution of ms. Then for posterior inference about m ¼
P

s psms, we

simply combine the M simulated values of ms:

m ½m� ¼
s

X
psm

½m�
s

to give M values from the posterior distribution of m.

We postpone an example to Section 7.

6.2. Cluster Sampling

Cluster sampling has a similar formal structure to stratification, but the population

parameters of interest are different. Cluster sampling is a form of two-stage sampling, in

which the population is divided into clusters which are defined by geographic contiguity or

other similarities, which make units sampled within the same cluster more homogeneous

than those sampled from different clusters. Clustering frequently reduces sampling costs

compared with simple random sampling.

The two-stage design selects clusters at random according to a sample design, and

samples units within clusters according to a second sample design (sometimes a full

sample of all units in the clusters).

The analysis in cluster sampling allows for the greater homogeneity within clusters than

that among clusters, and this is naturally represented through variances.

We now change notation, using the subscript c to represent cluster identification; the

design has C clusters. We adapt Table 5 to represent clustering in Table 6:

The overall population mean is m ¼
P

c pcmc, and the overall population variance is

s2 ¼
c

X
J

XNcJðYJ 2 mÞ2

N

¼
c

X
J

X pcJNcðYJ 2 mc þ mc 2 mÞ2

N

¼
c

XNc s 2
c þ

j

X
pcJðmc 2 mÞ2

" #
N

¼
c

X
pc½s

2
c þ ðmc 2 mÞ2� ¼ s 2

W þ s 2
A

Table 6. Subpopulation structure

Cluster Proportion Sample fraction Mean Variance

Population c pc ¼ Nc=N mc s 2
c

Cluster c nc/n pc ¼ nc=Nc �yc s 2
c
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where NcJ is the number of cluster c values of Y equal to YJ, pcJ ¼ NcJ=Nc,

s 2
W ¼

c

X
pcs

2
c

is the (average) pooled within-cluster variance and

s 2
A ¼

c

X
pcðmc 2 mÞ2

is the among-cluster variance.

The posterior distributions of both these variance components can be simulated directly

from their definitions in terms of the cluster means, variances and proportions. Denote the

sample data from cluster c by ycj; j ¼ 1; : : : ; nc. We assume for simplicity of notation

that all the observations in a cluster are distinct, though tabulation for the distinct values is

in general needed as for a single population. The cluster population proportion at Ycj is pcj,

and given the sample data, we simulate M values p½m�cj from the posterior Dirichlet

distribution of the pcj as in Section 1. From these we compute the M values m½m�
c , s 2½m�

c ,

m½m�
c , s 2½m�

A and s 2½m�
W from their definitions above.

An important point here is that the cluster sizes Nc in the population do not need to be

known for this analysis, nor the total population size N: only the proportions pc are used,

and these are based on the sample proportions at each observed value.

We illustrate with a small example from Box and Tiao (1973, p. 246), a designed

experiment in which five samples were randomly chosen from six batches of raw material,

and a single laboratory determination made (of the yield of dyestuff in grams of standard

color) on each sample. This example is artificial for population survey sampling, but our

aim is to show how variance components are estimated.

Box and Tiao give the details of the Bayesian treatment of the normal variance

component model, and the joint posterior distribution of the “among-batch” and “within-

batch” variance components. In Box and Tiao’s Bayesian analysis the within-batch

variances are assumed to be the same across batches; we relax this assumption.

The data are given in Table 7, with the batch mean and (unbiased) variance. For each

batch c, we generate M ¼ 10; 000 random values p½m�jc of the pjc for the observed values yjc
in that batch, and substitute them in the various means and variances for each c, and the

variance components. The posterior distributions for the batch means and variances are

shown in Figures 9 and 10.

Table 7. Dyestuff data

Batch 1 2 3 4 5 6

1,545 1,540 1,595 1,445 1,595 1,520
1,440 1,555 1,550 1,440 1,630 1,455
1,440 1,490 1,605 1,595 1,515 1,450
1,520 1,560 1,510 1,465 1,635 1,480
1,580 1,495 1,560 1,545 1,625 1,445

Mean 1,505.0 1,528.0 1,564.0 1,498.0 1,600.0 1,470.0
Variance 3,975.0 1,107.5 1,442.5 4,720.0 2,500.0 962.5
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They are very diffuse, a consequence of the small sample size in each batch. (The

batch can be identified in the figures by matching the sample mean to the posterior

median.) The sample means differ considerably, and there is some sample variance

heterogeneity – the largest variance ratio between batches is 4.90. The posterior

Fig. 9. Posteriors, batch means

Fig. 10. Posteriors, batch variances
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distributions of the among-batch and pooled within-batch variance components are

shown in Figure 11.

6.3. Shrinkage Estimation

The variance components are widely used in small-area estimation, in which the

estimation of an area mean is improved by “borrowing strength” from the other area means

through their variation as measured by the among-area variance component. In fully

(normal) model-based inference a shrinkage estimator of an area mean may be superior to

the simple area sample mean, if the area sample size is small. In the normal two-level

model

yjcjmc , Nðmc;s
2
cÞ

mc , Nðm;s 2
AÞ

it follows immediately that

�ycjmc , Nðmc;s
2
c=ncÞ

mcj�yc , Nðmþ wcð�yc 2 mÞ; s 2
Að1 2 wcÞÞ

where

wc ¼
ncuc

1 þ ncuc
; uc ¼

s 2
A

s 2
c

Fig. 11. Posteriors, batch variance components
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The posterior mean of mc can be written

~m c ¼ wc �yc þ ð1 2 wcÞm

This is widely used as a shrinkage estimator of the area mean. The difficulty with this

estimator in frequentist theory (apart from the assumption of normality) is how to specify

correctly its variability; in the fully normal model-based analysis empirical Bayes estimators

are widely used, with ML estimates replacing the unknown variance component parameters

and overall mean, but the variability of the resulting shrinkage estimator is very difficult to

establish; further, the posterior variance of the mc is widely ignored.

The same Dirichlet posterior analysis provides the inference about the mc, correctly

adjusted for parameter uncertainty. We first substitute the simulated values above into the

variance component ratio and the means, using m ½m� ¼
P

pcm
½m�
c , giving

u ½m�
c ¼

s 2½m�
A

s 2½m�
c

w½m�
c ¼

ncu
½m�

1 þ ncu ½m�

~m½m�
c ¼ w½m�

c m½m�
c þ ð1 2 w½m�

c Þm ½m�

gVarVar
½m�

c ¼ s 2½m�
A ð1 2 w½m�

c Þ

where gVarcVarc is the posterior variance of mc. Then for each m we draw the random value m½m�
c

from Nð
g
m½m�
cm
½m�
c ; gVar½m�cVar½m�c Þ. These values allow for all the uncertainty in the parameters, and for

the variance of the posterior distribution of mc.

Fig. 12. Posterior and fixed effect means, all batches
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This is one of the great strengths of the Bayesian analysis: the simulation variability in

the population proportions pj is propagated throughout the subsequent functions of these

parameters. We illustrate with the Box and Tiao example.

Figure 12 shows the posterior distributions (as cdfs), for each batch, of the “fixed effect”

mean mc of the batch (without using the batch random effect distribution – solid curves)

and of the batch random effect (dashed curves), derived as described above from

M ¼ 10; 000 samples.

Surprisingly, the random effect posterior distributions are more diffuse than those for

the “fixed effects” – it appears that incorporating the additional information has

decreased, rather than increased, the precision of inference!

There are two reasons for this result. First, we have not assumed that the batch variances

are homogeneous. In a frequentist analysis, this assumption is made routinely: without it,

the batch variance for each batch has four degrees of freedom instead of the 24 of the

pooled within-batch variance. As a result, all of the batch means, variances and variance

component ratios are based on very small samples and are very imprecise. The additional

information provided by the among-batch variance component (which is itself based on

only five degrees of freedom) does not overcome this imprecision.

Second, we are not assuming a normal (or any other) parametric distribution for the

dyestuff yield, and so the multinomial distributional model in each batch is based on only

five values, which are unrelated across batches.

The homogeneity assumption is important for inference about the batch means: if we use the

average batch variance instead of the individual batch variances, the random effect batch

posteriors (not shown) aremore precise than the fixed effect posteriors, and also show shrinkage

towards the overall population mean. This is the usual conclusion from empirical Bayes

analyses, but its validity may depend strongly on the homogeneity of variance assumption.

7. A Complex Example

We conclude this article with an analysis of the Labor Force Survey data from Valliant,

Dorfman, and Royall (2000, Appendix B.5). The sample of 478 individuals is stratified in

three strata and clustered in 115 clusters within strata, with an average of four individuals

per cluster. We illustrate the general approach with a main-effect regression of weekly

wage on sex, age and hours worked, allowing for the stratification and clustering.

Since the (stratum, cluster) cells hold only four cases each on average, we assume a

constant variance of wage across these cells. We comment on this assumption below.

We index the data by (i,c,s) for person i in cluster c and stratum s, and write yics for the

weekly wage of person i in cluster c and stratum s, ac and bs for the random cluster and fixed

stratum effects, and xi for the explanatory variables on person i. We adopt the working model

E½yicsjac� ¼ b 0xi þ ac þ bs

Var½yicsjac� ¼ s2

E½ac� ¼ 0

Var½ac� ¼ s 2
A

Cov½yics; yi 0c 0s 0 � ¼ dðc; c 0Þs 2
A
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where dðc; c 0Þ ¼ 1 if c ¼ c 0 and zero otherwise. These are the usual assumptions of

the two-level cluster random effect model with fixed stratum effects. If in addition the

cluster and wage variables were assumed to be normally distributed, the optimal

estimates of b and the stratum effects would be the ML estimates from the two-level

normal variance component model. These can be expressed as generalized least

squares estimates: writing b for the vector of stratum effects and Z ¼ ½X;B� for

the design matrix of explanatory variables and stratum effects, the MLEs are the

solutions of

Z 0VZ½b; b� ¼ Z 0Vy

where V is the block-diagonal covariance matrix of the observations. This solution can

be obtained from any standard two-level maximum likelihood model program. We

adopt the ML estimators of fixed effects and variance components as defining the

population parameters for the Bayesian bootstrap analysis, but without the assumption

of normality.

We express the posterior distributions of the population parameters – regression

coefficients, stratum effects and variance components – in terms of the posterior Dirichlet

distributions of the probabilities at each sample point in each cluster within stratum, based

on the number (2–5) of persons in each cluster. The full simulation procedure is

surprisingly simple:

. from the observations within each cluster, construct the Dirichlet posterior, with the

Haldane prior, of the probabilities pjc on the observed support yjc within that cluster;

. draw M values p½m�jc from the posteriors of the pjc;

. using the p½m�jc as explicit weights for each observation yjc in cluster c, carry out M

weighted ML fits of the ycj to the explanatory variables, to obtain parameter estimates

b [m ], b [m ], s 2[m ] and s 2½m�
A .

These M values provide the required posterior distributions of the parameters.

For the conventional two-level normal model analysis we assume the wage variance is

constant. For the main effect model of age, sex, hours worked and stratum, the ML

estimates and standard errors (omitting those for strata) are given below.

The Bayesian bootstrap analysis with M ¼ 10; 000 gave posterior distributions for all

the parameters which were indistinguishable from normal, apart from slightly heavier tails

for the among-cluster variance component. The posterior means and standard deviations

for the parameters are shown below.

Maximum likelihood estimates and standard errors, wage example

Intercept Age Sex Hours Sigma Sigma_A

MLE 23.20 1.988 2107.8 7.061 136.7 76.76
SE 7.95 0.125 3.46 0.154
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The striking difference in intercepts is of no real consequence since wages were not

centered for the analysis. The variance component estimates are very close; the other

parameter estimates are less close but similar, as might be expected from a weighted

analysis, but their precisions are very different – the posterior SDs are 3–4 times as large

as the SEs. The reason for this is very clear – a graph of cluster sample variance against

mean shows that the wage variance increases with mean, so the constant variance model

gives a compromise variance which misrepresents the nature of the variability. The Bayes

analysis gives a variance estimate which is almost the same, but the effect of the weighting

is similar to that of “sandwiching” the variance estimates in a frequentist analysis which

allows for variance heterogeneity: the model uncertainty, in both distributional and

variance terms, is allowed for by the Dirichlet distributions in each cluster.

The Bayesian bootstrap analysis required about 4 hours of time for the 10,000 draws, on

a laptop with 1.6 GHz processor and 1.24 GB RAM, running the GLIM4 Gaussian

quadrature macro (Aitkin 1999) for a two-level normal GLMM weighted by the Dirichlets

generated by sequential reads through the clusters. This time could be substantially

reduced with more efficient model fitting and simulation.

We emphasize that any package which can both simulate gamma random variables

and fit two-level models could be used for this analysis; we do not give a specific

package code.

8. Discussion

The Bayesian bootstrap approach to finite population analysis is quite general. It accepts

the survey sampling axiom of not assuming a full parametric model for the population

form of the response variable, but it nevertheless provides full information about the

defined population parameters through the multinomial likelihood and the noninformative

Haldane Dirichlet prior. The prior restricts analysis to the observed support, in the same

way as maximum empirical likelihood and the frequentist bootstrap. This approach, like

parametric model-based approaches, does not use the sampling distributions of the sample

selection indicators, but unlike parametric model approaches, does not require the

examination or validation of the parametric model by residual examination.

It is surprising that the Bayesian bootstrap analysis is equivalent to a series of M

weighted maximum likelihood analyses with randomly varying weights; the variation

among the M resulting parameter realizations provides the full posterior distribution

of these parameters, in a (model) distribution-free way, since it depends only on the

primitive multinomial model, which is not a model assumption which can be contradicted

by the data.

Posterior means and standard deviations, wage example

Intercept Age Sex Hours Sigma Sigma_A

Mean 127.3 1.792 2115.2 7.514 137.2 77.01
SD 32.1 0.412 10.6 0.497 4.03 8.28
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The ability to use standard software packages (provided these allow for weights) is a

particularly useful feature of the Bayesian bootstrap analysis. Running 10,000 regression

analyses may appear computationally intensive, especially for GLMMs, but since the

weights are varying only randomly, the ML estimates can be used as starting values for

each analysis, and so convergence of each of the M model-fitting steps can be faster than

for the ML analysis itself.

This analysis has some similarities to the empirical likelihood analysis of Owen (2001),

but the latter depends on asymptotic frequentist likelihood theory for the calibration of

empirical likelihood confidence intervals and regions. As noted in the examples in this

article, the credible intervals tend to under-cover in small samples (as do likelihood-based

confidence intervals in some models), but this calibration is based only on the equivalence

in larger samples of credible and likelihood-based confidence intervals; the credible

intervals always have their usual Bayesian interpretation.

The disadvantages of the Bayesian bootstrap approach are shared with survey sampling

analysis, empirical likelihood and bootstrapping: without an explicit response probability

model there is no optimal choice for population or regression parameters. The decision to

use (say) the ratio estimator is not based on data properties, except in so far as the form of

the variance function can be assessed from data plotting or residual examination. Different

choices of the power of X parameter in the variance function lead to different estimators,

but there is no obvious way of choosing which is more appropriate, since the multinomial

likelihood is a function only of the population proportions at each support point, and not

explicitly of the variance parameter.

Different variance parameters provide different population regression coefficient

definitions, for all of which the multinomial likelihood and Dirichlet posterior provide

credible intervals for the regression coefficients, but we are unable to compare these

coefficients (and the implicit variance functions which justify them) through the model

likelihoods, since they depend on the same unconstrained multinomial parameters.

A more refined examination of the variance form (for example, the choice of the most

appropriate value of the power parameter of X) requires an explicit parametric model for

the response, or else a constrained multinomial likelihood, to provide different likelihoods

for different models which can then be compared. A similar problem occurs with the

variance homogeneity assumption: this is a model constraint on the multinomial

probabilities in each batch which is difficult to implement in a Bayesian framework.

Thus the Bayesian bootstrap approach is not completely general, but within its

limitations optimal Bayes procedures are available and fruitful, and readily computable

with general software. Further investigation of model comparison methods and

constrained multinomial probabilities is required for a fully general analysis.
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