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Assessing the Value of Bayesian Methods for Inference
about Finite Population Quantities

Joseph Sedransk1

Bayesian methodology is well developed and there are successful applications in many areas
of substantive research. However, the use of such methodology in making inferences about
finite population quantities is limited. I will describe several types of application where
greater use of Bayesian methods is likely to be profitable and some where they are not. In
addition, I will describe research whose successful completion should lead to improved
analysis. The illustrations will come, primarily, from establishment surveys and a related area,
providing public “report cards” for providers of medical care.

1. Introduction

Bayesian methodology is well developed and there are successful applications in many

areas of substantive research. In many cases the advantage of using a Bayesian approach is

that it avoids the necessity of using large-sample approximations while in others it permits

a more appropriate but complicated probabilistic specification (e.g., in order restricted

inference where one can include in the specification uncertainty about the existence and

nature of the order restrictions; see Nandram, Sedransk, and Smith 1997). The formal

structure of a Bayesian analysis makes it easier to incorporate available prior data,

common in many repeated surveys. For some, the foundational arguments are compelling;

see, e.g., DeGroot (1970) and Pratt, Raiffa, and Schlaifer (1964).

However, the use of such methods in survey sampling has been limited. The reasons for

this include the presence of a well-developed methodology, i.e., design-based inference,

the complexity of many survey designs, and the “observational” nature of the data. There

are, though, many applications where a Bayesian approach should provide improved

inferences. I shall describe a few of them.

At the U.S. Federal Reserve Board in 1972 there was a proposed redesign of a survey to

provide early (weekly) estimates of several components of the money supply using data

from a sample of member banks. An important feature was the vast amount of prior,

population, data available (e.g., daily data for each bank in the population for the past eight

years). These data could be used to improve estimation and to test alternative designs and

estimators, and suggested that a Bayesian approach could be beneficial.

In Section 2 I discuss several types of problem where a Bayesian approach may be

helpful: (a) analysis of data from establishment surveys, (b) small area inference, (c)
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pooling data from disparate sources, and (d) general survey design. Section 3 has a

discussion of situations where Bayesian methods are not likely to be useful, including a

survey to estimate the prevalence of West Nile virus in Cuyahoga County, Ohio.

Currently, providing “public” report cards for providers of medical care is a controversial

topic. In Section 4 I use this as an example where Bayesian methods are useful, but the key

issue is selection of the model. There is a brief summary in Section 5.

2. Applications

2.1. Inference for Establishment Surveys

At the U.S. Federal Reserve Board (FRB) in the 1970s it was desired to have timely and

accurate estimates of variousmonetary aggregates for the population of about 5700member

banks of the Federal Reserve System using a sampling fraction of 10–15% with each bank

reporting weekly. Since all member banks were required to report their data within three

weeks, extensive prior data were available to improve estimation and to test samples and

estimators using actual population data. Moreover, there is a plausible linear model relating

each bank’s current monetary aggregate to its value in a base period (where the value of the

monetary aggregate is known for all units in the population). This situation is typical of

many establishment surveys where there is a close relationship between the variable of

interest, Y, and a covariate, X, and the values of X are known for all units in the population.

In the FRB example it is natural to use a stratified random sample with a large

“certainty” stratum because of the extremely skewed distribution of Y for all monetary

aggregates. Letting Yhi denote the value of the monetary aggregate for bank i in stratum h

for week t and Xhi the same aggregate for (i,h) for the base week, a reasonable population

model is

Yhi ¼ bhXhi þ 1hi; h ¼ 1; : : : ; L; i ¼ 1; : : : ;Nh ð1Þ

where the 1hi are independent with

1hi , N 0;s 2
hXhi

� �

The finite population total, YT, can be written as

YT ¼
XL
h¼1

XNh

i¼1

Yhi ¼
XL
h¼1

½nh �yh þ ðNh 2 nhÞðbh ~xh þ ~1hÞ� ð2Þ

where ~xh and ~1h are the means for the Nh 2 nh nonsampled banks in stratum h and �yh is the

sample mean in stratum h. Thus, the posterior expected value of YT is

EðYT jysÞ ¼
XL
h¼1

½nh �yh þ ðNh 2 nhÞ�xhEðbhjysÞ� ð3Þ

where ys denotes the sample data.

For point estimation only EðbhjysÞ is needed; see (3). For inference we assumed that the

s 2
h were known (i.e., to be replaced by point estimates – recall that this was in the early
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1970s) and considered several prior distributions for the bh. First, for a given week,

b1; : : : ;bLjn ,iid N n;s 2
b

� �

pðnÞ ¼ constant
ð4Þ

where s 2
b is specified. Using (1) and (3) a straightforward extension of results in Scott and

Smith (1969) leads to expressions for the posterior expected value and variance of YT. See

Sedransk (1977) for details.

Second, for a given week,

b1; : : : ;bLjn,iid N n;s 2
b

� �

n , N b0;s
2
n

� � ð5Þ

where s 2
b;b0;s

2
n

� �
are specified. The prior in (5) can be interpreted as follows (Sedransk

1977): “For any given current week t define Jt as the Julian date corresponding to the end of

the week of interest. Then there is a conceptual time series {(Jt,b0t)} where 1 # Jt # 366.

For given (Jt,b0t), nt is an observation from N b0t;s
2
n

� �
where s 2

n is assumed known. Thus,

{(Jt,b0t)} is a further time series. Finally, given nt; ðb1t; : : : ;bLtÞ is a random sample from

N nt;s
2
b

� �
with s 2

b specified.”

We used the extensive historical data available (e.g., values of YT for each week for the

previous ten years and microdata for the previous five years) to estimate s 2
b;b0;s

2
n

� �
in

(5). Defining �bh ¼
PNh

i¼1Yhi=
PNh

i¼1Xhi, the estimated regression coefficent for stratum h

using data from all banks in the population, we used a cross-sectional random effects

model for the �bh to estimate b0 and s
2
b for week t. Letting

~b0t denote the estimate of b0 for

week t we then used an ARIMA model on { ~b0t : t ¼ 1; : : : ; T} to provide an estimate for

s 2
n and final estimates for {b0t : t ¼ 1; : : : ; T}.

We tested the alternative estimates by using the population data (Sedransk 1977,

Sections 3.3 and 4). This investigation showed that the Bayesian methods were preferable

to standard ones (e.g., the separate ratio estimator), but did not exhibit the full gains that

could be realized. First, for (5), we estimated s 2
n much too conservatively, so the estimates

using (4) and (5) were similar. Second, we expect that the exchangeability assumption in

(4) would continue to hold over time, but to be more beneficial as the structure of the finite

population changed while the sample remained essentially the same (the latter due to

reluctance to incur the expense of recruiting and training new sample banks).

A second example is estimation of total monthly sales of electricity at the Energy

Information Administration (EIA) using a cutoff sample of companies. The current

methodology is based on (1) where, for a specified month, Yhi is the sales of electricity

for company i in stratum h and Xhi is the annual sales of electricity for this company

from a recent census. Inference at EIA uses model-based predictive inference (see

Valliant et al. 2000), so the estimator, ~YT , of the finite population total, YT, in (2) is given

by (3) with EðbhjysÞ replaced by �bh, the weighted least squares estimate. At EIA the

strata are defined using regions based on climate, and there is ambiguity about how these

should be chosen. An alternative is to use (4) or its frequentist counterpart. Recent
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research (Sagatelov 2007) suggests that this is an appropriate model to use for

estimation. However, inference can be improved by modifying (4) to accommodate the

possibility that only subsets of the L regression coefficients are exchangeable. Three

possibilities are using a Dirichlet process prior (e.g., Kleinman and Ibrahim 1998),

“uncertain pooling” (Malec and Sedransk 1992; Evans and Sedransk 2001), or heavy

tailed prior distributions (O’Hagan 1988). Research to compare these approaches and to

extend the existing theory would be desirable. I know of no comparable extensions of (4)

available in the frequentist mode of inference.

2.2. Inference for Small Subpopulations

There is, by now, a large literature on the theory and methodology for “small area”

inference, and general agreement that model-based methods are needed for most

applications. Three useful references are Rao (2003) and Jiang and Lahiri (2006),

predominantly frequentist in approach, and Ghosh and Meeden (1997), a Bayesian

treatment. As noted in Section 1, some may prefer the Bayesian approach because of

foundational arguments. A more compelling reason for many is that use of large sample

approximations, necessary in a frequentist analysis, can be avoided by using a Bayesian

approach. Moreover, the theory necessary to obtain these large sample approximations

may be formidable for many practical situations because of the complex models required

(for example, see Jiang and Lahiri 2006, Section 4: Generalized linear mixed models.) To

illustrated consider inference using data from the National Health Interview Survey

(NHIS), for the proportion of individuals who made at least one visit to a doctor during the

past year. Estimates were required for 72 age/race/sex categories for each county, i.e.,

about 3,000 x 72 subpopulations. To make these estimates Malec et al. (1997) used the

following model.

Assume that each individual in the population is assigned to one of K mutually

exclusive and exhaustive classes based on the individual’s socioeconomic/ demographic

status. Let Yikj denote a binary random variable for individual j in class k, cluster i where

i ¼ l; : : : ; L, k ¼ l; : : : ;B, and j ¼ 1; : : : ;Nik. Here, Yikj ¼ 1 if, and only if, individual

(ikj ) has made at least one doctor visit during the past year and the clusters are U.S.

counties. Within cluster i and class k, and conditional on pik, the Yikj are assumed to be

independent Bernoulli random variables with PrðYikj ¼ 1jpikÞ ¼ pik. A row vector of M

covariates, Xk ¼ ðXk1; : : : ;XkMÞ, is assumed to be the same for each individual j in class

k, cluster i. Given Xk and a column vector of regression coefficients, bi ¼ ðbi1; : : : ;biMÞ
0;

it is assumed that

logitð pikÞ ¼ Xkbi ð6Þ

Moreover, conditional on h and G, the bi are independently distributed with

bi , NðGih;GÞ ð7Þ

where each row of Gi is a subset of the cluster level covariates ðZi1; : : : ; ZicÞ, not

necessarily related to Xk, h is a vector of regression coefficients, and G is an MxM positive
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definite matrix. Reference prior distributions are assigned to h and G, i.e.,

pðh;GÞ / c ð8Þ

In this application (6) is a piecewise linear model, linear in age, with different forms for

white males, white females, nonwhite males and nonwhite females. (An important benefit

of this modelling exercise is that it demonstrated interesting relationships of the variable

“probability of a doctor visit” to age, sex and race.) The elements of Gi are county level

covariates such as county per capita income or education level. The assumptions in

(6)–(8) provide a relatively simple specification that is concordant with the data (see

Malec et al. 1997). The regression in (7) is important because it permits covariation

between individuals in a cluster and provides the opportunity for increased precision.

The objective is to make inference about the finite population total, YT, the number of

individuals in a specified small area and subpopulation who made at least one visit to a

doctor during the past year; i.e.,

YT ¼
i[I

X
k[K

XXNik

j¼1

Yikj ð9Þ

where I is the collection of clusters that define the small area, K is the collection of classes

that define the subpopulation, and Nik is the total number of individuals in cluster i, class k.

Now, let sik denote the set of sampled individuals in class k, cluster i that has size nik, and

ys the vector of sample observations. Then the posterior expected value of YT is

EðYT jysÞ ¼
i[I

X
k[K

X
j[sik

X
yikj þ

i[I

X
k[K

X
j�sik

X
Eð pikjysÞ ð10Þ

and the second term in (10) can be written as

i[I

X
k[K

X
ðNik 2 nikÞEð pikjysÞ

where

pik ¼
exp½Xkbi�

1þ exp½Xkbi�

Malec et al. (1997) show how to make these inferences using an exact method, and

compare the results with approximations to the likelihood and posterior distribution and

also to empirical Bayes and synthetic estimation. There is a large cross validation exercise

to assess the quality of the fitted model.

One problem, perhaps not commonly recognized, is that the clusters used in the sample

design may not be the most appropriate ones for the analysis. This should be a concern for

a frequentist design-based analysis as well as model-based analyses – think of “post

cluster analysis,” analogous to post stratification. In the analysis described in Malec et al.

(1997) the clusters in the model were chosen to be U.S. counties, which are more

homogeneous than the primary sampling units. Other units (e.g., census tracts) were

considered for analysis but rejected because the sample sizes were much too small.
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2.3. Survey Design

One early line of development of Bayesian methodology was decision analysis. The

objective is to make optimal decisions when data are observed and to choose the optimal

experiment or sample survey. One approach requires specification of a loss function,

L(d, u), for decision d and parameter value u, and may include the costs of various types of

sampling. A good reference is Raiffa and Schlaifer (1961); Lindley (1971, Section 4) is a

good summary.

With the current interest in reducing survey costs, using this framework may be a useful

way to think about obtaining an improved survey design. This framework has been used to

determine optimal strata sample sizes (Ericson 1965), optimal sample sizes from a two-

phase stratified sample design (Smith and Sedransk 1982; Jinn, Sedransk, and Smith

1987), and the optimal choice of the number of nonrespondents to sample (Ericson 1967;

Singh and Sedransk 1984).

While this list is incomplete, the papers cited provide a good introduction to the

methodology. An alternative Bayesian approach to determination of optimal sample sizes

is reviewed in Wang and Gelfand (2002). While the examples are about assessing

performance under a given model and separating models, the methodology for use in

sample surveys and related fields is apparent.

When designing a sample survey it is important to assess the precision that will be

attained. At the point where the survey design has been selected but the actual sample

has not been chosen even a stalwart Bayesian practitioner should use design-based

principles. In the FRB example (Section 2.1) I selected a set of stratified random samples

from a finite population constructed from a prior year’s census data. Estimates from this

set of samples provided the basis for the evaluation of the expected precision of

estimation.

2.4. Pooling Data from Several Sources

With a greater demand for estimates for smaller subpopulations and reduced budgets,

there is increased interest in using the data from several related sources. Raghunathan

et al. (2007) consider the use of data from both the National Health Interview Survey

(NHIS) and the Behavioral Risk Factor Surveillance System (BRFSS) to estimate, at

the county level, four cancer risk factors and the use of two types of cancer

screening. The situation is a typical one: The BRFSS is a much larger survey and

almost all counties are included, but the nonresponse rates are much larger than in the

NHIS and the BRFSS does not include subjects in households with no telephones.

By contrast, the NHIS is much smaller but is a personal interview survey with lower

nonresponse rates.

Estimates are required for each of four years for each U.S. county. This is a very large

number of subpopulations, although not as large as the set in the NHIS example in

Section 2.2. Raghunathan et al. (2007) start with (transformed) direct, design-based point

estimates and estimates of variance, the latter adjusted by design effects to make the two

surveys comparable. There are three estimates: (a) BRFSS, (b) NHIS for households with

telephones, and (c) NHIS for households without telephones. The sampling model has

means ð1þ djtÞujt for (a), ujt for (b) and fjt for (c) where j indexes counties and t years.
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Letting wjt ¼ ðujt;fjt; djtÞ

wjt , NðUjtb;SÞ

where Ujt is a vector of covariates. Finally, diffuse, proper priors are assumed for b and S.

The complexity of microdata models needed to provide state-of-the-art small area

estimates, as exemplified by the problem described in Section 2.2, indicates the need for

approximate methods. The approach in Raghunathan et al. (2007) is one possibility.

Noting that in the version of NHIS used by Raghunathan et al. (2007) direct estimates are

available only for about 25% of the U.S. counties, and that county sample sizes will be

very small in many cases (especially for the nontelephone households), the quality of the

“small area” estimates is uncertain and that of the estimates of variance is even more

questionable. Here, a comparison between the use of direct estimates as the starting point,

and an analysis based on modelling the microdata, as in Section 2.2, would be helpful in

acquiring knowledge about the types of approximation that are acceptable.

A further question is whether ðujt;fjt; ð1þ djtÞujtÞ, adjusted for the county and year level

covariates, might be regarded as exchangeable. If not, one of the approaches noted in

Section 2.1 (i.e., uncertain pooling, Dirichlet process prior or heavy tailed prior

distribution) may be an appropriate choice.

In a general setting with data from several, say k, sources one might consider the

approaches noted above where parameters corresponding to each source are treated as

“partially exchangeable,” i.e., the observed data identify the grouping of the parameters

corresponding to the k data sources.

3. Limitations

A sample survey of persons residing in Cuyahoga County, Ohio was conducted in

December 2002 to estimate the prevalence of West Nile virus (Kippes and Sedransk 2004;

Mandalakis et al. 2005). The survey also had two other objectives. The first was to obtain a

large number of cases so that there could be a meaningful analysis of the relationship

between presence/absence of West Nile virus and underlying risk factors. The second

objective was to survey areas of the county where there was no suspected activity. Since

previous surveys of West Nile virus (e.g., Mostashari et al. 2001) were limited to the

epicenters of the disease, the Cuyahoga County investigators wanted to study the

prevalence of the disease beyond the epicenter.

The survey required personal visits because each participant gave a blood sample.

Given the conflicting objectives described above and the need to reduce travel time, a

stratified, several-stage cluster design was used. The sampling fractions varied

substantially, the stratification having been based on known information about the West

Nile virus epidemic (i.e., numbers and locations of reported human cases and prevalence

of infected mosquitos in traps placed across the county). To try to obtain a larger number

of cases we oversampled in areas with large expected incidence of West Nile virus. With

this complexity and limited time for providing an estimator (and estimator of variance), a

Bayesian approach was infeasible, although the design-based estimator of variance also

included several approximations.
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The principal limitation with regard to the use of Bayesian methodology, shared with

the frequentist model-based approach, is the cost of developing the models to be used for

inference. An example is a specialized survey such as the West Nile virus survey just

described. It is also costly to develop models for many population-based, complex,

multivariate surveys, especially those requiring personal interviews. Use of design-based

methods in the latter case often offers a reasonable alternative if inference is required only

for moderate to large subpopulations. But this may not be true if inference is required for

small subpopulations, if large sample approximations used in a design-based analysis are

inappropriate or assumptions do not hold. Regarding the last two points a concern is about

stratified designs with one or two primary sampling units selected per stratum where the

between primary sampling unit variation within strata is a large component of the total

variation and differs across strata. In cases such as this, large sample approximations

commonly used may be inappropriate: One cannot provide adequate measures of

variability and assumptions about the sampling distribution of the pivotal quantity (used to

provide a confidence, or other, interval) may be questionable.

While there is no magic solution to the problem of developing appropriate models, there

is, I think, a reasonable way to proceed. By fitting many models such as those described in

Section 2.2 for the NHIS, experience will be gained and simpler models that are acceptable

approximations will emerge. At the same time analytical approximations for the posterior

distributions will also be identified, saving computer effort and time.

It is important to note that modelling for many establishment surveys is relatively easy.

Furthermore, there may be large gains in precision by using hierarchical models and the

more advanced methods that permit data-based assignment of the units to groups that are

then assumed to be (internally) exchangeable (see e.g., Kleinman and Ibrahim 1998;

Malec and Sedransk 1992; Evans and Sedransk 2001; O’Hagan 1988).

4. Provider Profiling

Provider profiling is the evaluation of the performance of hospitals, doctors, and other

medical practitioners to enhance the quality of care. Jurisdictions such as Scotland,

Ontario, California, Pennsylvania, Massachusetts, and New York have released “public

report cards” comparing hospital or physician-specific outcomes. The objective of

provider profiling may be to seek corrective measures when a provider’s performance is

thought to be unsatisfactory or to increase public awareness so individuals or institutions

can make an informed decision about medical care. Given the practical importance of

provider profiling it is essential to study the methodology used and to suggest

alternatives.

Since 1989 the New York State Department of Health has evaluated the performance of

the hospitals in New York which are licensed to perform coronary artery bypass graft

surgery (CABG). The methodology they use is the one most commonly used for provider

profiling. An elementary assessment of the performance of hospital i is to compare its Risk

Adjusted Mortality Rate with the overall Statewide Mortality Rate. Then the New York

State Department of Health (NYS DOH) obtains a 100(l 2 a)% confidence interval for the

expected value of the Risk Adjusted Mortality Rate for hospital i, and declares this hospital

to be an outlier if the Statewide Mortality Rate falls outside this interval.
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The basis for this analysis is the following model for patient j in hospital i: For the

binary variable Y ; Yij ¼ 1 if, and only if, patient (ij ) died in the hospital. It is assumed that

pij ¼ PrðYij ¼ 1Þ; i ¼ 1; : : : ;m; j ¼ 1; : : : ; ni ð11Þ

and

logitð pijÞ ¼ X 0
ijb ð12Þ

where, given the pij, the Yij are mutually independent, b is a vector of regression

coefficients, and Xij is a vector of preoperative risk factors for patient (ij ). The Risk

Adjusted Mortality Rate (RAMR) for hospital i is defined by

RAMRi ¼ ðSMRiÞðSRÞ

where the Statewide Mortality Rate, SR, is
Pm

i¼1

Pni
j¼1yij=

Pm
i¼1ni.

Also, SMRi ¼
Pni

j¼1yij= ~Esði Þ with ~Esði Þ ¼
Pni

j¼1 ~pij, ~pij ¼ ½1þ expð2X 0
ijb̂Þ�

21 and b̂ is

the maximum likelihood estimator of b.

The NYS DOH procedure for identifying an outlier is awkward, requiring a confidence

interval for the expected value of the RAMR. Moreover, large sample approximations are

required (see Racz and Sedransk 2007). A more natural approach is to obtain the predictive

distribution of the total mortality in hospital i,
Pni

j¼1Yij, assuming the statewide model in

(11) and (12). One can then obtain a 100(l 2 a)% predictive interval for
Pni

j¼1Yij and

regard hospital i as an outlier if, and only if, the observed mortality in hospital i lies outside

this interval.

Racz and Sedransk (2007) use the model in (11) and (12), together with a uniform prior

distribution for b, to obtain the posterior predictive interval for
Pni

j¼1Yij.

Normand et al. (1997) and Shahian et al. (2005) have advocated considering the hospital

effects as random. Using (11), they assume

logitð pijÞ ¼ X 0
ijbþ di ð13Þ

with

d1; : : : ; dm,iid Nð0; g
2Þ ð14Þ

The Bayesian approach is to use (11), (13) and (14) together with prior distributions on

b and g 2 (e.g., Racz and Sedransk 2007 use uniform priors). For assessments one may use

the (a/2)100th and (1 2 (a/2))100th percentile values of the posterior distribution of the

di. Using (11), (13) and (14), an analogous frequentist method of assessment can easily be

constructed (see Racz and Sedransk 2007 for details).

Racz and Sedransk used New York State’s Cardiac Surgery Reporting System data

for eight years to compare four methods: (a) New York State’s Indirect Standardization,

(b) Bayesian predictive inference patterned after (a), (c) Bayesian random effects, and

(d) frequentist random effects. Note that the CSRS contains demographic variables,

patients’ clinical risk factors and complications, dates of admission, surgery, and

discharge, and discharge status. There is also a separate analysis using constructed data,

based on the CSRS data, where a specific hospital is targeted as an outlier.

Sedransk: Bayesian Methods for Surveys 503



We found that (a) and (b) selected exactly the same outliers (both “high” and “low”)

over the eight years, about 250 cases in total (approximately 32 hospitals per year). This is

very surprising because the intervals are quite different (since they are intervals for

different quantities). However, both compare the observed mortality in hospital i with

mortality expected under the statewide model. Methods (c) and (d) identified similar

outliers. The differences seem to be due to the use of a standard, symmetric confidence

interval for (d) while the predictive interval for (c), based on the posterior predictive

distribution, does not have to be symmetric – an advantage for the latter in this situation.

Comparing (a) with (d) (or (b) with (c)), many fewer outliers are detected using the

random effects model, as one would expect. This is especially true for the low volume

hospitals. This a major concern because Racz and Sedransk show, via published accounts,

that several hospitals identified as outliers using indirect standardization (i.e., (a) or (b))

but not by (c) or (d) did, in fact, have serious deficiencies in their treatment of patients.

In Provider Profiling, as described here, there are advantages to a Bayesian approach.

First, the Bayesian indirect standardization (Method (b)) avoids the large sample

approximations inherent in the analogous frequentist (i.e., NYS DOH) method. The

predictive approach is a more natural approach than using a confidence interval for an

expected rate. Second, if one was to use a standard random effect approach it is unlikely

that, the resulting symmetric confidence intervalwould be as satisfactory as a nonsymmetric

one. However, the main issue here is the extent to which a random effect (or hierarchical)

model should be used in the Provider Profiling setting and caution is advised.

5. Summary

For many establishment surveys models can be developed easily, and concordance of the

model and data can be evaluated using census data. Using Bayesian methods in such cases

can lead to improved inferences in several ways. First, intervals of plausible values of the

finite population quantities do not have to rely on large sample approximations or on

assumptions of symmetry such as û^ z½
^
SEðûÞ�. Second, there may be gains in precision,

possibly substantial, from using hierarchical models. Extensions of such models to ones

that do not require full exchangeability should make inferences more consonant with the

data. The provider profiling problem provides a cautionary note that model validation is

important, especially when there are serious consequences if one makes a poor decision.

The situation for population based surveys is more problematical, especially when

inferences are needed for small to moderate-sized subpopulations. The limiting factor is

usually the time needed to develop appropriate models, usually more complex than those

for establishment surveys. I suggest that doing substantially more modelling will,

inevitably, lead to acquiring greater skills in doing so. Ultimately, shortcuts will be

discovered, e.g., methods for linking models for a set of different questions in a single

sample survey.
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