
Journal of Of®cial Statistics, Vol. 14, No. 4, 1998, pp. 411±419

Balancing Disclosure Risk Against the Loss of
Nonpublication

Alan M. Zaslavsky1 and Nicholas J. Horton2

1. To Publish or Not to Publish? That Is the Question

Statistical agencies are concerned about disclosure of con®dential information when data

are released that can be identi®ed as referring to a small group of people. Disclosure can

occur with tabular data releases if a cell corresponds to a very small group, for example,

the cross-classi®cation of geography with a distinctive characteristic with many levels

such as occupation. Similarly it can occur in a microdata release if variables in the data

can be combined with publicly available information to identify the person to whom an

individual record corresponds. Again, this is particularly likely when detailed geography

is combined with a characteristic like occupation, although combinations of apparently

innocuous variables such as age, sex, and race may also lead to disclosure. In either

case, information reported for the identi®ed cell or microdata record (such as mean income

for a cell or income for a record) can be associated with an individual or small group of

individuals, violating the con®dentiality of their data. Common strategies for preventing

such disclosures aim to limit reporting to aggregates consisting of some minimum number

of individuals, so that tabular summaries or microdata records cannot be attached to indi-

viduals or small groups of individuals. For example, cells in a table may be suppressed or

combined until a ®xed minimum number of cases is attained, or geographical detail may

be limited to units exceeding a certain size.

A nondisclosure policy for tabular data on microdata restricts release of information that could
be related to a speci®c individual. Pannekoek and de Waal (1998) describe a rule that
suppresses data release when the number of people in a cell de®ned by a rare characteristic
falls below a ®xed ¯oor, and show how empirical Bayes methods can be used to improve
the estimation of that number. We argue that the nondisclosure problem can be formulated
as a decision problem in which one loss is associated with the possibility of disclosure and
another with nonpublication of data. This analysis supports a decision on whether to disclose
information in each cell, minimizing the expected sum of the two losses. We present
arguments for several loss functions, considering both tabular and microdata releases, and
illustrate their application to simple simulated data.
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This strategy is further complicated when the data are obtained from a sample survey.

In that case, the number of population units represented by a particular cell may be

unknown; only an approximate estimate from the sample is available. Pannekoek and

de Waal (1998) address this problem where the disclosure rule is based on a minimum

required population count in each of a set of prede®ned classes of individuals with some

identifying set of characteristics. As they point out, the usual weighted estimate of the

population count may be highly variable for small domains, while the synthetic estimate,

obtained by multiplying the class proportion in a large area by the population of the

small area, is unresponsive to local variations in the prevalence of the class. They pro-

pose using an empirical Bayes estimation procedure that combines small-domain sample

estimates of prevalence of a class with rates estimated from a larger area, using relative

weights that depend on the precision of each of the sources of information (Ghosh and

Rao 1994).

Bayesian (or empirical Bayes) models for small-area estimation provide the posterior

distribution of the population count in each domain, of which any point estimate (usually

a posterior mean) is only a summary. Consequently, for each domain we can estimate the

risk associated with disclosure, de®ned as the expectation of the disclosure loss, averaged

with respect to our uncertainty about the actual population counts. The decision on

whether to publish data or not is then determined by whether the risk of publication

exceeds the loss for nonpublication.

In the remaining sections, we ®rst state this approach formally (Section 2) and propose

loss functions representing the risk of disclosure (Section 3). We next illustrate the calcu-

lations required to make nondisclosure decisions and show how to evaluate the sensitivity

of the decisions to the choice of loss function (Section 4). We conclude (Section 5) by

suggesting directions for future research.

2. Nondisclosure as a Decision Problem

Suppose that a population is partitioned into a set of domains (such as small geographical

areas or political units) and there is a class that cuts across the domains (such as people

with a particular occupation). We refer to the intersection of the domain and the class

as a cell. A sample is drawn from each domain, which for simplicity of exposition we

assume to be a simple random sample. The population in domain i consists of Ni units

of which Yi, the cell population size, are in the class of interest. The corresponding sample

contains ni units of which yi, the cell sample size, are in the target class, with

yi # min�ni;Yi�. Of these quantities, Ni and ni are ®xed in the design, yi is observed,

and Yi is unknown.

For each domain, a publication decision must be made for data from the target class.

Again for simplicity of exposition, we assume that the only alternatives are to publish

or suppress the data, although in practice there could be other options such as scrambling

or rounding the data or merging cells. With these options we associate losses

Ld�yi;Yi; ni;Ni�, where d � 1 for publication, d � 0 for suppression. (For brevity, we

omit some or all of the arguments of Ld when they are not required).

If L0 or L1 depends on the unobserved quantity Yi, then the loss associated with the

corresponding decision is unknown. If we regard the pairs (yi, Yi) as draws from a random
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population with a known distribution, we can calculate the posterior distribution P�Yijyi�

of Yi. Note that Yi ÿ yi is the number of units in the target class among the Ni ÿ ni non-

sample unit. The risk (expected loss) for decision d is then

Rdi � ELd�yi;Yi; ni;Ni�yi �
Xyi�Niÿni

Yi�yi

Ld�yi; Yi; ni;Ni�P�Yijyi�

(Of course, if Ld�yi;Yi; ni;Ni� does not depend on Yi, we can obtain Rdi without calculating

probabilities.) The optimal decision rule is then to publish if R0i > R1i, and to suppress

otherwise.

A convenient way to specify the prior distribution of �yi;Yi� is to suppose that the

population of domain i is drawn from a superpopulation in which the probability that a

unit is in the target class is vi, and that the vi for the various domains are drawn from

some prior distribution. Suppose that vi , Beta�a; b�; for simplicity we assume that a; b

do not depend on Ni or other covariates, although the modi®cation for covariates is not

dif®cult. The superpopulation sampling assumption implies that yi , Bin�ni; vi� and

Yi ÿ yi , �Ni ÿ ni; vi) are independent binomial draws corresponding to the sampled

and nonsampled parts of the population, respectively. We describe the inference under

the assumption tht (a;b) are known; in practice, they are estimated from the data but if

the number of domains used in estimation is large, the variability due to estimation of

(a; b) is of lower order than other sources of variability. The posterior parameter distribu-

tion is vijyi , Beta�a � yi;b � ni ÿ yi�. Integrating over this distribution, the predictive

distribution of �Yi ÿ yi�jyi is the beta-binomial (Polya Type I) distribution with density

P�t; a�;b�;N �
� �

N �

t

� �
G�a�

� b�
�G�t � a�

�G�N �
ÿ t � b�

�

G�a��G�b��G�a� � b� � N ��

where a�
� a � yi and b�

� b � ni ÿ yi are the parameters of the Beta prior,

N �
� Ni ÿ ni is the (nonsampled) population size, and t � Yi ÿ yi is the value of the

random variable. The distribution can be readily enumerated to calculate R0i, R1i. The pos-

terior expectations of both vi and �Yi ÿ yi�=�Ni ÿ ni� are �a � yi�=�a � b � ni�, so that

posterior expectation of Yi is yi � �Ni ÿ ni��a � yi�=�a � b � ni�.

In practice, there may be rough consensus on the relative losses for nonpublication of

different cells, and likewise for the relative losses for potential disclosure in different cells,

but not consensus on the relative importance of publication and nondisclosure. If L0 and L1

are known only up to a proportionality factor, we can still specify a set of decision rules

that minimize the risk at various values of that factor. These rules are of the form ``publish

if R1i=R0i < c.'' Equivalently, we can choose to publish a predetermined fraction of the

data by ordering cells by the ratio R1i=R0i and publishing from the top of the list until

the target is attained; this allows us to compare the cell publication decision under rules

based on different loss functions that are not comparable.

3. Loss Functions for Suppression and Disclosure

The cost L0 of suppression of a cell is that the public is deprived of potentially useful infor-

mation. We may regard loss as equal for each cell that is suppressed, or relate loss to some

measure of the size of the cell. The number of microdata records that are concealed is yi.
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We may also de®ne loss by the number of population units that they represent, Yi, or by

sample or population counts for the entire domain, ni or Ni.

The loss L1 represents the potential disclosure consequences of publication of a cell. In a

microdata release, or in a tabular release where cells are further cross-classi®ed with other

variables, we would be concerned about the possibility of identi®cation of an individual by

matching of characteristics in a microdata record or cross-classi®ed cell to publicly known

characteristics of some person. Beyond this, we may be concerned about release of data

(such as mean income) for a very small group even if individuals cannot be identi®ed

(Duncan and Lambert 1986). Even the perception that disclosure is possible may impose

some costs (Lambert 1993).

In either case, typically L1 would be decreasing in yi and/or Yi because reporting on a

small group presents a high risk of disclosure. A reasonable requirement is that L1 is con-

vex, i.e., that the reduction in loss of each additional unit in the cell is decreasing, meaning

that the protection against disclosure for each additional person is less when the cell is

already large.

If the identities of the sampled respondents are known to a person attempting to invade

privacy, then the risk of disclosure depends on yi, the number of those respondents in the

cell.

More commonly, as in Pannekoek and de Waal's approch, the identity of the sample is

con®dential and only the members of the population of the cell are publicly known. In this

case, the loss is decreasing in Yi, and may be reasonably assumed to be convex for the

reasons given above. For a microdata release, the loss is also approximately proportional

to yi because the risk of disclosure increases with the number of records that are potentially

reidenti®able.

To clarify the meaning of the loss function, consider the rule used in the Netherlands

and reported by Pannekoek and de Waal, ``publish if Yi > Ymin'' (for some constant

Ymin). This is a fairly good decision rule, especially if sample and population sizes do

not vary much across domains. On the other hand, ``L1 � 1 if Yi < ymin, L1 � 0 otherwise''

is not a very sensible loss function, because it implies that any Yi < Ymin poses an equal

danger of disclosure.

We may regard each class as divided into subclasses consisting of sets of individuals

who can be distinguished using published microdata ®elds or crosstabulation categories;

Greenberg and Zayatz (1992) refer to these as ``equivalence classes'' because individuals

in them are equivalent from the point of view of identi®ability. From this perspective, a

person's data are disclosed if the person is in the sample and the sole member of her sub-

class within the domain, i.e., if a ``sample unique'' is also a ``population unique'' (Samuels

1998). We can then quantify loss as the expected number of individuals who will be dis-

closed in this sense, which depends on yi, Yi and the distribution of the class across sub-

classes. A substantial literature estimates this quantity through probabilistic analyses; see

Chen and Keller-McNulty (1998) for a bibliography, and Samuels (1998), Fienberg and

Makov (1998), and Skinner and Holmes (1998) for current theoretical and empirical

investigations. We illustrate such analyses here by an argument along the lines of

Bethlehem, Keller, and Pannekoek (1990) or Skinner, Marsh, Openshaw, and Wymer

(1994), although this particular model has been found not to ®t well in empirical analyses.

Suppose that a class consists of S subclasses, and the fraction of the population in
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subclass s is ps, 0 < ps p 1. If a sample person is in subclass s, the probability that

there are no other people in subclass s in the cell is approximately (using a Poisson

approximation to the binomial) exp�ÿYips�. Unconditionally, the probability that a parti-

cular sample case is unique is Ssps exp�ÿYips�, so the expected number of uniques in the

sample is

L1 < yi

X
s

ps exp�ÿYips� �1�

If all the classes are of the same size, ps � 1=S, then

L1 < yi exp�ÿYi=S� �2�

If the class sizes vary and the ps have an approximate Gamma (a; b) distribution, then

Eps � a=b so Sa=b < 1. Evaluating (1) as an integral with respect to the distribution of ps,

we obtain L1 < yi=�1 � Yi=aS��a�1�. As a ! ¥, indicating an increasingly peaked distribu-

tion of subclass sizes, this approaches (2). These loss functions possess the properties of

monotonicity and convexity suggested above.

The characteristics of loss functions described above have implications for the deci-

sion analysis. By Jensen's inequality and the convexity of the loss function,

Ri � E L1�yi;Yi� > L1�yi;E Yi�, where the expectation is with respect to the posterior distri-

bution of Yi. In other words, plugging in the posterior expectation of Yi underestimates

loss. On the other hand, for a smooth loss function, the Taylor series approximation to

the risk is Ri < L1�yi;E Yi� � �L00
1�yi;E Yi�=2�Var Yi (where the derivative is with respect

to Yi). If Var Yi is approximately a function of E Yi, as in a nearly balanced design (i.e.,

one in which domain sizes and sampling rates do not vary much), then Ri is also approxi-

mately a function of E Yi. In that case any function of Yi, or just E Yi itself, gives

approximately the same ordering of loss by cell. On the other hand, we might expect to

®nd larger differences among publication decisions under different loss functions if the

loss functions have very different curvature and the design is very unbalanced so cells

with similar values of E Yi have substantially different values of Var Yi.

4. Illustrations

We ®rst illustrate the calculations described in Section 2 using a small example, assuming

the beta-binomial model described in that section. In our example, a � 1 and b � 10.

Domains are of two types by population and sample size. Type 1 with n1 � 3, N1 � 8,

and Type 2 with n2 � 5, N2 � 20, appearing in a 1:3 proportion. Disclosure loss is

L1�yi;Yi; ni;Ni� � yi exp�ÿYi=10�, corresponding to the expected number of disclosures

with 10 equally prevalent subclasses, and nonpublication loss is L0�yi; Yi; ni;Ni� � yi,

the number of sample cases that are suppressed.

Table 1 displays the calculation of R1�y� for Size 1 domains in this example. The poster-

ior probabilities P�Y jy� (based on the beta-binomial distribution of Y ÿ y) are multiplied

by loss L1 and the products are summed to calculate the risk for each y.

Table 2 displays all possible con®gurations of the observed quantities yi; ni;Yi;Ni. In the

®fth line of the table (just above the divider), for example, P�n;N � � :75 represents

the fraction of domains with n � 5, N � 20, P�y;N � � :018 is the (beta-binomial) prob-

ability that each of those domains has y � 3, R1 � 1:565 is obtained by a calculation
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like that in Table 1, and L0 � 3 is the loss for suppressing a cell with 3 sample cases. We

then calculate P´R1 � 0:75 ´ 0:018 ´ 1:565, the contribution to expected risk if we publish

domains with n � 5, N � 20, y � 3 and similarly P´L0 � 0:75 ´ 0:018, the contribution if

we do not publish.

The lines of the table are ordered by the ratio R1=L0, because we ®rst publish the cells

with the least disclosure risk per unit of information. Our optimum rules correspond to

publishing data for all con®gurations down to a certain line and suppressing data for con-

®gurations below that line. For example, the cumulative sum 0.026 is the expected dis-

closure risk per domain if we publish data for all domains corresponding to the ®rst

®ve lines and 0.357 is the expected nonpublication loss per domain for suppressing data

for the remaining domains.

Note that with these loss functions, R1=L0 � E exp�ÿYi=10�jyi, which by the argument

in the previous section is approximately a function of E Yijyi. In fact the ordering of
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Table 1. Calculations of risks R1�y� for n � 3, N � 8

y Y

0 1 2 3 4 5 6 7 8 R1�y�

0 P�Y jy� 0.722 0.212 0.053 0.011 0.002 0.000 0 0 0
L1�y;Y � 0 0 0 0 0 0 0 0 0
P´L1 0 0 0 0 0 0 0 0 0 0

1 P�Y jy� 0 0.510 0.319 0.127 0.036 0.007 0.001 0 0
L1�y;Y � 1 0.905 0.819 0.741 0.670 0.607 0.549 0.497 0.407
P´L1 0 0.461 0.261 0.094 0.024 0.004 0 0 0 0.846

2 P�Y jy� 0 0 0.350 0.350 0.200 0.077 0.019 0.002 0
L1�y;Y ) 2 1.810 1.637 1.482 1.341 1.213 1.098 0.993 0.899
P´L1 0 0 0.574 0.519 0.269 0.093 0.021 0.002 0 1.479

3 P�Y jy� 0 0 0 0.234 0.334 0.257 0.128 0.041 0.007
L1�y;Y � 3 2.715 2.456 2.222 2.011 1.820 1.646 1.490 1.348
P´L1 0 0 0 0.519 0.671 0.467 0.211 0.061 0.009 1.939

Table 2. Calculation of optimal publication ordering and of disclosure risk and nonpublication loss at each

cutoff

n N y P�n;N � P�yjn;N � R1 L0 R1=L0 P´R1 P´L0

P
pub

P R1

P
pub

P L0

3 8 0 0.25 0.769 0.000 0 ± 0.000 0.000 0.000 0.409
5 20 0 0.75 0.667 0.000 0 ± 0.000 0.000 0.000 0.409
5 20 5 0.75 0.0003 1.783 5 0.357 0.0004 0.001 0.0004 0.408
5 20 4 0.75 0.003 1.726 4 0.432 0.004 0.010 0.005 0.398
5 20 3 0.75 0.018 1.565 3 0.522 0.022 0.041 0.026 0.357

5 20 2 0.75 0.073 1.261 2 0.630 0.069 0.110 0.096 0.247
3 8 3 0.25 0.003 1.939 3 0.646 0.002 0.003 0.097 0.244
3 8 2 0.25 0.035 1.479 2 0.739 0.013 0.017 0.110 0.227
5 20 1 0.75 0.238 0.761 1 0.761 0.136 0.179 0.246 0.048
3 8 1 0.25 0.192 0.846 1 0.846 0.041 0.048 0.287 0.000



con®gurations for suppression based on exp�ÿ�E Yijyi�=10� is identical to that obtained

using R1=L0. Hence Pannekoek and de Waal's procedure works well in this situation, as

might be expected from the argument at the end of Section 3.

Our second example is designed to illustrate sensitivity of publication decisions to the

choice of loss function. We assume that domains fall into one of three equally-common

size categories, with sample sizes n � 10, 10, 20 and populations N � 50, 200, 30, and

that a � 1=2 and b � 3=2. As before, we de®ned L1 � yi exp�ÿYi=10� and L0 � yi. The

tradeoff of disclosure risk and nonpublication bias under the optimum disclosure rules

is represented by the solid curve in Figure 1, the lowest that can be attained with any

non-disclosure rule based on y, n, and N. This line corresponds to the plot of the next

to last column of Table 2 (recalculated for the new parameter values) on the vertical

axis, against the last column on the horizontal axis (both normalized to run from 0 to

1). The optimal rule substantially improves on random suppression of domains, repre-

sented by the straight dashed line. For example, with the optimal rule, we can cut dis-

closure risk to 20% of its value under full publication, while suppressing publication of

only 38% of the data.

To check the sensitivity of the decision rule to the choice of loss function, we considered

several alternative pairs of loss functions, each of which generates a corresponding deci-

sion rule. We evaluate each of the alternative decision rules in terms of the original loss

functions. The alternatives are represented by the various dashed curves in Figure 1. In
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Fig. 1. Disclosure risk plotted against nonpublication loss (both relative to largest possible values) for scenario

described in text. The loss functions de®ning the axes are L0�yi; Yi� � yi and L1� yi; Yi� � yi exp �ÿYi=10�.



the ®rst alternative, L1 remains the same but L0 � 1, i.e., suppression of any cell engenders

the same nonpublication loss. In the second, Lo � y but L1 � ÿ exp�y=10�, i.e., decisions

are taken using a rule appropriate to disclosed respondents when actually the respondents'

identities are concealed. In the third, L1 � y exp�ÿY �, which is similar in form to the

``correct'' L1 but assumes the wrong number of subclasses.

In this (admittedly arti®cial) example, use of the ``wrong'' L0 or L1 can lead to sub-

stantially suboptimal nonpublication decisions. For example, to reduce disclosure risk

to 20% of its maximum value, the optimum rule requires suppression of 38% of the

data, but the corresponding percentages for the three alternative scenarios are 53%,

71%, and 44%. This illustrates that in some scenarios, serious analysis of potential dis-

closure (along the lines of the research referenced above) and elicitation of preferences

is necessary to gain the full bene®ts of the decision framework.

5. Conclusion

Like any broad conceptual framework, the application of decision analysis to the non-

disclosure problem is the beginning rather than the end of a research program. Among

the research tasks involved in making concrete our general proposals are: (1) de®ning

the classes, domains, and identi®able subclasses for data sets of interest; (2) specifying

numerical values L1; (3) eliciting consensus values for data availability and nondisclosure,

re¯ected in relative magnitudes assigned to L0 and L1; (4) more realistically describing

decision alternatives for nondisclosure, such as combining cells or suppressing some

data ®elds; and (5) ®tting the required small-area models, as in Pannekoek and de Waal

(1998). Nonetheless, a uni®ed conceptual framework is the ®rst step toward developing

the tools required to design sound policies.
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