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Statistics Netherlands participated in the EUREDIT project, a large international research and
development project on statistical data editing and imputation that lasted fromMarch 2000 till
February 2003. The main goals of this project were the development and evaluation of new
and currently used methods for data editing and imputation. In this article we describe the
general approach applied by Statistics Netherlands on the two business surveys used in the
EUREDIT project. In the EUREDIT project data for only one year were available. In our edit
and imputation methods we therefore could not use data from a previous year and had to
restrict ourselves to using only data from the data set to be edited and imputed itself. We also
describe the development of our edit and imputation strategy and give results supporting the
choices we have made. Finally, we provide results of our approach on the two evaluation data
sets, and compare these results to the results of the other institutes participating in EUREDIT.

Key words: Automatic editing; consistency; deductive imputation; error localisation; hot-
deck imputation; Fellegi-Holt paradigm; multivariate regression imputation; nearest
neighbour hot-deck imputation; random errors; ratio hot-deck imputation; systematic errors.

1. Introduction

High-quality and timely statistical information on many different aspects of society is a

prerequisite for policy-makers in order to make well-informed decisions. National

statistical institutes (NSIs) fulfil a prominent role in providing such statistical information.

The successful fulfilment of their role is complicated by the fact that data collected by

NSIs generally contain errors. In particular the data collection phase is a potential source

of error. Errors may have been made by the respondent, who may make errors by mistake

or deliberately while filling in the questionnaire, may misunderstand a certain question, or

may not know the correct answer to a certain question. Errors may also have been made at

the NSI, for instance while transferring the data from the questionnaire to the computer

system. In order to be able to publish reliable statistical information the errors in the

collected data have to be corrected. This correction process is referred to as statistical data

editing. Traditionally, each received questionnaire was checked for errors. Subsequently,

subject-matter specialists corrected the detected errors by using their expert knowledge, or

by contacting the supplier of the information. This form of statistical data editing, called
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manual (or interactive) editing, leads to statistical data of good quality, but is very costly

and time consuming. Several studies (see, e.g., Granquist 1995, 1997; Granquist and

Kovar 1997) have shown that in order to obtain reliable publication figures only the most

influential errors have to be edited manually. This is an important observation that allows

one to improve the efficiency of the statistical data editing process.

The EUREDIT project (see http://www.cs.york.ac.uk/euredit) was a large international

research and development project aimed at improving the efficiency and the quality of the

statistical data editing and imputation process at NSIs. It involved 12 institutes from seven

countries. Six of those institutes were NSIs, namely the UK Office for National Statistics

(overall project co-ordinator), Statistics Finland, Swiss Federal Statistical Office, Istituto

Nazionale Di Statistica, Statistics Denmark, and Statistics Netherlands (CBS). Four

universities participated in the project: Royal Holloway and Bedford New College,

University of Southampton, University of York, and University of Jyväskylä. Finally, two

commercial companies, the Numerical Algorithm Group Limited and Quantaris, were

involved in the project. The project lasted from March 1, 2000, till February 28, 2003.

For CBS, the main aims of the project were:

. To evaluate current “in-use” methods for data editing and imputation and to develop

and evaluate a selected range of new or recent techniques for data editing and

imputation;

. To compare all methods tested and develop a strategy for users of edit and imputation

leading to a “best practice guide.”

The EUREDIT project concentrated on automatic methods for editing and imputation.

Other editing methods, such as selective editing (cf. Lawrence and McDavitt 1994;

Lawrence and McKenzie 2000; Hedlin 2003) where part of the data are edited manually,

were examined only to a very limited extent.

It has been argued that the role of statistical data editing should be broader than only

error localisation and correction (cf. Granquist 1995; Granquist, 1997; Granquist and

Kovar, 1997; Bethlehem and van de Pol 1998). We fully agree with this point of view, and,

for instance, consider the feedback provided by the edit process on the questionnaire

design at least as important as error localisation and correction. However, within the

EUREDIT project the role of editing was strictly limited to error localisation and

correction, and in the present article we will therefore concentrate on this.

The article describes the approach applied by CBS on the two business surveys used in

the EUREDIT project. This approach mimics part of the currently used approach at CBS

for editing and imputing data from annual structural business surveys. We describe the

development of our edit and imputation strategy and give results supporting the choices we

have made. We also compare our results to the results of the other institutes involved. This

comparison is to a substantial extent based on evaluation studies performed by Chambers

and Zhao (2004a and 2004b) in the EUREDIT project.

Although the methods and tools we consider in this article are automatic ones, they

require quite a bit of expert knowledge and statistical analysis to set up. In practice,

however, the tools have to be set up only once. In future versions of a particular survey,

one only needs to update the parameters of the various methods. This updating process can

to a substantial extent be automated. So, in future versions of a survey, preparing and using
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the methods and tools we consider in this article are almost fully automated, much more

than when a survey is conducted for the first time.

In practice, to edit and impute a data set, one often uses corresponding cleaned data

from a previous year. In the EUREDIT project, however, data from only one year were

available. In our edit and imputation methods we therefore had to restrict ourselves to

using only data from the data set to be edited and imputed itself. Our general strategy can

in a natural way be extended to the case where cleaned data from a previous year are

available.

In the literature, there is quite a scarcity of articles on the combined application of

editing and imputation techniques in practice. The only articles similar to the present

article we are aware of are the ones by Little and Smith (1987) and Ghosh-Dastidar and

Schafer (2003), both published in the Journal of the American Statistical Association. The

former article focuses on outlier detection and outlier robust imputation techniques for a

relatively small and simple survey, and the latter one on outlier detection and multiple

imputation based on a regression model. The present article focuses on automatic editing

and imputation techniques for two surveys that are considerably more complex than the

ones considered by the aforementioned authors. Moreover, whereas the edit and

imputation techniques applied by these authors do not ensure internal consistency of

individual records, such as component variables summing up to a total, our procedures

ensure such consistency.

The remainder of this article is organised as follows. Section 2 describes how the

evaluation experiments were carried out within the EUREDIT project. The two data sets

we consider in this article are discussed in Section 3. Section 4 sketches the edit and

imputation methodology applied by CBS to these data sets. The general outline of our

approach is the same for both data sets. Section 5 describes the development of our edit

and imputation strategy, and how we have tried to optimise various aspects of this strategy.

The same section also compares our evaluation results to the results of the other institutes.

Section 6 provides some conclusions.

2. The Evaluation Experiments

For each data set used in the EUREDIT project six different versions were, in principle,

constructed: three evaluation data sets and three development data sets. These six data sets

are given in Table 2.1.

The evaluation data sets were used to evaluate the edit and imputation procedures

applied by the participants in EUREDIT. All three versions of the development data, i.e.,

including the “true” data, were sent to all participants. For instance, the development data

set could be used to train neural networks or to parameterise statistical methods.

Table 2.1. The six versions of each data set

Type “true” with missing data with missing data and errors

Evaluation Y*E Y2;E Y3;E

Development Y*D Y2;D Y3;D
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The development data represent the fact that in a real-life situation one can learn from past

experience.

A Y* data set contains “true” values, the corresponding Y2 data set the data with missing

values but with no errors, and the corresponding Y3 data set the data with both missing

values and errors. The Y*, Y2; and Y3 data sets can, respectively, be interpreted as cleaned

data, edited but not yet imputed data, and raw data. The records and information in the

development data sets differed from the records and information in the evaluation data

sets. Constructing a data set with only errors but no missing values, a Y1 data set, was

considered to be too unrealistic a scenario. A Y2 data set allows one to evaluate imputation

methods, a Y3 data set allows one to evaluate a combination of editing and imputation

methods.

The Y2;E data and the Y3;E data were sent to all participants in the EUREDIT project.

These participants then applied their methods to these data sets. The Y2;E data only had to

be imputed. The Y3;E data had to be both edited and imputed. The “true” evaluation data

were not sent to the participants in the project. These data were retained by the co-

ordinator of the project, the Office for National Statistics (UK), for evaluating the data sets

“cleaned” by the various methods applied.

In the ideal situation, one would have a data set with true values, a corresponding data set

with actual missing values without errors, and a data set with actual missing values and

actually observed errors. This would allow one to evaluate edit and imputation methods by

comparing edited and imputed data sets to the true data. Unfortunately, data sets with true

values are very rare. In the EUREDIT project, data sets with true values were not available.

Out of necessity, we defined the “true” data as the data that the provider of the data set

considered to be satisfactorily cleaned according to their edit and imputation procedures.

The errors in theY3 data are not actual errors; neither are themissing values in theY2 andY3

data the actual missing values. These missing values and errors were synthetically

introduced in the corresponding Y* data set by the coordinator of the EUREDIT project.

In this way the mechanisms that generated the missing values and the errors were fully

controlled by the coordinator, while remaining unknown to the participants in the

EUREDIT project. By the full control of the coordinator over the error generating

mechanism and the missing data mechanism, it was possible to ensure that the Y2 and Y3

data sets provided sufficient challenges to the participants, while at the same time remaining

as realistic as possible. The fact that the error generating mechanism and the missing data

generating mechanism were unknown to the participants mimics reality, where these

mechanisms are also unknown to the NSIs.

Along with the data sets sent to the participants, the Y2;E data, the Y3;E data and the three

development data sets, metadata related to these data sets, such as edit rules (or edits for

short) and data dictionaries were delivered to the participants. In general, edits can be

subdivided into hard (or logical) edits and soft ones. The hard edits by definition hold true

for correctly observed records. The soft edits hold true for a large fraction of correctly

observed records, but not necessarily for all correctly observed records. Examples of hard

edits are rules stating that certain variables should attain nonnegative values

(nonnegativity edits), and edits stating that certain variables should sum up to an

observed total (balance edits). Examples of soft edits are rules stating that the ratio of two

variables is generally smaller than a specified maximum (ratio edits), and rules stating that
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the value of a variable is generally lower or higher than a specific upper bound or lower

than a specific lower bound (upper/lower bound edits).

Each participant in the project was allowed to submit several cleaned versions of the

same data set, where for each version other parameters or another method was used. The

results of the evaluation experiments, i.e., the quality of the cleaned data sets, were

assessed by applying a large number of evaluation criteria. These evaluation criteria

measured many different aspects of an edit and imputation approach, such as its general

ability to identify errors, to identify large errors, to accurately impute individual values, to

preserve the distributional aspects of the data, and to estimate publication totals and

averages. In the section on the results of our approach, Section 5, we describe a number of

such evaluation criteria. We refer to Chambers (2004) for more details regarding the

evaluation criteria.

3. The Data Sets

3.1. UK annual business inquiry

The UK Annual Business Inquiry (ABI) is an annual business survey containing

commonly measured continuous variables such as turnover and wages. The development

data sets contain 4,325 records and the evaluation data sets 6,233. A long and a short

version of the questionnaire have been used in the data collection. As a consequence, in the

evaluation data sets for 3,970 businesses scores on only 17 variables are available (the

short version), and for 2,263 records scores on 32 variables (the long version). Three

variables, class (anonymised industrial classification), turnreg (registered turnover) and

empreg (registered employment size group), were not obtained from the questionnaires but

from completely observed registers. These variables could be used to construct suitable

imputation strata, for instance. In the long questionnaire 26 variables contained errors or

had missing values, and in the short questionnaire only 11 variables. The names and brief

descriptions of the main variables are given in Table 3.1.

The variables in the ABI data set can be subdivided according to a three-level hierarchy.

The first level consists of the key economic variables turnover, emptotc, purtot, taxtot,

assacq and assdisp, and the main employment variable employ. The six key ABI economic

Table 3.1. The main variables in the ABI data set

Name Description

turnover Total turnover
emptotc Total employment costs
purtot Total purchases of goods and services
taxtot Total taxes paid
assacq Total cost of all capital assets acquired
assdisp Total proceeds from capital asset disposal
employ Total number of employees
stockbeg Value of stocks held at beginning of year
stockend Value of stocks held at end of year
capwork Value of work of a capital nature
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variables have distributions that are highly skewed. The second level consists of the

secondary variables stockbeg, stockend and capwork measuring business activity. For the

long questionnaire, the third level consists of variables corresponding to components of

three key economic variables, namely the components of purtot, taxtot, and emptotc. For

the short questionnaire, the third level consists of two component variables for purtot, but

no components for the other key economic variables.

For the ABI data both hard and soft edits were provided. In total 24 hard edits are

specified for the ABI data: 20 nonnegativity edits, and four balance edits. Some of these

hard edits are only applicable for the long questionnaire, some others only for the short

questionnaire, and the rest for both types of questionnaire. In total 25 soft edits are

specified for the ABI data: 12 ratio edits and 13 upper/lower bound rules. Some soft edits

are conditional on the type of questionnaire and/or on the values of certain variables. An

example of a conditional edit is

if employ . 0 then emptotc=employ $ 4:

The edit is satisfied if employ is not larger than zero, irrespective of the value of emptotc.

Both the value of employ and the value of emptotc may be incorrect. It is possible that an

observed positive value of employ should in fact be zero.

3.2. Swiss environmental protection expenditures data

The Swiss Environmental Protection Expenditures (EPE) data consist of information on

expenditure related to environmental issues. The data are the responses to an

environmental questionnaire plus additional general business questions, distributed to

enterprises in Switzerland in 1993.

The data sets contain 71 variables in total. The development data sets contain 1,039

records, and the evaluation data sets 200. There are four main groups of financial variables

(in thousands of Swiss Francs): variables related to investments, expenditures, subsidies

and income. The nomenclature of the variables in these four groups follows a logical

structure. The last two letters indicate which aspect of environmental protection the

variable refers to. The letters wp indicate “water protection,” wm “waste treatment,” ap

“air protection,” np “noise protection,” ot “other,” and tot (or to) “(sub)total.” Variables

related to subsidies begin with sub, variables related to income with rec (abbreviation for

“receipts”). Variables related to investments and expenditures start with two blocks of

three letters each. If the last block of three letters is inv, the variable refers to investments.

If the last block of three letters is exp, the variable refers to expenditures. The first block of

three letters subdivides the variable further: eop indicates “end-of-pipe,” pin “process-

integrated,” oth “other,” and tot “(sub)total.” For instance, eopinvwp indicates the end-of-

pipe investments with respect to water protection, and eopinvtot the total end-of-pipe

investments. Tables 3.2 and 3.3 below will further clarify the nomenclature of the

variables.

As for the ABI data, the variables in the EPE data sets can be subdivided according to a

three-level hierarchy. The first level consists of four key economic variables: totinvto,

totexpto, subtot, and rectot. These variables have distributions that are highly skewed. The

second level consists of 20 component variables corresponding to these four total
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Table 3.2. Edits that apply to investments for the EPE data

Investments Water protection Waste treatment Air protection Noise protection Other (Sub)total

End of pipe eopinvwp eopinvwm eopinvap eopinvnp eopinvot eopinvtot
(vi)

Process integrated pininvwp pininvwm pininvap pininvnp pininvot pininvtot
(vii)

Other othinvwp othinvwm othinvap othinvnp othinvot othinvtot
(viii)

(Sub)total totinvwp totinvwm totinvap totinvnp totinvot totinvto
(i) (ii) (iii) (iv) (v) (ix) C

(x) R
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Table 3.3. Edits that apply to expenditures for the EPE data

Expenditures Water protection Waste treatment Air protection Noise protection Other (Sub)total

Current expenditures curexpwp curexpwm curexpap curexpnp curexpot curexptot
(xvii)

Taxes taxexpwp taxexpwm taxexpap taxexpnp taxexpot taxexptot
(xviii)

(Sub)total totexpwp totexpwm totexpap totexpnp totexpot totexpto
(xii) (xiii) (xiv) (xv) (xvi) (xix) C

(xx) R
(xxi) T
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variables, namely the components of totinvto (totinvwp, totinvwm, totinvap, totinvnp,

totinvot), the components of totexpto (totexpwp, totexpwm, totexpap, totexpnp, and

totexpot), the components of subtot, and the components of rectot. Finally, the third level

consists of 30 variables that correspond to the components of totinvwp, totinvwm, totinvap,

totinvnp, totinvot, totexpwp, totexpwm, totexpap, totexpnp, and totexpot.

All edits specified for the EPE data are hard ones. In total there are 54 nonnegativity

edits and 23 balance edits. Four of the balance edits can be deleted as they are logically

implied by the other balance edits. So there are 19 nonredundant balance edits. The

balance edits follow a complex pattern, basically consisting of two two-dimensional tables

and two one-dimensional tables of which the internal cell values have to add up to the

marginal totals. The two two-dimensional tables are shown in Tables 3.2 and 3.3. For each

table, a column with component variables has to add up to a subtotal variable. For instance,

in Table 3.2 eopinvwp, pininvwp and othinvwp have to add up to totinvwp (edit (i)). A row

with component variables has to add up to a subtotal variable. For instance, in Table 3.2

eopinvwp, eopinvwm, eopinvap, eopinvnp and eopinvot have to add up to eopinvtot (edit

(vi)). All component variables, all column subtotal variables and all row subtotal variables

have to add up to a total variable (e.g., totinvto in Table 3.2). This is indicated in the tables

by C (sum of column totals; e.g., edit (ix) in Table 3.2), R (sum of row totals; e.g., edit (x))

and T (sum of component variables; e.g., edit (xi)). The two one-dimensional tables state

that the components of subtot have to add up to subtot and that the components of rectot

have to add up to rectot.

4. Applied Methodology

4.1. Overview

In this section a number of “standard” edit and imputation methods that were applied by

CBS to the ABI and EPE data are briefly described. We have subdivided the general edit

and imputation problem into three separate problems:

. the error localisation problem: given a data set and a set of edits, determine which

values are erroneous or suspicious, and set these values to missing;

. the imputation problem: given a data set with missing data, impute these missing data

in the best possible way;

. the consistent imputation problem: given an imputed data set and a set of edits, adjust

the imputed values such that all edits become satisfied.

For the first and the third problem, algorithms and prototype software developed at CBS

have been applied and then extended as part of the EUREDIT project. For the imputation

problem we have used a combination of regression and hot-deck methods implemented in

S-Plus scripts. At CBS, we aim to let edited and imputed data sets satisfy all specified

edits. The edits therefore play a prominent role in our methods.

For academic statisticians the emphasis on consistent data, i.e., our wish to let the data

satisfy all specified edits, may be difficult to understand. Statistically speaking there is

indeed hardly any reason to let a data set satisfy all edits, other than the hope that enforcing

internal consistency will result in data of higher statistical quality. NSIs, however, have the
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responsibility to supply data for many different academic and nonacademic users in

society. For the majority of these users, inconsistent data are incomprehensible. They may

reject the data as being an invalid source of information or make adjustments themselves.

This hampers the unifying role of an NSI in providing data that are undisputed by different

parties such as policy makers in government, opposition, trade unions, employer

organisations, etc.

In principle, one could ensure consistency between publication figures during the

estimation phase rather than during the edit phase, just as one could treat missing values

during the estimation phase rather than during an imputation phase. Ensuring consistency

during the estimation phase would, however, lead to an extremely complicated estimation

problem. For simplicity, we therefore ensure consistency during the edit phase, just as we

treat missing values in an imputation phase.

4.2. Error localisation

In this section we describe our methodology for localising the errors in a data set. We

distinguish between the localisation of systematic errors and random errors, as these kinds

of errors require different treatments.

4.2.1. Finding systematic errors

A systematic error is an error reported consistently among (some of the) responding units.

It can, for instance, be caused by a consistent misunderstanding of a survey question by

(some of) the respondents. Examples are when gross values are reported instead of net

values, and when values are reported in units instead of, for instance, the requested

thousands of units (the so-called “thousand-errors”). Since such errors occur in groups of

related variables such as all financial variables or all variables related to purchases, they

often do not violate edits and can therefore not be found by the Fellegi-Holt based methods

(to be discussed in Subsection 4.2.2).

Thousand-errors can often be detected by comparing a respondent’s present values with

those from previous years, or by comparing the responses to questionnaire variables with

values of register variables. For the experiments in the EUREDIT project only the second

option is possibile. Using the ABI development data, it appeared that a considerable

number of thousand-errors occurred in all financial variables. Most of these errors could be

found by calculating the ratio of turnover (the reported turnover) to turnreg (the turnover

value from the register) and deciding that a thousand-error was present if this ratio was

larger than 300. All financial variables in such records were then divided by 1,000. In the

EPE development data no thousand-errors were detected.

4.2.2. Using the Fellegi-Holt paradigm

Besides systematic errors, observed data also contain, random errors. Random errors are

not caused by a systematic deficiency, but by accident. An example might be an observed

value where a respondent by mistake typed one extra digit. To identify such random errors

we have used the (generalised) Fellegi-Holt paradigm. This paradigm says that the data in

a record should be made to satisfy the specified edits by changing the fewest possible

(weighted) number of fields. To each variable a nonnegative weight, the so-called
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reliability weight, is assigned that indicates the reliability of the values of this variable.

The larger the weight of a variable, the more reliable the corresponding values are

considered to be. If all weights are equal, the generalised Fellegi-Holt paradigm reduces to

the original Fellegi-Holt paradigm (see Fellegi and Holt 1976).

An algorithm that implements the Fellegi-Holt paradigm has been developed by de

Waal and Quere (2003). To determine all optimal (in the sense of the Fellegi-Holt

paradigm) solutions to the error localisation problem, this algorithm generates a binary

tree. In each node of this tree a branching variable is selected. After selection of a variable

two branches are constructed. In one branch it is assumed that the original value of the

selected variable is correct. The original value of this selected variable is filled in into the

current set of edit rules. In this way we obtain a set of edit rules for a new node in the tree.

In the other branch it is assumed that the original value of the selected variable is incorrect.

We eliminate the selected variable from the set of current edit rules to obtain a set of edit

rules for a new node in the tree (for more details on the elimination method see de Waal

and Quere 2003). The resulting set of edit rules for the new node should be satisfied by the

remaining variables. After all variables have been selected, we have reached a terminal

node of the tree and we are left with a set of relations involving no unknowns. If and only if

this set of relations contains no selfcontradicting ones, the variables that have been

eliminated in order to reach the corresponding terminal node of the tree can be imputed

consistently, i.e., so that all original edits can be satisfied (cf. Theorems 1 and 2 in de Waal

and Quere 2003). We check for each terminal node of the tree whether the variables that

have been eliminated in order to reach this node can be imputed consistently. Of all the

sets of variables that can be imputed consistently we select the ones with the lowest sum of

reliability weights. In this way we find all optimal solutions to the error localisation

problem (cf. Theorem 3 in de Waal and Quere 2003).

In the EUREDIT project we have applied a prototype of a program called Cherry Pie

that is based on the algorithm described above. This program has now evolved into a

production version. The most important output of Cherry Pie consists of a file that contains

for each record a list of all optimal solutions to the error localisation problem, i.e., all

possible ways to satisfy the edits by changing a minimum (weighted) number of fields.

One of these optimal solutions is selected for imputation (see Subsection 4.2.3). The

variables involved in the selected optimal solution are set to missing and are subsequently

imputed by the methods described in Subsection 4.3. In general, Cherry Pie also generates

a file with records for which it could not find a solution, because more fields in these

records would have to be modified than a user-specified maximum allows. In our

experiments, however, we used Cherry Pie to determine all errors in each record.

4.2.3. Selection of Cherry Pie solutions

In practice it is quite common that application of the Fellegi-Holt paradigm yields several

optimal solutions. Cherry Pie simply returns all these solutions. Each solution consists of a

set of suspicious observed values. To select one of these solutions we have used a

relatively simple approach. The general idea is to determine the most suspicious set of

observed values. To this end we first calculate a crude prediction for all the variables in the

solutions generated by Cherry Pie. These predictions are based on register variables only,

since these are assumed to be without errors. Subsequently, distances are calculated
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between the observed values in a record and the corresponding predicted values in each of

the solutions for that record. The optimal solution returned by Cherry Pie for which this

distance is maximal is the one involving the variables that deviate most from their

predicted values. The variables in this maximal distance solution are, in some sense, the

variables with the most outlying values, and these values are hence considered to be the

erroneous ones. Thus, we use error localisation by outlier detection as a means to single

out one of the several solutions to the Fellegi-Holt problem. The maximal distance

solution will be processed further, i.e., the variables in this solution will be set to missing

and these missing values will subsequently be imputed. The distance function used is the

sum of normalised absolute differences between the observed values and the predicted

values in a record, i.e.,

Dk ¼
i[Ik

X yij 2 ŷijffiffiffiffiffiffiffi
vâr

p
ðeijÞ

�����

�����

where yij denotes the observed value of variable j in record i, ŷij the corresponding

predicted value, Ik the index set of the variables in the k-th optimal solution returned by

Cherry Pie, and vârðeijÞ an estimate for the variance of the prediction error. As one of the

reviewers remarked, more involved distance measures could have been used instead, for

instance a Mahalanobis distance that takes the correlations between the residuals into

account. The predictions that we used in applying this approach were ratio-type estimators

of the form

ŷij ¼ xij
�yj

�xj

where xij is the value of the (register) predictor variable for variable yj in record i, �yj is the

mean over all clean records (records that do not violate any of the edits) of variable yj, and

�xj is the mean over the same clean records of xj. Actually, we used separate ratio estimators

within strata, which is a richer model that replaces the single parameter estimate �yj=�xj by

similar estimates for each stratum separately, but for notational simplicity we only

describe the unstratified case here. In the applications the predictor used was the only

relevant continuous register variable (registered turnover) in combination with

stratification by industry type.

4.3. Imputation

In this section we sketch the imputation methods we have applied. For more details we

refer to Pannekoek (2004a) and Pannekoek and van Veller (2004).

4.3.1. Deductive imputation

For a number of missing values in the ABI and EPE data, the value can be determined

unambiguously from the edits provided for these data sets. If only a single variable in a

balance edit is missing, its value can be derived from the other variables involved in the

edit. For nonnegative variables we also notice that if the total variable of a balance edit

equals the sum of the nonmissing subtotal variables, the missing subtotal variables are all

zero, and similarly for subtotal and component variables. Moreover, if the (sub)total
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variable has a zero value all missing subtotal (component) variables are zero. Such

“deductive” imputations are performed as a first step. For the remaining missing values the

methods described below are used. It should be noted that deductive imputations will be in

error if the observed values from which these imputations are derived contain errors.

Nevertheless, these deductive imputations are the only values that are consistent with the

edit rules. So, given that the possibilities for finding and correcting errors are exhausted,

deductive imputation is a logical first imputation step. In Section 5.2.5 we discuss the

influence of errors on other (nondeductive) imputation methods.

4.3.2. Multivariate regression imputation

A standard technique for imputing continuous variables is to employ a linear regression

model to derive predictions for the missing values. Often, some of the predictor variables

also contain missing values and these predictors are then also candidates for imputation. In

such cases, there is no distinction between predictor variables and target variables. Let the

vector with all variables under consideration be denoted by y and the value of unit i on y by

yi. For each unit the vector yi can be partitioned into an observed part yi;o and a missing part

yi;m. Regression imputation can be based, in this case, on the multivariate regression

model that relates each of the missing variables to all of the observed variables:

yi;m ¼ mi;m þ Bm:oðiÞðyi;o 2 mi;oÞ þ 1i;m ð1Þ

where mi;m and mi;:o are the expected values of yi;m and yi;o, respectively, and Bm:oðiÞ is the

qi £ pi-matrix with regression coefficients for the multivariate regression of the qi
variables that are missing for unit i on the pi (predictor) variables that are observed for unit

i. The coefficient matrix Bm:oðiÞ depends on i in the sense that the predictor variables and

variables to be predicted may differ between units, but the coefficients are equal for units

that have the same missing data pattern.

Estimates of the parameters of (1) can be obtained by using an EM-algorithm. This

algorithm is an iterative procedure for obtaining maximum likelihood (ML) estimates

(assuming multivariate normality) of the expected value vector and covariance matrix of a

set of variables based on data with missing values. This procedure is described by, e.g.,

Little and Rubin (1987) and Schafer (1997).

Let the ML-estimates of the expected value and covariance matrix of all variables be

denoted by m̂ and Ŝ, respectively. An estimate m̂i;m for mi;m can then be obtained by

collecting the qi components of m̂ corresponding to the missing variables for unit i and an

estimate m̂i;o for mi;:o can similarly be obtained by collecting the other pi components of m̂.

The coefficient matrix can be estimated by

B̂m:oðiÞ ¼ Ŝ
21

ooðiÞŜomðiÞ

where ŜooðiÞ is the submatrix of Ŝ containing the estimated variances and covariances of

the variables observed for unit i and ŜomðiÞ is the submatrix of Ŝ containing the estimated

covariances of the variables observed for unit i with the variables missing for unit i.

Using these estimates, regression imputations for the missing variables in a record i can

be obtained by
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ŷi;m ¼ m̂i;m þ B̂m:oðiÞðyi;o 2 m̂i;oÞ

The regression methods are based on a linear additive model for the data. When such a

model is not a realistic approximation for the data, regression imputation may give poor

results. In the ABI and EPE data there are a number of nonnegative variables with many

zero values (often 50% or more). For such variables, the assumption of a linear model for a

continuous dependent variable is problematic. The regression imputations will never be

zero (unless all predictor variables are) and negative predictions will often occur. With

only a few exceptions, these variables are component variables that should satisfy certain

balance edits; a requirement that will not be satisfied by regression imputed values. For

these variables nearest neighbour hot-deck methods have been applied that (I) will not

impute negative values, (II) will impute zero values, and (III) ensure that at least some of

the balance edits are satisfied by the imputed values. These methods are detailed below.

4.3.3. Hot-deck imputation methods

Nearest neighbour hot-deck methods use a distance function to measure the distance

between records. For each record with missing values (the receptor record) on some

variables (the target variables) a donor record is selected that (a) has no missing values on

the auxiliary variables and the target variables, and (b) has the smallest distance to the

receptor record. Imputation is then performed by replacing the missing values of the target

variables in the receptor record by the values of these variables from the donor record.

A distance measure that is often used for this purpose by NSIs is the minimax distance

(see e.g., Sande 1983; Little and Rubin 1987, p. 66). That is the measure chosen for the

nearest neighbour module in the edit and imputation software system of Statistics Canada

(Statistics Canada 1998). This measure is motivated by the idea that it is important that the

donor record is similar to the receptor record on all matching variables simultaneously:

potential donors with a large difference on any of the matching variables will have a large

value for d(i,i 0) and will therefore not be selected.

Before applying a distance function it is customary to scale the auxiliary variables so

that they have zero mean and unit standard deviation. This prevents implicit weighting of

the variables, in particular if they are measured in different units. Let the values of the

scaled auxiliary variables in a record i be denoted by zij ð j ¼ 1: : : JÞ; then the distance

between records i and i0 is defined by

dði; i0Þ ¼
j

max zij 2 zi0j
�� ��

A donor record is thus chosen so that the maximal absolute difference between the

auxiliary variables of the donor and the receptor is minimal. This way of selecting a donor

ensures that even the most differing matching variable of the donor record is close to the

receptor record. The method is therefore robust against the presence of outliers.

For variables that are part of a balance edit such as subtotals or component variables we

have applied a modified version (which we refer to as ratio hot deck) of the “standard”

nearest neighbour hot-deck method. This method begins by calculating the difference

between the total variable (which is either observed or imputed by regression) and the sum

of the observed components. This difference equals the sumof themissing components. The
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sum of the missing components can then be distributed over the missing components using

ratios (of the missing components to the sum of the missing components) from a donor

record. In this way the level of the imputed components is determined by the total variable

but their ratios (to the total of the missing values) are determined by the donor record. This

method ensures that the imputed and observed components will add up to the total.

Note that if only one of the components is missing, the ratio equals 1, so no donor

information is used and the method reduces to a deductive imputation rule derived from

the additivity constraint. Also, if the sum of the observed components equals the total, the

sum of the missing components is 0 and again a deductive imputation rule, derived from

additivity and nonnegativity, results. It can happen that a donor is chosen for which all the

missing components are zero. Then, the ratios are undefined (reflecting the fact that such a

donor does not contain information on how to distribute the sum over the missing

components) and another donor (the next-nearest neighbour) is used.

For the ABI data this ratio hot-deck method ensures that all hard edits are satisfied

because they are either balance edits or nonnegativity edits, and each variable occurs only

once in a balance edit. The situation is different for the EPE data where many variables are

part of more than one balance edit. This is illustrated in Table 3.2 of Section 3.2. Suppose

that the subtotals of Table 3.2, i.e., totinvwp, totinvwm, totinvap, totinvnp, totinvot,

eopinvtot, pininvtot, and othinvtot, are observed or already imputed. Then we can use the

ratio hot-deck method and the subtotals totinvwp, totinvwm, totinvap, totinvnp, and

totinvot to impute all component variables, in which case these imputed values will not

necessarily sum up to the subtotals eopinvtot, pininvtot, and othinvtot, or vice versa. In

such cases where the imputation method does not ensure that edits are satisfied, we have

used an additional step to adjust the imputed values such that they do satisfy all edits.

4.4. Adjustment of imputed values

Adjustment of imputed values to satisfy the edits is done so that the adjustments are as

small as possible. This goal is achieved by minimising a distance function measuring the

distance between the imputed record, which may not satisfy all edits, and an adjusted

record, where imputed values have been changed so that all edits are satisfied. We assume

that only linear numerical edits are specified. For convenience, we write the set of linear

numerical edits as

Ay $ b ð2Þ

where y denotes the vector of values in the record under consideration, A a matrix and b a

vector. Together A and b define the set of edits. Note that the system (2) can include

equations as any equation can be written as two inequalities. We partition the vector y for

the record under consideration into the imputed variables yimp and the nonimputed, i.e.,

observed, variables ynon. For notational convenience, we assume that the vector y starts

with all imputed variables followed by all nonimputed variables, i.e., y ¼ ðyimp; ynonÞ:We

partition A ¼ ðAimp;AnonÞ accordingly. We denote the (possibly) imputed values in the

record under consideration by y0 ¼ ðy0imp; y
0
nonÞ. We fill in the values for the nonimputed

fields of the record under consideration into (2), and obtain a set of linear constraints for

the fields that have been imputed. This set of constraints is given by
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Aimpyimp $ b2 Anony
0
non ð3Þ

The right-hand side of (3) is constant. The vector yimp consists of all unknowns. Note that

if the fields to be imputed are determined by a Fellegi-Holt system like Cherry Pie the

imputed values can indeed be modified so that all edits become satisfied, because the

solutions found by a Fellegi-Holt system can, by definition of a Fellegi-Holt system, be

imputed consistently.

To measure the distance between an imputed record with known values y0 ¼

ðy0imp; y
0
nonÞ and an adjusted record with unknown values y ¼ ðyimp; y

0
nonÞ we use

i[imp

X
wi y

0
imp;i 2 yimp;i

���
��� ð4Þ

where i [ imp indicates that the summation is taken over all imputed values. The wi

ði ¼ 1; : : : ; n; where n denotes the number of variables) are nonnegative user-specified

weights that are used to compare a change in one variable to a change in another variable.

The larger the weight of a variable, the more serious a change in value is considered to be.

These weights differ from the reliability weights used in Cherry Pie, because here the

weights reflect the effects of deviating from the imputed values, whereas the weights used

in Cherry Pie reflect the level of confidence in the variables. In our application we simply

chose all wi ¼ 1ði ¼ 1; : : : ; nÞ:

We now seek an adjusted vector ~yimp that minimises (4) subject to the constraints given

by (3). This is a linear programming problem, which can, for instance, be solved by means

of the well-known simplex algorithm (see Chvátal, 1983). The adjusted, final record

~y ¼ ð~yimp; y
0
nonÞ satisfies all edits (2).

DeWaal (2003) considers the more complicated problem of adjusting imputed values in

a mix of categorical and numerical data, and proposes a heuristic to solve that problem.

5. Results

In this section we present results of our approach. The performance of our approach as

applied to the evaluation data was measured by a number of evaluation criteria, developed

in the EUREDIT project. Subsection 5.1 describes some of these criteria that will be used

in the subsequent three subsections. In Subsection 5.2 we present some results using the

development (Y2,D and Y3,D) data (for which the true data are available) that were used to

decide on questions such as: how to detect systematic errors, which stratification to use for

imputation within strata and which imputation method to use (regression, hot-deck, ratio

hot-deck) for which variables. The result of these choices was a final edit and imputation

strategy to be applied to the ABI and EPE evaluation data sets. In Subsection 5.3 we

present evaluation results for our methods and in Subsection 5.4. The evaluation results for

our strategies are compared with those from other partners in the EUREDIT project.

We present only a limited number of statistical results in this section. For many more

results we refer to Pannekoek and van Veller (2004) for the Y2,D data, Pannekoek (2004b)

for the Y2,E data, Vonk, Pannekoek, and de Waal (2003) for the Y3,D data, and Vonk,

Pannekoek, and de Waal (2004) for the Y3,E data. For a detailed comparison with other

methods we refer to Chambers and Zhao (2004a and 2004b).
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5.1. Evaluation criteria

To evaluate the editing and imputation methods, we use a limited set of evaluation criteria

in this article. To measure the error-finding performance of our approach we use an alpha,

a beta and a delta measure. The alpha measure equals the proportion of cases where the

value for the variable under consideration is incorrect but is still judged acceptable by the

editing process. It is an estimate of the probability that an incorrect value for variable j is

not detected by the editing process. The beta measure is the proportion of cases where a

correct value for the variable under consideration is judged as suspicious by the editing

process, and estimates the probability that a correct value is incorrectly identified as

suspicious. The delta measure is an estimate of the probability of an incorrect outcome

from the editing process for the variable under consideration, and measures the inaccuracy

of the editing procedure for this variable.

To measure the imputation performance we use a dL1, an m1 and an rdm measure. The

dL1 measure is the average distance between the imputed and true values defined as

dL1 ¼
i[M

X
wi Ŷi 2 Y*i

���
���
.

i[M

X
wi

where Ŷi is the imputed value in record i of the variable under consideration, Y*i is the

corresponding true value, M denotes the set of records with imputed values for variable Y

and wi is the raising weight for record i.

The m1 measure, which measures the preservation of the first moment of the empirical

distribution of the true values, is defined as

m1 ¼
i[M

X
wiðY

*
i 2 ŶiÞ

.
i[M

X
wi

������

������

Finally, the rdm (relative difference in means) measure is defined as

rdm ¼
i[M

P
Ŷi 2

i[M

P
Y*i

i[M

P
Y*i

It is important to note that these imputation performance measures are only used in a

relative way, i.e., to compare different imputation methods in an experimental setting.

Smaller values of the measures indicate better imputation performance. These measures

are not necessarily appropriate or sufficient to measure the effect of imputation on the

quality of survey estimates in general. For an actual production process it depends on the

intended use of the data whether record level accuracy (dL1) or more aggregate measures

of imputation bias like m1 or rdm are more important. Furthermore, to assess the

importance of bias caused by imputation it should be related to other quality aspects such

as sampling variance.
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5.2. Developing a strategy

In this subsection we present some results and general considerations that motivated our

choices on the following issues: 1) a threshold value to detect thousand-errors, 2) whether

or not to use soft edits in the error localisation step, 3) an effective stratification for

regression imputation and 4) hot-deck versus regression imputation for component

variables and variables with many zero values. At the end of this subsection we also use

the development data to demonstrate the influence of errors on imputation performance.

5.2.1. Detecting thousand-errors

We developed our strategy for detecting thousand-errors using the development data. With

the true values available, these errors were detected by dividing all perturbed values by

their true values. When these ratios are close to 1,000, they point to thousand-errors. In 191

records of the ABI Y3,D data, thousand-errors were made in all financial variables. As

mentioned before in Subsection 4.2.1, we consider a record to contain a thousand-error if

the ratio between turnover and turnreg is larger than 300. This threshold value of 300 has

been determined by minimising the number of misclassifications. For a threshold value of

300, 187 thousand-errors were correctly detected, 4 thousand-errors were not detected,

5,905 records were correctly considered not to contain a thousand-error, and for three

records it was incorrectly concluded that they contain a thousand-error. The number of

misclassifications is small, especially if we take into consideration that two thousand-

errors could never be detected given their values of zero on turnreg.

5.2.2. Edits

Our approach explicitly uses edits specified by subject-matter specialists. The performance

of the approach is therefore directly dependent on the quality of the specified edits.

As discussed in Subsection 3.1, the edit rules for the ABI Y3 data consist of hard

(logical) edits and soft edits. The data should at least satisfy all hard edits, but it is likely

that a considerable number of errors remain undetected when using these hard edits only.

On the other hand, the soft edits are designed by subject-matter specialists for interactive

editing and may be too strict for automatic editing, possibly resulting in a considerable

number of correct records that are identified as incorrect. For the application to the Y3,E

data we have chosen not to make a selection of edit rules that we expect to perform best but

to run two experiments: one that uses all edit rules for error localisation (Strategy I) and

one that uses only the hard edit rules (Strategy II). For the EPE data, no soft edits were

specified by the subject-matter specialists.

5.2.3. Different stratifications for the multivariate regression imputation procedure

As is common for business surveys, the ABI data include an indicator for the type of

industry: the variable class. Imputation procedures (as well as other estimation

procedures) for business surveys are often applied separately for different types of

industry, thus allowing the parameters of the imputation model to vary between different

types of industry. For the ABI data we considered multivariate regression imputation

within 14 strata based on the variable class. As an alternative, we also considered a

stratification suggested by ISTAT as a result of their experiments with the ABI data
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(Di Zio, Guarnera, and Luzi 2004). This stratification is based on the register variables

turnreg and empreg and consists of the following three strata for each type of

questionnaire: (1) turnreg , 1; 000; (2) turnreg $ 1; 000 and empreg # 3; (3) turnreg $

1; 000 and empreg . 3: The resulting number of strata is six for variables that are on both

questionnaires and three for variables that are only part of either the long questionnaire or

the short questionnaire. This last stratification variable will be referred to as strat.

In order to decide which stratification to use, the multivariate regression imputation

method was applied to the variables turnover, emptotc, purtot, taxtot, stockbeg, and

stockend (see Table 3.1 for a description of these variables) and pursale (purchases of

goods bought for resale) of the ABI Y2,D data set, using each of these stratifications. To

compare the results we computed, for each variable, the relative difference between the

mean of the imputed values and the mean of the corresponding true values. The results

showed that stratification by strat leads to a better preservation of the mean than

stratification by class for six of the eight variables, even though the number of classes is

much smaller. Based on these results, stratification by strat was used in the evaluation

experiments.

The EPE data include a variable act (industrial activity) which is comparable in

meaning to the variable class in the ABI data as well as a variable emp (number of

employees) without missing values. However, since the number of records for the EPE

data is much smaller than for the ABI data, the possibilities for stratification are much

more limited. As an alternative to full stratification we have included emp and eight

dummy variables for the categories corresponding to the first digit of act in the

multivariate regression imputation procedure. In this way the regression model used for

imputation always includes additive effects of emp and act (along with other predictor

variables, depending on their availability for a particular record), thus providing a

differentiation in imputations between industry type and number of employees.

5.2.4. Hot-deck imputation versus regression imputation

One of the imputation methods considered for component variables was the ratio hot-deck

imputation method, but for some component variables we investigated the performance of

regression imputation as well. Application of these two methods to the six component

purchase variables, i.e., the six component variables of purtot, of the ABI Y2,D data

showed that, with respect to the rdm criterion, multivariate regression imputation is better

for three variables but for the other three variables ratio hot-deck is better.

These results do not point strongly to one of the imputation methods as the method of

choice. The regression imputation method has some disadvantages not shared by the ratio

hot-deck imputation method. In particular, some imputed values are negative while the

corresponding variables should only assume nonnegative values and, contrary to the ratio

hot-deck method, the regression imputed component variables will not satisfy the

corresponding balance edit. Similar experiments were carried out on the EPE data with

comparable results. For these reasons we decided to use ratio hot-deck imputation for all

component variables.

Some variables such as assacq and assdisp are not component variables and can

therefore not be imputed by the ratio hot-deck imputation method, but regression

imputation is not well suited either, because these variables contain a large number of zero
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values. For these variables a standard nearest neighbour hot-deck imputation method was

used with a distance function based on the variables turnreg (registered turnover) and

empreg (registered number of employees), and stratification by class.

Several alternatives to this hot-deck imputation method were investigated and evaluated

on two criteria:

. The relative difference between the mean of the imputed values and the mean of the

true values for the missing data;

. The difference between the number of imputed zero values and the true number of

zero values among the missing data.

One alternative was a two-step approach, using a hot-deck method to impute whether or

not the missing value is zero and subsequently a regression imputation approach to impute

only the nonzero values. Negative imputations by the regression step of this method were

set to zero. The preservation of the mean value for this approach was a little bit better than

for the hot-deck imputation method. The number of zero values, however, appeared to be

much too large because of the extra zeroes introduced by the regression part of this method

(besides the zeroes that had already been imputed by the hot-deck). To prevent these extra

zeroes the regression imputation was also applied with a log transformation of the target

variable. This resulted in the same, rather accurate, number of zero values as the hot-deck

method but the performance with respect to the preservation of the mean was much worse.

So, if it is important to have the number of firms that have nonzero values for assets

disposed (assdisp) or assets acquired (assacq) about right and at the same time preserve the

means reasonably well, the hot-deck imputation method seems to be a good compromise.

5.2.5. Influence of errors on imputation performance

So far, the development data have been used to decide on an edit and imputation strategy

to be applied to the evaluation data. These development data, for which the true values for

both missing values and erroneous values are available, also give us the opportunity to

explore the effect of errors on the imputation performance. We will look at this briefly

before turning to the evaluation criteria and evaluation data.

In Table 5.1 some imputation results are given for the four overall total variables

(imputed by multivariate regression and deductive imputation) for both the EPE Y3,D data

set and the EPE Y2,D data. These results include the true mean of the imputed values (mean

true), the mean of the imputed values themselves (mean imp), the relative difference

between these two means (rdm) and the number of imputations (# imp).

Two of the variables in Table 5.1 (totinvto and totexpto) contain more missing values for

the Y3,D data set than for the Y2,D data set because Cherry Pie found errors in these

variables. Four errors in totinvto and totexpto were not detected. For the other two

variables, no errors are present or detected. The values of rdm show that the means for the

Y3,D data are less well preserved than for the Y2,D data, for all variables. In general, the

quality of imputations of a regression procedure can be influenced adversely by errors for

two reasons. First, the values of some of the predictor variables in the records with missing

values can be erroneous. Second, errors in any of the variables in the records with missing

values as well as in fully observed records can lead to biased estimates of the regression

coefficients. In our case, the four undetected errors are all in records with no missing

Journal of Official Statistics276



Table 5.1. Preservation of mean values for the four overall total variables of the EPE development data

Variable Errors and missings (Y3,D) Missings only (Y2,D)

mean true mean imp rdm # imp mean true mean imp rdm # imp

totinvto 1,872.67 1,073.41 20.43 21 1,509.42 1,413.06 20.06 19
totexpto 206.38 46.38 20.78 36 1,083.45 1,083.45 0.00 33
subtot 15.00 21.88 0.46 2 15.00 19.48 0.30 2
rectot 743.18 210.80 20.72 11 743.18 362.90 20.51 11
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values. Thus the lesser quality of the imputations for the Y3,D data can be explained

entirely by the influence of the errors on the estimated regression coefficients.

5.3. Application to the evaluation data

In this subsection we will discuss the results of the application of our edit and imputation

strategy to the evaluation data. First we show results related to the edit rules: results that

show the effectiveness of deductive imputation (Subsection 5.3.1) and the amount of

adjustment that is necessary to let the imputed values satisfy the edit rules (Subsection

5.3.2). Next, we give some results for the error localisation performance (alpha, beta, and

delta measures) and imputation performance (dL1 and m1 measures) for the ABI

(Subsection 5.3.3) and EPE data (Subsection 5.3.4).

5.3.1. Deductive imputation

In total, about 42% of the values to be imputed in the EPE Y2;E data could be deductively

imputed, and for the EPE Y3;E data the figure is approximately 45%. So a substantial

amount of the values to be imputed can be deductively imputed by using the edits. These

numbers are slightly lower for the ABI Y2;E and Y3;E data, but there too a substantial

number of deductive imputations were carried out. Note that the total number of fields to

be imputed in each of the Y3;E data sets (ABI and EPE) depends on the number of

implausible values that have been identified.

5.3.2. Adjustment of imputed values

As mentioned in Subsection 4.3.3, the imputation methods for the ABI data already take

the hard edits into account and adjustment of imputed values is therefore not necessary.

For the EPE data sets not all hard edits (see Section 3.2 for a brief description of these

edits) are taken into account and the imputed values have been adjusted so that the final

records satisfy all hard edits. But since most of the hard edits for the EPE data sets are

taken into account, the effect of adjusting imputed values is limited. For the EPE Y2;E data

only 111 of the 2,230 imputed values are adjusted, i.e., about 5.0%. The sum (over all

variables in the EPE Y2;E data) of the absolute differences of the means of the imputed

values and the means of the adjusted imputed values is 70.6, and the sum (over all

variables) of the means of the imputed values is 2,855.9. So the “average” change to the

imputed values owing to the adjustment procedure is about 2.5%. For the Y3;E data, 95

values of the 2,362 imputed values were adjusted, i.e., about 4.0%, and the average change

is 1.1%.

5.3.3. Edit and imputation results for the ABI evaluation data

In Table 5.2 the error localisation results for Strategies I and II (see Subsection 5.2.2) are

presented.

Taxrates (amounts paid for national nondomestic rates) and taxothe (other amounts paid

for taxes and levies) in Table 5.2 are the two component variables of taxtot.

The alphas are quite high for both strategies, pointing to a large proportion of undetected

errors. Because fewer edits apply to the variables, it is evident that the alphas are larger for

Strategy II than for Strategy I. Conversely, the betas are smaller, because using less edits
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results in fewer correct values considered implausible by the editing process. Most deltas

are similar or smaller for Strategy II than for Strategy I, showing that the amount of

misclassification is smaller with fewer edits.

In Table 5.3 imputation results for the ABI evaluation data are presented. These results

pertain to the Y3;E data set with errors localised by either Strategy I or Strategy II and the

Y2;E data set (missings only).

The results show, with a few exceptions, that the results are much better for the Y2;E data

than for both experiments with the Y3;E data. An exception where the imputations for the

Y3;E data are much better than for the Y2;E data occurs for assacq. From the results in

Table 5.2 it was concluded that the error localisation Strategy II performed better than

Strategy I. The imputation results in Table 5.3, however, show that the difference in

imputation performance between these two experiments is not so clear cut. For three of the

Table 5.3. Imputation results for ABI evaluation Y3,E and Y2,E data sets

Variable Y3,E data Strategy I Y3,E data Strategy II Y2,E data (no errors)

dL1 m1 dL1 m1 dL1 m1

turnover 428.43 169.40 74.81 55.51 126.39 60.47
emptotc 59.39 56.68 42.50 36.29 12.42 3.52
purtot 858.10 834.12 331.30 306.74 4.56 1.96
taxtot 7.92 5.94 40.25 36.17 3.41 0.58
taxrates 6.64 0.77 20.02 15.69 1.20 0.87
taxothe 6.70 5.72 52.49 46.35 0.82 0.71
assacq 36.19 29.57 33.91 27.67 115.37 105.20
assdisp 66.08 60.96 71.08 65.44 3.46 1.94
employ 3.33 0.97 2.66 2.00 4.21 1.02
stockbeg 30.36 14.01 190.97 177.21 45.82 6.07
stockend 25.90 3.13 27.56 15.89 47.16 6.96
capwork 19.40 18.06 19.40 18.06 2.69 2.59

Table 5.2. Error localisation results for ABI evaluation (Y3,E) data set

using Strategy I (all edits) and Strategy II (hard edits only)

Variable Strategy I Strategy II

alpha beta delta alpha beta delta

turnover 0.529 0.055 0.096 0.628 0.000 0.054
emptotc 0.378 0.274 0.284 0.613 0.001 0.059
purtot 0.696 0.016 0.117 0.708 0.006 0.111
taxrates 0.585 0.004 0.027 0.654 0.002 0.027
taxothe 0.589 0.000 0.023 0.647 0.000 0.025
taxtot 0.569 0.045 0.107 0.679 0.001 0.082
stockbeg 0.599 0.002 0.059 0.636 0.001 0.062
stockend 0.589 0.002 0.059 0.636 0.001 0.062
assacq 0.630 0.001 0.049 0.662 0.000 0.050
assdisp 0.619 0.001 0.038 0.651 0.001 0.040
capwork 0.559 0.001 0.009 0.559 0.001 0.009
employ 0.678 0.133 0.159 1.000 0.000 0.048
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main variables, turnover, emptotc and purtot the imputation results are better for Strategy

II than for Strategy I, but for taxtot and the components thereof (taxrates and taxothe) as

well as stockbeg Strategy I is better.

5.3.4. Edit and imputation results for the EPE evaluation data

Results for the error localisation and imputation performance for both EPE evaluation data

sets (Y3;E and Y2;E) are summarised in Table 5.4. With respect to the error localisation, a

striking result is that the alphas are often 1, indicating that none of the errors has been

correctly localised. It should be noted, however, that there are only a few errors in each

variable. But still, the overall error detection performance is not very good; only 11 (20%)

of the 54 errors in these variables have been detected correctly.

The imputation results (not presented here; see Pannekoek 2004b, and Vonk,

Pannekoek, and De Waal 2004) show that the imputation performance is better more often

for the Y2;E data than for the Y3;E data.

5.4. Comparison with other approaches regarding the Y2,E and Y3,E data

An important part of the EUREDIT project was the comparative analysis of the results of

the different experiments. Chambers (2004) developed a number of measures to assess and

compare the edit and imputation performance of the experiments. Based on these criteria,

Chambers and Zhao (2004a and 2004b) performed a comprehensive analysis of all the

results of the EUREDIT experiments. Our edit and imputation approach to the ABI and

EPE data has been compared to an approach based on self-organising maps (cf.,

Koikkalainen 2004; Koikkalainen, Piela, and Laaksonen 2004), and to several outlier

detection techniques and outlier-robust imputation methods (cf., Béguin and Hulliger

2004a; 2004b; 2004c; Chambers, Hentges, and Zhao 2004; Hentges 2004a; 2004b; Ren

and Chambers 2004). In order to give an impression of the performance of our approach

compared to the performance of the approaches of other participants in the EUREDIT

project, we will summarise some of the general conclusions of Chambers and Zhao. In

addition, we identify some situations where other methods performed better than our

methods in order to indicate directions for improvements of our approach.

Table 5.4. Error localisation and imputation results for EPE evaluation Y3,E (errors and missings)

and Y2,E (missings only) data sets

Variable Y3,E data Y2,E data

#errors alpha beta delta dL1 m1 dL1 m1

totinvto 12 0.83 0.003 0.014 52.14 41.47 57.46 49.99
totexpto 14 0.50 0.009 0.017 30.72 21.43 0.00 0.00
subtot 1 1.00 0.000 0.001 25.01 25.01 9.45 9.45
rectot 1 1.00 0.000 0.001 20.73 11.70 21.14 9.95
totinvwp 5 1.00 0.001 0.006 35.63 6.83 34.53 18.66
totinvwm 8 0.63 0.001 0.006 77.81 52.52 23.33 3.74
totinvap 6 1.00 0.000 0.006 40.03 30.68 40.89 36.57
totinvnp 5 1.00 0.001 0.006 15.01 12.88 16.15 10.31
totinvot 2 0.50 0.000 0.001 52.16 18.29 57.39 14.07
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Some general conclusions for data sets without errors (missings only) are as follows.

With respect to the ABI Y2;E data Chambers and Zhao (2004a) note that the best

experiment (of the two) carried out by CBS and three other experiments (of the 12

experiments in total) stand out as providing good results across all situations. With respect

to the EPE Y2;E data Chambers and Zhao (2004b) note that the best experiment (of the

two) carried out by CBS does particularly well, and is the best overall experiment. For the

data sets with errors Chambers and Zhao formulate the following conclusions. With

respect to the ABI Y3;E data they conclude that outlier-robust regression tree-based

automatic editing and imputation procedures are the best for this data set, and are worth

developing further as an editing and imputation tool for business survey data. In addition,

they conclude that the linear model-based methods used, for instance in an experiment by

CBS, also performed well and are well worth consideration when setting up an automatic

editing and imputation tool for business survey data that has more “linear structure”

(perhaps after transformation). With respect to the EPE Y3;E data Chambers and Zhao

conclude that of the four experiments involving both editing and imputation that were

carried out, it is clear from the analysis that the experiment by CBS is the overall leader.

According to these conclusions our approach is among the best-performing ones for the

EPE Y2;E and Y3;E data, as well as for the ABI Y2;E data. For the ABI Y3;E data our

approach performed reasonably well but there are methods that perform better with respect

to error localisation as well as with respect to imputation. Methods that performed

relatively well (compared to other methods) for error localisation for all variables and for

imputation of all variables except the four economic total variables turnover, emptotc,

purtot, and taxtot are methods based on robust regression trees. A regression tree is a

nonparametric regression modelling procedure that uses a sequence of binary splits of the

data set resulting in subgroups or “nodes” that become increasingly homogeneous with

respect to the target variable. The splits are defined in terms of the values of a set of

covariates. For the applications considered here, the covariates were the register variables

turnreg and empreg. The robustness of the procedure was obtained by using an outlier-

robust measure of heterogeneity. Outlier values with respect to this tree-model are defined,

and treated as errors. These errors as well as the missing values are subsequently imputed

by a robust estimate of the node mean. For a more detailed explanation of this approach,

see Chambers, Hentges, and Zhao (2004), Hentges (2004a; 2005a), and Zhao and

Chambers (2004).

For the ABI Y3;E data set, this outlier-based error detection procedure performed better

than our approach. For instance, for the 12 variables in Tables 5.2 and 5.3 this experiment

resulted in average values of alpha (fraction undetected errors), beta (fraction of correct

values incorrectly detected as errors) and delta (fraction erroneous decisions) of 0.56,

0.011 and 0.051, respectively, whereas the corresponding values for the CBS experiment

were 0.67, 0.001 and 0.059. This shows that the outlier-based error detection method finds

more errors than the combination of the Fellegi-Holt based method and the detection of

thousand-errors. But there is a trade-off; the smaller values for alpha go together with

larger values for beta: more correct values are “detected” as errors. Nevertheless, the

fraction of erroneous decisions is larger for the CBS experiment. Similar conclusions hold

for other experiments based on outlier detection methods.

Pannekoek and de Waal: Automatic Edit and Imputation for Business Surveys 281



With respect to the imputation performance, the results vary according to type of

variables involved. For four total variables, turnover, emptotc, purtot, and taxtot, a robust

parametric regression imputation method using turnreg as the only predictor variable

performed somewhat better than our multivariate regression approach. This is remarkable

because the multivariate regression approach used more predictor variables, namely each

of the variables turnreg, turnover, emptotc, purtot, taxtot, stockbeg, stockend (see Table

3.1 for a description of these variables), as well as pursale (purchases of goods bought for

resale) when they were observed. Here it seems clear that there is an advantage to using

outlier robust imputation models. For the components of emptotc, purtot, and taxtot, as

well as for the variables with many zeroes (stockbeg, stockend, and capwork) a robust

regression tree imputation method performed better than our (ratio) hot-deck methods.

Again, the robustness of the method may be the reason for this better performance.

6. Conclusions

From the analyses carried out by Chambers and Zhao (2004a; 2004b), which are

summarised in Section 5.4, we conclude that the approach used by CBS performed well in

comparison with the other methods. Our approach could be applied to edit and impute both

the ABI and EPE data, something that many edit and imputation approaches evaluated

under the EUREDIT project were unable to do. Another strong point of our approach is

that it leads to data that satisfy the specified edits. Other approaches that lead to acceptable

results for either the ABI or the EPE data do not guarantee that edits are satisfied by the

edited and imputed data sets. Finally, our approach is a very flexible one. Individual steps,

such as the detection of systematic errors and the imputation of erroneous and missing

values, can, if desired, be modified separately without having to change the other steps of

the approach. Furthermore, more steps can easily be added. For instance, the experiments

on the ABI data indicate that for these kinds of data, it is useful to identify outliers and

impute them by means of an outlier-robust method. Such an outlier detection step can, for

instance, be added to our approach immediately after the detection and correction of

systematic errors. The imputation method we have applied can be replaced by outlier-

robust versions of the regression and hot-deck imputation methods.

Despite the above-mentioned strong points of our approach, we are aware that

automatic editing and imputation is a potentially dangerous approach. Our methodology

correctly identifies only a small fraction of the errors in the observed data. Moreover,

although the imputation performance of our methodology is good for the Y2;E data sets, it

is less good for the Y3;E data sets. This leads us to the conclusion that the edit and

imputation process should not be fully automated in practice.

We advocate an edit and imputation approach that consists of the following steps:

. Correction of obvious systematic mistakes, such as thousand-errors;

. Application of selective editing to split the records into a critical stream and a non-

critical stream (see Lawrence and McDavitt 1994; Lawrence and McKenzie 2000;

Hedlin 2003);

. Editing of the data: the records in the critical stream are edited interactively, the

records in the noncritical stream are edited and imputed automatically;

. Validation of the publication figures by means of (graphical) macroediting.
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The above steps are used at CBS in the production process for structural annual business

surveys (see de Jong 2002). At CBS, so-called plausibility indicators (cf., Hoogland 2002)

that split the records into a critical stream and a noncritical stream are applied. Very

unreliable or highly influential records lead to a low score on the plausibility indicators.

Such records constitute the critical stream, and are edited interactively. The other records,

i.e., the records in the noncritical stream, are edited automatically. Each year we edit and

impute the same business surveys. To apply our automated approach to a new version of a

business survey, we therefore only have to update the parameters. This updating process is

to a substantial extent automated too. Edit and imputation of the records in the noncritical

stream hence requires hardly any human intervention. This is in stark contrast with our

experiences in the EUREDIT project, where we had to develop edit and imputation

strategies for the ABI and EPE data sets from scratch. For some evaluation results on the

combined use of selective editing and automatic editing on CBS business surveys, we refer

to Hoogland and van der Pijll (2003).

The final validation step is performed by statistical analysts, who, for instance, compare

the publication figures based on the edited and imputed data to publication figures from a

previous year. In this final step the focus is more on the overall results than on the

correctness of individual records. Influential errors that were not corrected during

automatic (or interactive) editing can be detected during this final important step, which

helps to ensure the quality of our data.

At CBS, outlier detection techniques are used during the selective editing step and the

macro-editing step. Large errors that were undetected by our approach in the EUREDIT

project would in the CBS production process probably be detected in either the selective

editing or the validation step. In contrast to our approach in EUREDIT, where we had to

restrict ourselves to edit and imputation methods using only data from the data set to be

edited and imputed itself, in our production process for structural annual business surveys

we use cleaned data from a previous year, for instance during selective editing, manual

editing, automatic editing and the validation step.

One could argue that with selective editing the automatic editing step is superfluous. At

CBS, we strongly advocate the use of automatic editing, even when selective editing is

used. We mention three reasons. First, the sum of the errors in the noncritical records may

have an influential effect on the publication figures, even though each error itself may be

noninfluential. Provided that the set of edits used is sufficiently powerful, application of

the Fellegi-Holt paradigm generally results in data of higher quality. This is confirmed by

various evaluation studies such as Houbiers, Quere, and deWaal (1999) and Hoogland and

van der Pijll (2003). Second, many noncritical records will be internally inconsistent if

they are not edited, which may lead to problems when publication figures are calculated.

Finally, automatic editing provides a mechanism to check the quality of the selective

editing procedures. If selective editing is well-designed and well-implemented, the records

that are not selected for manual editing need no or only slight adjustments. Records that

are substantially changed during the automatic editing step therefore point to an incorrect

design or implementation of the selective editing step. We feel that automatic editing,

when used in combination with other editing techniques, can only improve the quality of

the data, not deteriorate it.
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We also feel that only a combined approach using selective editing, interactive editing,

automatic editing and macroediting can improve the efficiency of the traditional

interactive edit and imputation process while at the same time maintaining or even

enhancing the statistical quality of the produced data. To some extent our intuition is

confirmed by our experiences in the EUREDIT project where our approach to automatic

edit and imputation, a mix of several different methods for automatic edit and imputation,

led to good results in comparison with the other methods.
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