Journal of Official Statistics, Vol. 18, No. 4, 2002, pp. 577-589

Asymptotically Efficient Generalised Regression Estimators

G.E. Montanari and M.G. Ranalli’

In this article we introduce an enlarged class of generalised regression estimators of a finite
population mean that includes as special case the optimal estimator. Theoretical results
show that the latter can be seen as a generalised regression estimator based on a suitable super-
population linear regression model. Then, an estimation procedure able to merge the large
sample efficiency of the optimal estimator with the greater stability of the generalised
regression estimator for samples of moderate size is proposed. A simulation study provides
empirical evidence in support of the quoted theory.
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1. Introduction

Regression estimation is a powerful technique for estimating finite population means or
totals of survey variables when the population means or totals of a set of auxiliary vari-
ables are known. Two well-known types of regression estimators have recently appeared
in the literature, namely the Generalised Regression Estimator (GRE) and the Optimal
Estimator (OPE). Till now, they have been studied separately (for a short review see
Montanari 1998). In this article we explore connections between the two types of regres-
sion estimators and establish conditions under which the GRE is exactly or asymptotically
equivalent to the OPE. To this end, an Extended Generalised Regression Estimator
(EGRE) is proposed to allow regression estimation based on superpopulation models
with a nondiagonal variance matrix. Theoretical results show that the OPE can be seen
as an EGRE which incorporates the auxiliary variables used at the sampling design stage.
Thus, the OPE uses a larger number of auxiliary variables than the GRE and, as a
consequence, it may be less stable than the GRE when the sample size is not large. We
then propose a new estimation procedure which allows for a more efficient use of the
auxiliary information coming both from the sampling scheme and alternative sources.
The core of the proposal is a compromise between the large sample efficiency of the
OPE and the superior stability of the GRE for smaller sample sizes. The new strategy is
shown through simulation studies to be robust over several different superpopulation
models and on average more efficient than the OPE or GRE alone.
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2. Background and Preliminary Definitions

Consider a finite population U = {u, u,, ..., uy}, where the i-th unit is represented by its
label i. Let ¥; and x; = (X3;, Xoi, ..., X q,-)’ be the values of the survey variable y and of a
g-dimensional auxiliary variable x associated with unit i. The population mean vector
X = Zf\’: 1 X;/N of x is assumed known, e.g., from administrative registers or census
data. The unknown y variable mean, ¥ = Z?]:l Y;/N, has to be estimated by means of a
sample s of size n drawn from U according to a probabilistic sampling design and taking
into account the knowledge of X. We assume here that x; is known for units in the sample
but not in the population and that, for consistency with external sources, the estimator of ¥
to be adopted must use the known values contained in X when applied to the auxiliary vari-
ables. So, in our perspective the vector X is taken as given, as well as the sampling design.
In this article we are not going to discuss either the choice of subsets of elements of X for
est1mat10n purposes or the demgn of the sampling scheme.

Let ¥ = S Y/Nm; and x = ) i x;/N; be the design-unbiased Horvitz-Thompson
estimators of Y and X, respectively, where 7; (i = 1,...,N) is the first order inclusion
probability of the sampling design. The most common way of taking into account the
knowledge of the aux111ary variable population means is to adopt the regression estimator
Y=Y+ ,3 x— X) where B is a vector of regression coefficients, given by some function
of sample data {(Y¥;, x;);i=1,...,n}. The class of regression estimators contains well-
known estimators, such as ratio and product estimators, ratio and product estimators
with linearly transformed auxiliary variables, post-stratified and regression estimators.
So, the main issue the statistician has to deal with is the definition of [i

Let us denote by W the N x N-matrix whose ij-th entry is (m;; — m; 7; )/N m; T, Where
m; (i, j =1,...,N) is the second order inclusion probability of the samphng design, and
T =T, Assembling the values of y and x into an N-vector Y and an N X g-matrix X
having x; on its i-th row, the variances of Y and & X and the covariance between them are
given by V(Y) Y'WY, V(x) = X'WX and C(Y X) = X' WY, respectively.

In the sequel, we assume that the sampling design and the population are such that non-
linear estimators converge in probability to their first order Taylor linear approximations
when the sample size and the population size approach infinity. We will term as
‘‘asymptotic’’ any property that depends upon this convergence.

3. The Optimal Estimator

This type of regresswn estimator is obtained from the difference estimator, i.e.,
YO =Y+B'X—X), where B is a vector of constants, and Y o is unbiased for ¥ and
has a variance given by V(YO) V(Y Y+ B V(X)B 2B’ C(Y x) The latter is minimised
by assuming B = (X’WX)_]X WY (Montanari 1987). When X'WX is singular and its
rank is ¢’ < ¢, to define B one or more entries of x, hence of X, have to be dropped in
such a way as to obtain a ¢’ X ¢’ non-singular variance matrix X'WX.

The optimum value of B can be estimated in many ways. For our purposes, if we
take Horvitz-Thompson estimators of variances and covariances between unbiased
estimators, under mild conditions on the sampling design, a consistent estimator of B is
given by B = (X’W”XY)_IX’W“Y where W = {(m;; — 7; 71'/)/N T Ty Yij=1,..,
X, ={X}};i—i o Yy={Y;},_,_ , Then, replacing B by B in Yo, we get

..........
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N

= f’ + ﬁ’(i — f(), which has been called the Optirpal Estimator by Rao (1994). This
estimator shares in large samples the properties of Y, the latter being the first order
Taylor linear approximation of the former (Montanari 1987). So, Y, is asymptotically
design unbiased and has the minimum asymptotic variance among all regression
estimators based on the same auxiliary information X.

Other properties of the OPE are: 1) the means of the aux111ary variables estimated
through Y, equal the corresponding population means, i.e., XO = X; 2) when there is
more than one survey variable, Y, can be expressed as a simple weighted estimator
with the same weights applying to all variables (Montanari 1998); 3) Y, gives valid con-
ditional inferences (Rao 1997). Note that the asymptotic optimality of the OPE is a strictly
design based property.

The main drawback of Y, is that it is complex to compute and may be unstable in finite
size samples, because it requires estimating sampling variances and covariances (Casady
and Valliant 1993). However, if an adequate number of degrees of freedom g is available
for estimating B, the problem can be overcome. For example, for standard complex multi-
stage sampling designs with replacement sampling at the first stage, g can be roughly taken
as the number of sample first stage clusters minus the number of strata (Lehtonen and
Pahkinen 1995, p. 181; for more elaboration on this topic see Eltinge and Jang 1996). A
stable estimated B may be expected when g is large enough relative to the dimension ¢
of the auxiliary variable x.

4. The Generalised Regression Estimator

Most popular estimators of a finite population mean or total belong to the class of the gen-
eralised regression estimators. Such a class is described in Sidrndal, Swensson, and Wretman
(1992; Chap. 6) and in Estevao, Hidiroglou, and Sédrndal (1995). A GRE is based on an
underlying superpopulation linear regression model relating the survey variable to the aux-
iliary variables whose population means are known. Consider the model E,,(Y) = X'B,
V,.(Y) = 0’X, where £ = diag{m;};=1..n is a known matrix. Note that E,,, V,, and C,,
denote the expected value, variance and covariance with respect to the model. Let
BN = X'Z7'X)"'XZ 'Y be the census weighted least squares regression estimator of
B. Then, replacing By by the consistent estimator 3 = (X} EUIX )X EMIYJ, where
X, =diag{n;m;};— . ., the corresponding GRE is defined to be YG =Y+ ﬁ X — X).
In the sequel we will call the model upon which the GRE is based the ‘‘working
model’’.

The large sample properties of YG can be established by means of its first order Taylor
linear approximation YG =Y +,8 NE— X) (Sédrndal, Swensson, and Wretman 1992;
p-235). In particular, % ¢ 1s asymptotically design unbiased, and when the working model
holds true it has the minimum expected asymptotic design variance with respect to the
model, i.e., for any other design unbiased or approximately design unbiased estimator
Y* of Y, E,V(Y5) <E,V(™), for all 8 (Wright 1983). Montanari (1998) proved that
when the working model holds true, asymptotically V(Y) = V(IZ 0)- In contrast, if the
model is wrongly specified, the value of the asymptotic variance of Y ; may be appreciably
higher than that of ¥, based on the same auxiliary information X. This event is not
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uncommon, as the specification of the model is limited by the availability of the population
means of auxiliary variables.

Other properties of the GRE are: 1) the means of the auxiliary variables estimated
through Y equal the corresponding population means, i.e., §G =X; 2) when there is
more than one survey variable, Y5 can be expressed as a simple weighted estimator
with the same weights applying to all variables; 3) Y; gives valid conditional inferences
provided that the model holds true. Note that the asymptotic optimality of the GRE
requires the model to be true, and concerns the average asymptotic variance over the
finite populations that can be generated under the model. Hence, the GRE efficiency is
vulnerable to model misspecifications.

5. An Extended Class of GRE’s

In this section we explore the relationships between GRE’s and the OPE. To this end, let us
enlarge the GRE class to fit the non-diagonal variance matrix of the working model. Con-
definite symmetric N x N-matrix. Let Z;' be the symmetric matrix that has vij/7rij as ij-th
entry, where i, j=1,...,n and VW ois the ij-th entry of ! Then, provided that the
matrix (X;):S;IX_Y)71 exists for all samples s, the corresponding Extended Generalised
Regression Estimator (EGRE) can be written Yz =Y + B,(X —X), where
B,=X.2;'X,) !X 2.'Y,. Observe that the entries of X.Z !X, and X.X_'Y, are
design unbiased estimators of the corresponding entries of X'Z ~'X and X'Z 'Y, respec-
tively, provided that v/ # 0 implies m;; 7 0. Thus, under mild conditions on the second
order inclusion probabilities, [i,, converges in probability to ﬁN =Xz X)X’z ly,
which is the census weighted least squares regression estimator of B. Obviously, when
X is a diagonal matrix, the EGRE, Y, reduces to the customary GRE, Y.

Note that when W is non-singular, the OPE belongs to the EGRE class defined above
setting £ = W', However, generally W is only non-negative definite, being singular for
many sampling designs. But even in such a case, there are EGRE’s that are asymptotically
equivalent to the OPE, as we show in the next section.

6. Connecting EGRE’s and OPE’s

Let us by Design Balanced Variable (DBV) denote any non-null auxiliary variable z
whose mean is estimated without error by the Horvitz-Thompson estimator, i.e.,
7= St Z/Nw; = Z. This type of variable plays a fundamental role in establishing con-
ditions under which the OPE is equivalent to an EGRE. In fact, assembling the population
values Z; of a DBV variable into the N-vector Z, we have the following theorems.

Theorem 1. A variable z is a DBV if and only if the vector Z belongs to the subspace
orthogonal to that spanned by the columns of W.

Proof. If Zis a DBV, it follows that Z’WZ = 0 and C'WZ = 0 for any vector C, since
the covariance between the unbiased estimators of the means of a DBV and any other
variable is identically zero. Hence, WZ = 0. On the other hand, if WZ = 0 holds, then
Z'WZ =0, ie., Zis a DBV.



Montanari and Ranalli: Asymptotically Efficient Generalised Regression Estimators 581

From Theorem 1 follows that the subspace spanned by the DBV’s has the dimension
N —r(W), where r(-) denotes the rank of a matrix. So, (W) =N — ¢, where r =0,
implies that there are ¢ linearly independent DBV’s. Now, let Z be an N X ¢ matrix contain-
ing ¢ linearly independent DBV’s and assume that X does not contain any DBV. Then, we
have the following theorem.

Theorem 2. Consider the working model E,(Y) = (ZX)8 and V,,(Y) = 0°L and the
matrix W corresponding to the samphng demgn in use. If X' is a variance matrix for which
there exists a scalar such that ™' — L 7'Z(Z'E7'Z)"'Z'E ™" = oW, then YEG = YO,
i.e., the EGRE based on the assumed working model is asymptotically equivalent to the
OPE based on the same auxiliary information X.

Proof. To prove the result it is sufficient to rewrite (ZX)8 = Z8, + X@,, where 3, and
B, are the vector of regression coefficients for the DBV’s and the auxiliary variables,
respectively. Then, after some algebra, the census weighted least squares estimator of
B, is given by B,y = (X'AX) 'X'AY, where A =X ! —27'ZZ's7'Z2)"'Z's " Since
r(X) = N, by well-known matrix algebra results we have r(A) N—r(Z)=N —t Thus, if
there exists a scalar « such that aW =A, it follows that ﬁx =B, hence YEG = YO as

Yeg — Yo = By — B)E — X).

Theorem 2 gives a sufficient condition for the asymptotic equality between an EGRE
and the OPE that uses the same auxiliary variable x, i.e., besides the auxiliary variables
that are not DBV’s, the working model should include a number N — (W) of linearly inde-
pendent DBV’s and the variance matrix ¢°E should be set so that A is a matrix propor-
tional to W (A «W). The outcome is an asymptotic minimum variance estimator,
irrespective of the working model goodness, given the amount of auxiliary information X.

Generally speaking, with finite sample size, the OPE is approximately equal to an
EGRE based on a working model that includes the effect of any existing DBV’s. Unfortu-
nately, the theorem does not provide guidelines for determining the structure of the matrix
X and the DBV’s that correspond to the sampling design in use. In the next section, we will
examine a number of case studies where solutions are available.

The next theorem assures the finite size sample identity between an EGRE and the OPE.

Theorem 3. If
LIS Yoy AV AR AR A R
implies
Ly - I Z 22 2) 7 2R W

for all possible samples s, then % G = % 0-

Proof. To prove the result it is sufficient to write (Z,X,)8 = Z,8, + X8, and to note
that the sample weighted least squares estimator of 8, with respect to the wei ght matrix E;
is given by 8, = (X'A,X)"'X’ AY, where A = Ly —IG 20222728
Hence, when A <« W, we have ﬁx =B and the result follows from Y — YO =

B, — B)(x — %).
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7. Examples of Equivalencies Between EGRE’s and OPE’s

The starting point for deriving working models under which the corresponding EGRE
is asymptotically equivalent to the OPE that uses the same auxiliary variable x is the
structure of the matrix W. When n(W) = N there is no DBV. So, setting X W_l, the
corresponding EGRE is asymptotically equal to the OPE. Furthermore, because of Theo-
rem 3, the EGRE is the OPE as well. As an example, consider Poisson sampling with size
measure a;, i = 1,...,N. Let m; = na; /A be the inclusion probabilities of population units,
where n is the expected sample size and A is the total of a; In this case W =
ah'ag{ﬂ',»_1 — 1}. Setting ¥ = diag{a;,/(A — na;)}, the GRE is the OPE as well. This form
of the variance matrix was also achieved by Sarndal (1996) by minimising the asymptotic
variance of a GRE for Poisson sampling.

Next we give examples where DBV’s exist. As a rule of thumb, potential DBV’s are
variables proportional to the first order inclusion probabilities within subpopulations
from which fixed size samples are selected. This is documented by the following examples.

Example 1. Consider simple random sampling of n units. In this case (W) = N — 1 and
any vector proportional to the unit vector 1 is a DBV. Setting Z =1 and X =1, where I is
the identity matrix, then A o« W. Furthermore, because of Theorem 3, a GRE based on a
homoscedastic linear regression model with an intercept term is an OPE as well.

Example 2. Consider stratified simple random sampling and denote by hi the i-th
unit within the hA-th stratum where hi ranges over the pairs 11,12,...,1Ny,
21,22,...,2N,,...,H1,H2,...,HNy. Let n;, be the sample size within stratum 4. In this
case (W) =N — H and the indicator variables of stratum membership of population units
are a set of linearly independent DBV’s. Further, let z, be the vector of the values of the
[-th stratum membership indicator variable, whose entries are Z;,;= 1, when A=1, and
Z;,;=0, otherwise. Define Z=[z,Z,,...,2y]. Then, setting X =diag{n;;}, where
Npi = [ (N, — DVINK(N, — ny)], it follows that A « W. So, when the working model
includes the stratum membership indicator variables of population units and the variance
matrix is specified as above, the GRE is asymptotically equal to the OPE. Note that this
form of the variance matrix was also achieved by Sirndal (1996) by minimising the asymp-
totic variance of a GRE based on a working model with an intercept term for each stratum.
When ny, is constant across strata, because of Theorem 3, the GRE is identically equal to
the OPE.

Example 3. Consider stratified two-stage random sampling and let us denote by hij the
Jj-th elementary unit within the i-th Primary Sampling Unit (PSU) of the A-th stratum with
h=1,....H; i=1,...,N,; j=1,...,M,;. Using simple random sampling without
replacement in both stages, n;, PSU’s are selected from each stratum and my,; elementary
units are drawn from each selected PSU. In this case (W) =N — H and for each value of
I=1,...,H, the vector z;, whose entries are Zy,;; =M,/N,M;; when h=1 and Z;,;=0
otherwise, where M, = Zfll M;;, is a DBV. Thus, the matrix Z={[z,2,,...,2y]
contains H linearly independent DBV’s. Inserting Z into the working model and setting
T = diag{Z;;}, where ;= [a] + by;11'17" is the M), x M,,; matrix with
_ Ny My; My —my, Ny My my; =1 Ny oy, — 1
=— ——  and by, =— -—

ny, my; My —1 ny my; My =1 ny Np—1

Api
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it follows from Theorem 2 that A « W and the EGRE is asymptotically equal to the OPE.
Furthermore, when ny, is constant across strata, because of Theorem 3, the EGRE is equal
to the OPE as well. Note that the structure of X is that of an equal correlation model within
PSU’s.

Now, two examples involving unequal probability sampling are presented. However,
for simplicity, we assume sampling with replacement. In such a case, first and second
order inclusion probabilities must be replaced by ¢; =E(6;) and ¢;; =E(5,0;), where §; is
the random variable defined to be the number of times the i-th unit has been selected in
the sample s. As a consequence, Horvitz-Thompson estimators have to be replaced by
Hansen-Hurvitz analogues and in the matrix W the inclusion probabilities 7; and ;; are
replaced by ¢; and ¢;;.

Example 4. Consider a with replacement unequal probability sampling design of fixed
size n and with selection probabilities P; , i=1,2,...,N. The sampling variance of the
unbiased Hansen-Hurvitz estimator is given by Y'WY, where W = n~'N 2(P™' — 11'),
and P = diag{P;}. In this case, (W) =N — 1 and the variable Z; = NP; is a DBV. Inserting
the latter into the working model and setting ¥ = diag{nP;}, the GRE is asymptotically
equal to the OPE. Furthermore, because of Theorem 3, the GRE is the OPE as well.

Example 5. Consider a stratified two-stage sampling as in Example 3, but now at the first
stage n;, PSU’s are selected from each stratum /4 using a with replacement unequal prob-
ability scheme with selection probabilities P,;. In this case, (W) =N — H. The matrix
Z=(z,,2,,...,24), where z, is the vector whose entries are Z;,;=M,P,/M;; when
h=1 and Z;,;=0 otherwise, contains H linearly independent DBV’s. Inserting Z into
the working model and setting X =diag{¥,;}, where X,;=[a,Il+ b,A1'17" is the
M,,; X M},; matrix with

L My My —my, L My my; — 1

ap; = and bhi =
ny Py my; My — 1 ny Py my; My — 1

the EGRE is asymptotically equal to the OPE. As before, when n,, is constant across strata,
the EGRE is identically equal to the OPE.

Note that with replacement results are often used for approximating without replace-
ment results.

8. Estimation Strategies

The examples examined in the previous section illustrate that, given an amount of auxili-
ary information X, generally speaking, the OPE is equivalent to the EGRE based on a
working model which includes the maximum number of linearly independent DBV’s
and assumes a variance matrix that reflects the structure of the first and second order inclu-
sion probabilities. Thus, since the OPE allows a better fit of the data, this explains its
asymptotic superiority. However, in finite size samples the OPE estimator is exposed to
instabilities due to a possible inadequate number of residual degrees of freedom available
for estimating all the parameters. In particular, this concern may be relevant in stratified
designs with a few observations per stratum, or multistage sampling designs with a few
PSU’s per stratum.
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The analysis and the examples presented above suggest the following options for esti-
mating a population mean taking into account a given amount of auxiliary information X.
The first option consists in simply using the OPE. This choice assures the maximum
asymptotic efficiency. However, if the stability of that estimator is of concern, as when
the total sample size is not large enough or the number of strata is high compared to
the number of observations, and we are confident enough about a more parsimonious
working model, a second option is to use the EGRE based on it.

A further intermediate option, that we recommend when a reliable model is unavailable,
consists in specifying a working model with a variance matrix set according to Theorem 2
and a suitably reduced number of DBV’s. In particular, in the case of stratified samples,
this may be accomplished by introducing into the model DBV’s corresponding to super-
strata obtained by collapsing original strata. Collapsing should be performed so that within
each superstratum, strata effects can be considered negligible. For each superstratum, a
DBV is obtained by adding the DBV’s of the collapsed strata. By reducing the number
of DBV’s inserted into the model, we accept a lower level of asymptotic efficiency to
better control the finite size sample variance of the estimator. The latter option has been
implemented in the following simulation study.

9. An Empirical Study

The theory developed in the previous sections is asymptotic, being based on first order
approximations. In this section we report results from an empirical study carried out to
test the theory in the presence of finite size samples. In particular we refer to Example
2 above.

A finite population of 1,200 units partitioned into 20 strata of equal size was considered.
The values of an auxiliary variable x were generated through a Chi-squared random vari-
able with 8 degrees of freedom. They were assigned to the strata in two ways. In the first
case they were randomly assigned to the strata, to simulate a stratification based on other
characters independent of x (STRATIFICATION 1). In the second case the values of x were first
ordered. Then the first 60 smallest values were assigned to the first stratum, the subsequent
60 smaller values were assigned to the second stratum and so forth, to simulate a
stratification based on classes of x values (STRATIFICATION 2).

Given the values of x, six populations of y-values were generated, according to the
following models:

Py: Y,;=100(1 +0.15¢,) (total independence between y, x and h);
Py: Y, =10+ 3h)(1 4 0.15¢;) (dependence between y and h);

P3: Y, =3X;,; (14+0.15¢,;) (linear dependence between y and x);

Py Yyi=(124+4h+5X,)(1 +0.15¢,,)  (linear dependence between y, x and h);

Ps: Vi =X,” (140.158,) (quadratic dependence between y and x);
Pg: Y;,;=20h \ﬁ(;(l 4+ 0.15¢y;) (non-linear dependence between y, x and h);

where Y, and X, are the values of y and x in the i-th unit (i =1, . .., 60) of the A-th stratum
(h=1,..., 20) and the g;,;’s are independent observations from a standard normal dis-
tribution. All models are heteroscedastic with variances proportional to the squared
expected values.
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For each stratification and population, 10,000 proportional stratified random samples of
size 40 (two units per stratum), 80 (four units per stratum) and 240 (twelve units per
stratum) were selected. For this sampling scheme, the DBV’s are the indicator variables
of stratum membership of population units. The variance matrix that corresponds to
the optimal estimator is the identity matrix, being n, and N, constant across strata (see
Example 2).

For each sample, assuming X is known, the following estimators were computed:

y and %, i.e., the sample means of y and x (Horvitz-Thompson estlmators)

Y, i.e., the GRE based on the model E,,(Y;) = B8Xyi » Vou(Yii) _Xh,a (combined ratio

. estimator)

Yo, i.e., the GRE based on the model E,,(Y;) = B1 + B2Xpi » Viu( Vi) _Xﬁ, o

Y, ie., the GRE based on the model E,(Y,) =81 + BoXpi » Viu(Yii) = o (adopting the

. variance matrix that corresponds to the OPE);

Ycu, ie., the GRE based on the model E,,(Yy;) = Z?:l BiDyi + B Xni » Vm(Yhi)zoz,
where D, is the variable obtained by adding the DBV’s of the four strata
40-D+1,40-D+2,40-1)+3,40l—-D+4,forl=1,2,3,4,5;

YGS, i.e., the GRE based on the model E, (Y}, = Z, 1 By + BiiXni » VoY) = 0%,
where Dy, is the variable obtained by adding the DBV’s of the two original strata

2(0-D+Tand2(/—-D+2,forl=1,...,10;

):’0, i.e., the OPE that uses X;

Yo, i.e., the first order linear approximation of the OPE.

Estimators Y. G3» ?04 and ¥ G5 are based on working models that assume the variance
matrix corresponding to the OPE but include a reduced number of DBV’s, according to
the collapsing strata technique (one DBV for YG3, five for YG4 and ten for Ys). Note
that ¥, corresponds to a working model with 21 parameters (twenty DBV’s and one aux-
iliary variable) and instability can be expected, in particular for sample size n = 40.

The mean and the mean squared error across the 10,000 selected samples were com-
puted for each estimator. Tables 1 and 2 report the scaled mean squared errors, having
set that of ¥, equal to 100. Biases are not reported, since they were negligible in all cases.

First, note that Y, is a gauge of the best we can expect from the OPE, as it shows its
asymptotic behaviour; it is the most efficient among the computed estimators. On the other
hand, the OPE is vulnerable to sampling fluctuations, in particular with STRATIFICATION 2
and n = 40. In fact, in the worst case the variance of % o 18 47.9% higher than that of YO
(Table 2, Population Ps). With this stratification, the OPE performance is generally worse
than that under STrATIFICATION 1. Most likely, the reason for this is the great diversity of
stratum variances of x, because of its asymmetric distribution, coupled with the equal allo-
cation of the sample: it results in a much more erratic estimated regression coefficient of
(X — X) when theA sample size Ais the smallest (n =40) and there are two units per stratum.

Estimators ¥, Y, Y, and Y3 are almost as efficient as Y, when the model upon which
they are based holds true, but they are quite inefficient in the presence of model failures, in
particular with STrATIFICATION 1. For instance, when the variable y does not depend on x
and & (Population P,) or it depends only on / (Population P,), the sample mean does
well; but when y depends on x and the latter is not used for stratification, the sample
mean suffers from not using any auxiliary information as the regression estimators do.
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Table 1. Scaled mean squared error of estimators for Stratification 1 [MSE(I:’O) = 100]

Population n y ?Gl ¥ fe ¥ 3 Y G4 14 G5 i 0
P, 40 100.0 1,304.6 1194 103.0 1040 1045 1079
Y,; =100(1 +0.15¢y,) 80 100.0 1,177.2 109.1 101.3 101.4 101.6 1019
240 100.1 1,217.1 104.6 100.1 100.2 100.2 100.3
P, 40 1002 1,234.0 4214 2367 106.6 106.6 109.8
Y, =104 3h)(1 4 0.15¢,;) 80 100.2  1,128.8 364.2 2157 1029 102.6 1029
240 100.2 1,103.8 333.8 2109 101.1 100.6 100.6
P; 40  982.6 100.0 101.3 1034 1053 105.8 108.8
Yy =3Xp (140.15g,) 80 9242 100.2 100.7 102.0 102.6 1029 103.3
240 9248 101.0 1014 100.6 100.8 100.8 101.0
P, 40 4450 279.5 157.7 1219 105.0 105.7 110.0

Yii= (12 + 4h + 5X;,) X (1 +0.15e5,) 80 4224 2710 1489 1190 1022 1022 1027
240 4051 2753 1500 119.8 101.0 100.8 100.9

Ps 40 834.5 277.5 208.8 1057 106.2 1069 109.4
Yii=Xn® (14+0.158,) 80 776.1 266.0 208.8 104.1 1042 1045 104.9

240 772.2 256.5 2052 99.6 999 100.0 100.1
Pg 40 293.6 229.6 236.1 205.8 1109 1105 113.2
Y =20h\/Xp,;(1 + 0.15¢,) 80 267.8 2347 2263 200.0 1043 104.0 104.2

240 2655 236.0 2209 195.1 101.5 100.7 100.8

40 4593 5709 2075 1461 106.3 106.7 109.9
Average 80 4318  529.7 193.0 1404 1029 103.0 103.3
240 4280  531.6 186.0 137.7 100.8 100.5 100.6

Models upon which the GREG’s are based

Yor: (Vi) =BXni » VoY) = X),0”

Y621 En(Yi) =81+ B2Xpi » Vil Vi) = X0

Yo3: Enl¥i) =61+ B2Xpi » VoY) = 0°

Yur En(Yi) = 3021 BiDayi + B Xpi » Viu(Yi) =0
Yos: En(Vi) = 3020 BiDai + B1iXni » VoY) = 0°

The combined ratio estimator ¥ 61 works well only when the values of y are on average
proportional to the values of x (Population P5), whereas estimators ¥ g2 and Y o5 are ineffi-
cient when the relation between y and x is not linear. Observe that Y 55 is almost always
more efficient then Y,, even when the populations are heteroscedastic. It is also worth
noting that STRATIFICATION 2 is based on x, and most of the information on y provided
by x is captured by the stratification. Thus, the use of x at the estimation stage may be
redundant and this explains why for this stratification the sample mean is a fairly efficient
estimator apart from Population Ps. In fact, ¥ is equivalent to a GRE based on a working
model that uses the DBV’s, i.e., the stratum membership indicators; however, this estima-
tor does not take the known value of X when applied to the auxiliary variable as all other
estimators do. . .

Finally, estimators Y, and Y5, based on the collapsed stratum technique, are almost
always more efficient than the OPE with sample sizes 40 and 80, because of the reduced
number of DBV’s inserted into the working model. Furthermore, when they are not the
most efficient among all estimators, their scaled mean squared errors are not substantially
larger than that of the best estimator for each population. Thus, the collapsed stratum
technique seems a useful device to identify a stable approximated OPE which will be fairly
efficiency robust with respect to model failures. In fact, Y, and Y55 have the lowest
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Table 2.  Scaled mean squared error of estimators for Stratification 2 [MSE(I:’O) = 100]

Population n y ?Gl ¥ fe ¥ 3 Y G4 14 G5 i 0
P, 40 100.0 1184 1004 999 999 1003 109.9
Y,; =100(1 +0.15¢y,) 80 100.0 118.7 100.1 100.0  99.9 100.1 103.0
240 99.9 118.7 1000 999 999 100.0 100.4
P, 40 100.2 1213 115.6 1069 102.6 1025 121.6
Y, =104 3h)(1+0.15¢; ) 80 100.3  121.6 1158 107.5 103.0 1024 106.0
240 99.9 119.7 113.8 1059 101.6 100.6 101.1
P; 40 108.8 100.4 100.4 100.1 1004 101.7 131.0
Yy =3Xp (140.15¢ 5) 80 106.9 101.0 101.1 100.8 101.2 101.8 108.6
240 109.9 1004 1004 1003 1004 1003 103.2
Py 40 103.9 103.3 102.6 101.0 100.7 101.8 127.1
Y, =124+ 4h+5X,,)(1 4+ 0.15¢,;) 80 102.6  104.8 1039 102.1 101.3 1015 107.6
240 1053 102.7 102.0 100.7 100.3 100.5 102.6
Ps 40 1649 1285 129.5 1104 101.2 102.6 1479
V=X (14+0.158 1) 80 157.4 1243 125.5 1083 100.5 101.7 1145
240 176.5 134.1 136.0 113.1 1014 101.5 106.1
Pe 40 101.2  105.7 107.5 107.1 104.0 104.1 1333
Y =20h\/X;;(1 + 0.15¢,) 80 101.1  105.7 1073 1074 1040 103.0 109.8

240 102.0 104.7 106.1 106.5 1029 101.2 102.1

40 113.2 1129 109.3 1042 1015 102.2 1285
Average 80 1114 112.7 109.0 1044 101.7 101.8 108.3
240 115.6 1134 109.7 1044 101.1 100.7 102.6

Models upon which the GREG’s are based

Yor: (Vi) =BXni » VoY) = X),0”

Y621 Bu(¥i) =By + B2Xpi » Viu(Yii) = Xiio”

Yo En(Yi) =By + 62X . VoY) = 0°

Yos: En(Yni) = 215:1 BiDyipi +B6 Xni s Viu(Yii) = o’
Yost En(¥id) =121 B:Dai + B1iXni » ViulYi) = 0

averaged mean squared error across populations and stratifications (see the three rows at
the bottom of the tables). This is particularly valuable in cases where there is uncertainty
about a proper working model.

10. Final Remarks

Generally speaking, the OPE is approximately equal to an EGRE based on a working
model that includes the effect of any existing DBV’s. Unfortunately, Theorem 2 does
not provide guidelines for determining the structure of the matrix ¥ and the DBV’s that
correspond to the sampling design in use. However, for common designs, easy solutions
can be found. Thus, given an amount of auxiliary information X, the OPE is approximately
or exactly equal to an EGRE based on a working model which includes the maximum
number of linearly independent DBV’s and assumes a variance matrix that reflects the
structure of the first and second order inclusion probabilities. Hence the OPE allows a bet-
ter fit of the data, and this explains its asymptotic superiority. However, in finite size sam-
ples, the OPE is exposed to instabilities due to a likely inadequate number of residual
degrees of freedom available for fitting the model. In particular, this concern may be
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relevant in stratified designs with a few observations per stratum, or multistage sampling
designs with a few PSU’s per stratum.

The above analysis suggests the following quasi-optimal estimation strategy. When a
reliable model is lacking, use an EGRE based on a working model with a variance matrix
set according to Theorem 2 and with a suitably reduced number of DBV’s to achieve a
sufficient number of residual degrees of freedom to fit the model. In particular, in the
case of stratified samples, this may be accomplished by introducing into the model DBV’s
corresponding to superstrata obtained by collapsing original strata. Collapsing should be
performed so that within each superstratum, strata effects can be considered negligible.
For each superstratum, a DBV is obtained by adding the DBV’s of the collapsed strata.
By reducing the number of DBV’s inserted into the model, we accept a lower level of
asymptotic efficiency to better control the finite size sampling variance of the estimator.

A related topic of interest is that of variance estimation. The theory presented in the pre-
vious sections was developed using the Horvitz-Thompson estimator of the variances and
covariances required to estimate B for the optimal estimator. But alternative ways for var-
iance estimation are available, such as the Yates-Grundy formula or the use of resampling
methods. Thus, it is uncertain which is the best variance estimation procedure to be used to
better estimate B. Variance estimators are also required to estimate the standard errors of
regression estimators. In this respect, the usual way is to estimate the variance of the first
order linear approximations of regression estimators, replacing the unknown regression
coefficients with their sample estimates. The resulting estimator is usually somewhat
negatively biased, especially with a larger number of auxiliary variables in the working
model. That is also true for the OPE that uses the maximum number of auxiliary variables.
Thus, the properties of variance estimators affect the coverage of confidence intervals, and
further research is needed to explore this issue in order to single out a better estimation
strategy for interval estimation.

So far we have restricted the analysis to the use of DBV’s, since the vector X was taken
to be fixed. But clearly this point is part of the wider problem of selecting a subset of the
available auxiliary variables for estimation purposes. For example, if the true model is
linear, a quadratic term inserted into the working model, although asymptotically it would
result in a more efficient estimator of the population mean, in finite size samples may give
a less efficient estimator. How to select the best subset of available auxiliary variables for
estimating a population mean is still an unsolved research problem, but the topic is beyond
the scope of this article.
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