
Journal of Of®cial Statistics, Vol. 15, No. 4, 1999, pp. 477±494

Bayesian Estimation of the Number of
Unseen Studies in a Meta-Analysis

Lynn E. Eberly1 and George Casella2

1. Introduction

Meta-analysis, a method of combining results from different experiments testing the same

hypothesis, has gained wide recognition in both the statistical and the scienti®c worlds in

the past twenty years. As stated by the United States National Research Council,

``Combining information from disparate sources is a fundamental activity in both scienti®c

research and policy decision making'' (1992, p. 5). For example, the United States National

Institute of Health has a Consensus Development Program which produces consensus state-

ments on important topics in medicine. The use of meta-analysis is integrated into the
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consensus development process. Recent statements have focused on breast cancer screening,

acupuncture, management of Hepatitis C, and many others (http://odp.od.nih.gov/consensus).

The goal of the meta-analysis may be to test a combined effect estimate, meaning atten-

tion must be paid to the validity and reliability of that estimate. The most common method

of ®nding experimental results to include in a meta-analysis is through literature searches

in relevant journals and dissertation abstracts. However, journals can be unrepresentative

for a number of reasons. Often studies with statistically nonsigni®cant results are under-

represented in the literature. For example, a scientist may not submit the results of a

study that does not show some statistically signi®cant result, or a journal editor may not

accept those results, either one feeling that a result of ``no difference'' would be of little

importance to the scienti®c community. Thus, any sample of studies from the published

literature is typically nonrandom. When a meta-analysis of these studies is then done,

an overall effect estimate could be biased towards a higher level of signi®cance (Hedges

1992). According to Bayarri and DeGroot (1986), selection bias is the distortion in

an effect estimate resulting when a nonrandom sample is drawn from the population of

interest. This article focuses on publication bias in particular, the selection bias resulting

when studies statistically signi®cant at some level a are more likely to be published than

nonsigni®cant studies.

Easterbrook, Berlin, Gopalan, and Matthews (1991) carried out a retrospective study of

285 analyzed research projects which had been approved by the Central Oxford Research

Ethics Committee between 1984 and 1987 in order to show that publication bias does in

fact exist in the medical literature. Using logistic regression and adjusting for relevant

covariates, they found that projects with statistically signi®cant results (de®ned to have

a p-value < 0.05) were more likely to have been published and/or presented than those

with nonsigni®cant results (odds ratio� 3.56, 95% C.I.� (1.82; 6.99)). In addition, they

noted that 43 of the 78 unpublished projects had obtained null results. Only eight of those

43 were written up and subsequently rejected, while 26 were never written up because

they showed null results. Dickersin, Min, and Meinert (1992) carried out a similar study

using research projects that appeared on the institutional review board logs for the Johns

Hopkins Health Institutions. Using logistic regression and adjusting for covariates, they

found similar results, including the conclusion that the problem lies with authors, not

editors.

A variety of methods for dealing with publication bias have been proposed. Rosenthal

(1979) began with the fail-safe number, which calculates the number of unseen studies

averaging null results needed to bring a meta-analytic result to some pre-speci®ed level

of signi®cance. White (1982) and Glass, McGaw, and Smith (1981) suggest obtaining

results for studies which were not published (through surveys of colleagues, for example,

or national registries of studies) and comparing those results to the published results. Light

and Pillemer (1984) describe a method to detect publication bias using a ``funnel graph''

of sample size versus effect estimate. In the presence of publication bias, and assuming

effect size is unrelated to sample size, the graph should be missing the lower left-hand

corner of the pyramid. Berlin, Begg, and Louis (1989) introduce a method to quantify

the information in a funnel graph by using a model relating bias to sample size

under the same assumption. Results indicated that small trials are more prone to publi-

cation bias and that the bias may be substantial, especially when the trial was based on
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a nonrandomized design. A more recent extension of the funnel graph idea (in Begg and

Mazumdar 1994) suggests calculating and then testing a rank correlation between effect

estimates and their variances. A positive correlation would indicate that negative studies

are less likely to be published.

The funnel graph and correlation approaches have the advantage of being based on

assumptions which are distribution-free. Hedges (1984) meanwhile pursued truncated

sampling models, where it was assumed that statistically nonsigni®cant results (at

a-level� 0.05) do not get published. He found that the bias can depend on a study's

sample size and effect size, and can be substantial for either small samples or small effects.

Bayarri and DeGroot (1986, 1991) explore the behavior of published results using an

indicator function of statistical signi®cance to weight the model's likelihood, and show

that signi®cant overall results obtained from published data actually can be strongly

supportive of the null hypothesis. Iyengar and Greenhouse (1988) modify Bayarri and

DeGroot's method slightly by not restricting the selection to this ``publish if and only if

signi®cant'' situation. They incorporate a family of weight functions into the model's

likelihood, using the conditional probability of reporting a study given the data as the

weight, where this probability varies across studies. Hedges (1992) and Dear and Begg

(1992) take the same approach, but modify these weight functions slightly, while Cleary

(1996) computes estimates of the parameter of interest as a function of the selection

parameter. Frongillo (1991) and Silliman (1997) take a Bayesian approach and use two-

stage hierarchical models to model variability both within and between studies. Gleser

and Olkin (1996) revisit Rosenthal's attempts to explore the number of unpublished

studies and introduce several frequentist methods for interval estimates thereof. As the

authors point out, these methods take advantage of the fact that under the null hypothesis

of interest, p-values from experiments testing this H0 have a common known distribu-

tion which is independent of each experiment's design, sample size, and concomitant

variables.

Historically, then, there have been three general methods of dealing with publication

bias: truncated sampling models, invariant sampling, and source augmentation. Truncated

sampling models assume that no nonsigni®cant studies are published, and then, usually

through simulations, determine the bias in the effect estimate that comes about due to

the publication process. Recently this has been extended to include less strict selection

processes. Invariant sampling methods limit the meta-analysis to that subset of studies

which come from a sampling frame independent of the publication process (e.g., registries

of studies); extensive registries of studies, though, do not as yet exist in most ®elds of

research. Source augmentation speculates on the number of missing (unpublished) studies

and may then adjust effect estimates accordingly (Begg and Berlin 1988). Of the three

methods, truncated sampling and invariant sampling often assume that the researcher

has access to each study's effect estimates and perhaps sample variances. Reality forces

us to acknowledge, though, that often we cannot acquire the original data from a study,

sometimes not even the effect size estimates. Especially with older studies, it is likely

that only p-values or test statistics such as t-values can be gleaned from the publication

itself; this renders the use of many of the above methods impossible. On the contrary,

the source augmentation methods that have been developed so far (as well as the one

we will explore) do not require more than p- or t-values. In spite of this advantage, we

479Eberly, Casella: Bayesian Estimation of the Number of Unseen Studies in a Meta-Analysis



believe source augmentation should, whenever possible, be carried out in addition to

effect size estimation. Both are important aspects of a meta-analysis.

In this article, we use a hierarchical Bayesian structure to model the distribution of the

total number of studies carried out, both seen and unseen, dependent on the probability of

publication. This method still necessitates estimating a selection probability, but the

distribution can then be calculated for a range of probability values, leading at least to a

somewhat more detailed picture.

Section 2 of this article covers the derivation of the model and the assumptions asso-

ciated with it, including the sampling methods used. Section 3 explains the results from

simulations based on the model. Section 4 presents an application of the results to a

meta-analysis on studies of lead exposure and IQ levels in children, and makes compari-

sons to Rosenthal's and Gleser and Olkin's source augmentation methods. Section 5

presents our conclusions regarding the uses and limitations of this theory, and directions

for further research.

2. The Approach

2.1. The model

Throughout this article, we assume that some of the assumptions necessary to conduct a

meta-analysis hold: (i) each of the observed studies tests the same hypothesis; (ii) the

observed studies are independent. The following is a usual assumption of meta-analysis

that we presume does not hold: (iii) the observed studies are a random sample from the

population of all studies that have been carried out on this hypothesis. Most researchers

agree that some form of selection bias, particularly publication bias, is present in any ®eld,

which invalidates assumption (iii). The probability of publication, call it Q, quite likely

varies widely from ®eld to ®eld, from journal to journal, and maybe even from year to

year. We will impose a prior Beta distribution on Q in order to account for this variability:

pQ�qja; b� � qaÿ1
�1 ÿ q�bÿ1=B�a; b� 0 # q # 1; a; b > 0

where B�a; b� � G�a�G�b�=G�a � b� and G�x� �
� ¥

0 t xÿ1 expÿt dt. (Throughout this article,

we will use the symbol p to denote probability mass or density functions.) The Beta

distribution is very ¯exible, and by its parameters can vary from a bathtub shape through

a uniform to a bell-shaped distribution. Assuming publication bias is present, Q must be

dependent on the probability of achieving a statistically signi®cant result, call it R. By

the laws of probability, we can write:

Q � P �publicationjsignificant�P �significant�

� P �publicationjnonsignificant�P �nonsignificant�

� R � r �1 ÿ R� �1�

This structure dictates that all signi®cant studies are published, and that some proportion

0 # r # 1 of the nonsigni®cant studies are published. r is a selection parameter; we will

treat it as a known value.

When conducting a meta-analysis, one reviews the available literature and ®nds all pub-

lished studies that test the hypothesis of interest. If k such studies are found, there are still
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an unknown number, call it N ÿ k, of studies that have actually been done, but were not

published. We can thus model N using a Negative Binomial distribution: how many

studies does it take until we see k successes with success probability Q � q?

pN�njq; k� �
n ÿ 1

k ÿ 1

� �
qk
�1 ÿ q�nÿk n � k; k � 1;¼; 0 # q # 1: �2�

The distribution of N that we have here is conditional on an unknown value, namely q.

What we are ultimately interested in is that marginal distribution of N which is no longer

dependent on the value of q.

It is easy to ®nd this marginal through the calculation pN�njk� �
�

pN�njq; k�pQ�q�dq,

but the only observed data that this incorporates is the number of published studies, k.

We are ignoring important information relevant to publication bias if we do not take into

account the number of signi®cant published studies and the structure of Equation 1. As

we shall see in Section 2.2, incorporating this information makes it much less straight-

forward to ®nd pN�njk�. We will obtain pN�njk� through a Gibbs sampling procedure (as

will be explained in Section 2.3), but this procedure requires our model's full conditional

speci®cation (FCS):

pN�njq; v; data� and pQ�qjn; v; data� �3�

These are the conditional distributions of each unknown parameter of interest, where v

denotes the nuisance parameters ( r; a; b) and ``data'' denotes the number of observed

studies and the number of those which show signi®cant results at level a.

2.2. Derivation of the full conditional speci®cation

We begin with the more complicated piece of the FCS, the conditional distribution of Q

given N � n. Using pN�njq; k�, pQ�qja; b�, and Bayes's rule, we can show that:

pQ�qjn; k; a; b� � qk�aÿ1
�1 ÿ q�nÿk�bÿ1=B�k � a; n ÿ k � b�

We still need to incorporate the observed number of signi®cant studies. Consider the

formulation of Q given in Equation 1. Given R � r and a pre-speci®ed level of signi®-

cance a, any study will be signi®cant with probability r and nonsigni®cant with

probability 1 ÿ r. Note that r � a only when H0 is truly correct; otherwise r > a.

Assuming studies are independent (which is not too unreasonable), every study done

is the realization of a Bernoulli(r) random variable. (Since larger studies will have

more power, and hence are actually more likely to achieve statistical signi®cance, we

need to assume that the studies are of approximately the same size; then r will be constant

across studies. This issue will be discussed more in Section 5.) The k observed studies

in particular are thus k independent Bernoulli trials, of which a certain number will be

``successes,'' where a success means statistical signi®cance. This leads us to a

Binomial(k; r) random variable, call it Z, which counts the number of signi®cant studies

within the observed studies:

pZ�zjk; r� �
k

z

� �
r z
�1 ÿ r� kÿz z � 0; 1;¼; k; 0 # r # 1

The usual estimate of a Binomial probability is Ãr � z=k, the maximum likelihood estimator.
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We can then get estimates of Q using Equation 1: ÃQ � Ãr � r�1 ÿ Ãr� � �1 ÿ r�z=k � r. We

can now calculate the distribution of ÃQ, dependent on the values of q, k, r, and r:

p ÃQ�Ãqjq; k; r; r� � P��1 ÿ r�Z=k � r � Ãqjk; r; r�

� P Z �
k�Ãq ÿ r�

1 ÿ r

����k; r; r� �
�

k
k�Ãqÿr�

1ÿr

� �
r

k�Ãqÿr�
1ÿr �1 ÿ r�kÿ

k�Ãqÿr�
1ÿr

where r # Ãq # 1 and 0 # r # 1. Although it is not explicitly part of the equation, this

density is dependent on q, through r and r by Equation 1. Note also that the introduction

of the dependence on r leads the range of Ãq to be bounded below by r.

Now that we have derived the distribution of the observed data Ãq, we should incorporate

that information into our full conditional speci®cation (Equation 3). Again using probability

calculus:

pQ�qjn; k; r; a; b; Ãq� �
�q ÿ r�z�1 ÿ q�n�bÿzÿ1

�q�k�aÿ1�1
r

�q ÿ r�z�1 ÿ q�n�bÿzÿ1
�q�k�aÿ1dq

r # q # 1 �4�

We now have pQ�qjn; v; data� and pN�njq; k�. It appears as if the conditional distribution

that we have for N is not the distribution needed for the full conditional speci®cation, but

note that given a value for q, the values of r, a, b, and Ãq are irrelevant. In other words, we

assume that N is conditionally independent of these values. Thus, pN�njq; v; data� �

pN�njq; k� and we are ready to implement the Gibbs sampler. To simplify notation, and

since they are assumed known, we will suppress the dependence on r, a, and b from

now on.

2.3 Sampling techniques

The Gibbs sampler is an iterative Markov chain Monte Carlo simulation technique intro-

duced by Geman and Geman (1984) and further developed by Tanner and Wong (1987)

and Gelfand and Smith (1990). A gentle introduction can be found in Casella and George

(1992). Very generally speaking, the purpose of the Gibbs sampler is to replace a dif®cult

calculation (here, of pN�njk�� with a sequence of easier calculations (using pN�njq; k�).

The algorithm alternately generates values from our two distributions in Equation 3 as

follows:

�0: � Choose an arbitrary starting value qo [ �0; 1�:

�1: � For i � 1;¼; t; generate : ni from pN�njqiÿ1; k�

qi from pQ�qjni; k; Ãq�

Under regularity conditions described in Geman and Geman (1984) and Tanner and

Wong (1987), among many others, the values of ni and the values of qi over the iterations

form two Markov chains, n1; n2;¼; nt and q1; q2;¼; qt. We then also have the following
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asymptotic results:

nt !D N , pN�njk� as t ! ¥ �5�

qt !D Q , pQ�qjk; Ãq� as t ! ¥

independent of the starting value q0. Recall that our goal is to examine the distribution of

N, the total number of studies carried out. This asymptotic result tells us that by generating

a large enough sample nt�1; nt�2;¼; we can determine any characteristic of pN�njk� to any

degree of precision.

Before we can proceed with this algorithm, however, notice that we cannot directly

generate qi values from the conditional distribution of Q in Equation 4. Due to the integral

in the denominator, we also cannot ®nd a good, well-behaving approximate distribution

that has a calculable (®nite) maximum in order to use rejection sampling. We will use

the Metropolis method (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953),

which generates a value for Q from a ``candidate'' distribution, and accepts that value

if it is ``close enough'' that it could have come from the target in Equation 4. We begin

with the following candidate distribution:

pW�wjn; k; Ãq� � w z�,
�1 ÿ w�n�bÿzÿ1=B�z � , � 1; n � b ÿ z� 0 # w # 1

which matches the power of the 1 ÿ w term with the 1 ÿ q term in Equation 4. This is a

Beta distribution, from which it will be easy to generate samples. The value of , is arbi-

trary, and can be ®ne-tuned (for various values of a and b, for example) in order to even

more closely approach the target distribution of Q. To correctly simulate Q over its range

from r to 1, though, we must transform with F � �1 ÿ r�W � r, which has the desired

range and the following probability density function:

pF�fjn; k; Ãq� �
1

1 ÿ r

� �n�b�,

�f ÿ r�z�,
�1 ÿ f�n�bÿzÿ1=B�z � , � 1; n � b ÿ z� �6�

As dictated by the Metropolis algorithm, we will generate a qi from the desired distribu-

tion in Equation 4 by applying a decision rule as follows: given a random ui , Uniform�0; 1�

and a random f obtained as f � �1 ÿ r�w�r from a random w , Beta�z � ,� 1; n � b ÿ z�:

if ui # min 1;
h �f�

h�qiÿ1�

g�
�qiÿ1�

g�
�f�

� �
then qi � f

if ui > min 1;
h �f�

h �qiÿ1�

q�
�qiÿ1�

g�
�f�

� �
then qi � qiÿ1

In our model,

h�q� � �q ÿ r�z�1 ÿ q�n�bÿzÿ1
�q�k�aÿ1

g�
�q� �

1

1 ÿ r

� �n�b�,

�q ÿ r�z�,
�1 ÿ q�n�bÿzÿ1=B�z � , � 1; n � b ÿ z�

from Equations 4 and 6 respectively. Simplifying, we have:

if ui # min 1;
f

qiÿ1

� �k�aÿ1 qiÿ1 ÿ r

f ÿ r

� �,
( )

then qi � f �7�
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Otherwise, the Metropolis sequence does not move and qi � qiÿ1. As i ! ¥, then the

distribution of qi converges to the desired target distribution. (See Metropolis, et al.

(1953) for more details.)

The Gibbs technique is most easily applied here simultaneously with Metropolis sam-

pling as an iterative algorithm. First, generate q0; subsequently, alternate between gener-

ating from the conditional distribution of N (Equation 2) and from the candidate

conditional distribution of Q (Equation 6). More precisely,

�0: � Generate q0 , Uniform�0; 1�

�1: � Generate : ni from pN�njqiÿ1; k�

q�
i � f from pF�fjni; k; Ãq�

�2: �Test q�
i using the Metropolis criterion specified in Equation 7. Denote an

``acceptable'' value of q�
i by qi; otherwise; let qi � qiÿ1

�3: � Return to �1: � for i � 1; 2;¼; t:

This combined algorithm also produces two Markov chains, n1; n2;¼; nt and

q1; q2;¼; qt, each of which converges in distribution to the desired marginal, as in Equa-

tion 5. The issue of how to assess when this convergence happens is still a contentious one

among Bayesians. Tanner (1993), Robert (1995), and Cowles and Carlin (1996), among

others, summarize several methods to help determine when the Markov chains have

reached their equilibrium distributions.

3. Results

3.1. Simulation description

Before applying this theory to a data set, we should assess the behavior of the proposed

algorithm. In particular, we want to check the variability of the generated samples as

the values for k, q, and Ãq vary. The algorithm described in Section 2.3 is run with the num-

ber of published studies k set ®rst at 5 and then at 20, in order to see the effect of a small

versus a large meta-analysis situation.

The prior parameters on Q (a and b) are each taken to be 5, since this gives the Beta

distribution a symmetric bell-shape with somewhat thick tails. A variety of values for ÃQ

and r are chosen; values of ÃQ are taken to be 1/10, 1/2, and 9/10 to cover as wide a range

as possible. All valid values for r are used when k � 5; when k � 20, simulations are run

for only 11 of the possible 33 values for r, approximately evenly spaced; see Table 1.

Recall that ÃQ is constrained by ÃQ � �1 ÿ r�z =k � r, where k is given and z must be an inte-

ger. The parameter , is (somewhat arbitrarily) set at k � a ÿ 1. The power of the q term

then equals the power of the q ÿ r term in the Metropolis criterion (see Equation 7). As

mentioned earlier, this value could easily be adjusted up or down in order to get a higher

Metropolis acceptance rate.

We use the GAUSS System (Version 3.01) to produce 10,000 generated numbers of

each of N and Q in total, using 10 independent cycles of 1,000 generations each. At the

end of the ith cycle of 1,000 generations, i � 1; 2;¼; 10, several summary values based
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on the conditional Negative Binomial distribution of N are recorded:

· A sample expected value of N: ÃE
q
i �N� � 1

1;000

P 1;000
j� 1

k
q ij

· A sample variance of N: dVar
q
i �N� � 1

999

P1;000
j� 1

k
q ij

ÿ ÃE
q
i �N�

� �2

· An empirical distribution of N: P
q
i �N � n� � 1

1;000

P1;000
j� 1

n ÿ 1

k ÿ 1

� �
qk

ij�1 ÿ qij�
nÿk for

a range of values of n

The superscript q indicates that the value was obtained by averaging across the corre-

sponding conditional values given the qij's. These are often called ``Rao-Blackwellized''

estimators, and for variance reasons are better than the usual estimators Åni: �
1

1;000

P
j nij,

etc. (see Robert 1990, p. 348). In addition, at the end of the 10 cycles, the following are

calculated:

· An overall sample expected value of N: ÃE q
�N� � 1

10;000

P10
j� 1

P1;000
i� 1

k
q ij

· An overall sample variance: dVar q
�N� � 1

9

P 10
i� 1

ÃE
q
i �N� ÿ ÃE q

�N��
2

ÿ
The empirical distributions (frequency histograms) of N are ®rst visually compared across

the ten independent cycles to note their stability within each set of parameter values. The

graphs are then visually compared across parameter values to note any variability and/or

trends.

3.2. Simulation results

Two aspects of the results are under consideration here: (i) behavior of the sample

expected values and standard errors; (ii) behavior of the empirical distributions of N.

Tables 2 and 3 show the sample expected values and standard errors for the combinations

of ÃQ and r when k � 5 and when k � 20. Within a value for ÃQ, we can see that the spread

of the distribution, as measured by the standard errors, generally increases as r decreases.

The trend is more consistent for ÃQ � 1=2 than for ÃQ � 9=10 in both tables. Intuitively, this
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Table 1. Parameter values by simulation

k � 5 k � 20

Simulation ÃQ r r � z =k Simulation ÃQ r r � z =k

1 0.9 0.900 0.0 10 0.9 0.900 0.00
2 0.875 0.2 11 0.867 0.25
3 0.833 0.4 12 0.800 0.50
4 0.750 0.6 13 0.600 0.75
5 0.500 0.8 14 0.000 0.90

6 0.5 0.500 0.0 15 0.5 0.500 0.00
7 0.375 0.2 16 0.333 0.25
8 0.167 0.4 17 0.000 0.50

9 0.1 0.100 0.0 18 0.1 0.100 0.00
19 0.053 0.05
20 0.000 0.10



trend is expected, since a smaller value for r indicates that fewer nonsigni®cant studies are

being published. This leads to greater uncertainty in how many unseen studies may have

been done, which leads to a distribution on the total number of studies with a larger variance.

The distribution on N is not bounded above, but is bounded below, so larger and larger

values of N will have larger probabilities of occurring. The expected values will conse-

quently show an increasing trend as well, as is true within every value of ÃQ but one (Simu-

lations #18±20). (One erratic iteration of the ten in Simulation #19 enabled much larger

values of N to occur.) The trend of increasing standard errors is more consistent within

Table 2 than within Table 3. The increase in k, or the values used for r, may have led

to greater instability in the Metropolis algorithm, perhaps resulting in slower convergence.

When k � 5, the empirical distributions of N are very stable across the ten cycles within

each of the sets of parameter values. (These graphs are not all included here but can be

found in Eberly 1994.) Across the values for r, but within a value of ÃQ, the graphs gradu-

ally become wider and ¯atter as r decreases, as expected (see Figure 1 for an example).

The change is gradual and gives the impression that the estimation is not extremely sen-

sitive to the choice of r here. We can see here graphically the numerical trends evident in

Table 2: the expected value of N increases slightly as r decreases, and the variance of the

distribution increases slightly as r decreases. When k � 20, however, the stability decreases

somewhat. Within a set of parameter values, the variability across the ten iterations is
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Table 2. Expected values and standard errors when k � 5

Simulation ÃQ r ÃE q
�N� �cSE q

�N��

1 0.9 0.900 5.43 (0.04)
2 0.875 5.49 (0.04)
3 0.833 5.60 (0.04)
4 0.750 5.85 (0.08)
5 0.500 6.64 (0.13)

6 0.5 0.500 8.17 (0.26)
7 0.375 9.04 (0.39)
8 0.167 10.73 (1.47)

9 0.1 0.100 16.72 (3.00)

Table 3. Expected values and standard errors when k � 20

Simulation ÃQ r ÃE q
�N� �cSE q

�N��

10 0.9 0.900 21.50 (0.06)
11 0.867 21.73 (0.06)
12 0.800 22.18 (0.20)
13 0.600 23.24 (0.55)
14 0.000 26.45 (0.19)

15 0.5 0.500 32.08 (0.65)
16 0.333 37.41 (1.60)
17 0.000 41.35 (0.70)

18 0.1 0.100 85.42 (4.82)
19 0.053 103.00 (19.67)
20 0.000 96.88 (2.78)



occasionally large. (These graphs are also not included.) Across these eleven sets, we see the

same trends as when k � 5, but the changes in width and height are more dramatic, especially

in Simulations #10±17 (see Figure 1 for an example). Within the simulations for ÃQ � 1=10

(#18±20), however, the changes in the graphs across the values for r are very minor.

Most likely this is a result of the very narrow range of values for r that are possible

(0.0±0.1) for these k and ÃQ values. Outside of the context of a particular meta-analysis, it

is dif®cult to make more speci®c conclusions. See Eberly (1994) for more details, and

the next section for an example.

4. Application: Lead Exposure and IQ in Children

Needleman and Gatsonis (1990) detail two meta-analyses of studies relating childhood
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Fig. 1. Simulated distributions of N



lead exposure to IQ level. The studies were chosen from the population of all studies on

lead exposure and children's neurobehavioral development published since 1972, as found

in MEDLINE, meeting programs, and dissertations. Each published study is required by

the authors to contain the following in order to be included in a meta-analysis: (i) use

of a multiple regression analysis; (ii) a continuous IQ level as the response variable;

(iii) lead as a main effect in the regression; (iv) control for non lead covariates in the

regression. Twelve studies satis®ed these criteria, of which seven measured blood lead

and ®ve measured tooth lead. Studies for which all needed information is available give

the data found in Table 4 (taken directly from Needleman and Gatsonis 1990, Table 5).

It must be noted that neither IQ levels nor lead levels were necessarily measured in the

same way across all studies or even within the blood or tooth lead groups.

We assume a one-sided null hypothesis of a positive effect of lead on IQ, i.e.,

H0 : blead $ 0, where blead denotes the regression coef®cient. First, we carry out a simple

meta-analysis (based on Rosenthal 1978) to obtain an overall Z-value and p-value for the

hypothesis of interest:

Z Blood
overall �

Pk
i� 1 Zi���

k
p �

ÿ3:86 ÿ 1:67 � ¼ ÿ 1:8���
7

p � ÿ5:35

which gives a one-sided p-value of essentially zero. Likewise,

Z Tooth
overall �

Pk
i� 1 Zi���

k
p �

ÿ3 ÿ 2:23 � ¼ ÿ 1:17���
5

p � ÿ3:42

giving a one-sided p-value of 0.0003. We have to take the original t-values as approximate

Z-values here; the sample sizes are large enough that this seems reasonable. Alternatively,

we could use the approaches of Fisher or of Mosteller and Bush, as described by Needleman
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Table 4. Lead coef®cients for full-scale IQ scores

Study Regression Standard t-value Sample One-sided
coef®cient error size p-value

Blood Lead Studies
Hatzakis, et al. ÿ0.27 0.07a

ÿ3.86a 509 0.0001
Hawk et al. ÿ0.25 0.15 ÿ1.67 75 0.05
Schroeder, et al. ÿ0.2 0.07a

ÿ2.78 104 0.003
Fulton, et al.b ÿ3.7 1.37 ÿ2.77 501 0.003
Yule, et al.b ÿ8.08 4.63 ÿ1.75 129 0.04
Lansdown, et al.b 2.15 4.48a 0.48 86 0.68
Emhart, et al. NAc NA ÿ1.8a 80 0.04

Tooth Lead Studies
Needleman, et al. ÿ0.21 0.07 ÿ3 218 0.001
Hansen, et al. ÿ4.27 1.91 ÿ2.23d 156 0.01
Winneke, et al. ÿ0.13 4.66 ÿ0.03d 115 0.49
Pocock, et al.b ÿ0.77 0.63 ÿ1.22 388 0.11
Fergusson, et al.b ÿ1.46 1.25 ÿ1.17 724 0.12

aEstimated from data in article.
bUsed log transformation.
cNot available.
dObtained from the author.



and Gatsonis (1990); those approaches yield similar results and will not be reproduced

here.

Our p-values are strong indications that the null hypothesis is false, assuming our sam-

ple is representative. We run simulations as described in Section 3 in order to make an

assessment of the reliability of our results. From the last column in Table 4, six of the

seven observed blood lead studies and two of the ®ve tooth lead studies give signi®cant

results at a � 0:05. Hence, the Gibbs sampler will be run ®rst with k � 7 and Ãr � 6=7,

and second with k � 5 and Ãr � 2=5. The program is run to produce 5,000 generated num-

bers of each of N and Q in total. By Equation 1, then, we can choose several values for r

and calculate the corresponding values for Ãq. In order to capture any trend as the value of r

changes, we will take r � 1=10, 1/2, and 9/10. The simulations are run for three sets of

prior parameters for Q: a � b � 5 (a bell-shaped density for Q), a � 4 and b � 2 (a

skewed density with mean equal to 2/3), and a � b � 1 (a uniform density). The value

for , is adjusted (up or down, as necessary) from its initial setting at k � a ÿ 1 to ensure

that the Metropolis sampling accepts at least 75% of the generated candidate values.

At the end of the 5,000 cycles, the following are calculated: ÃE q
�N�, dVar q

�N�, and

a 95% credible interval for N. A Bayesian 1 ÿ g credible interval (N,;Nu) is

calculated from
� Nu

N,
pN�njk�dn � 1 ÿ g. The interval has the intuitive interpretation
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Table 5. Expected values, standard errors, and credible intervals for N

Simulation r Ãq ÃE q
�N� �cSE q

�N�� C.I.

Blood Lead Studies: k � 7 and Ãr � 6=7
a � 5, b � 5

1 0.1 0.87 10.86 (2.05 (7,19)
2 0.5 0.93 8.99 (0.79) (7,13)
3 0.9 0.99 7.31 (0.11) (7,9)

a � 4, b � 2
1 0.1 0.87 9.17 (1.57) (7,16)
2 0.5 0.93 8.14 (0.65) (7,12)
3 0.9 0.99 7.15 (0.09) (7,8)

a � 1, b � 1
1 0.1 0.87 9.17 (1.84) (7,16)
2 0.5 0.93 8.01 (0.70) (7,12)
3 0.9 0.99 7.09 (0.08) (7,8)

Tooth Lead Studies: k � 5 and Ãr � 2=5
a � 5, b � 5

4 0.1 0.46 11.03 (3.04) (5,24)
5 0.5 0.70 7.95 (0.85) (5,14)
6 0.9 0.94 5.42 (0.07) (5,7)

a � 4, b � 2
4 0.1 0.46 9.47 (2.64) (5,20)
5 0.5 0.70 7.44 (0.95) (5,13)
6 0.9 0.94 5.37 (0.09) (5,7)

a � 1, b � 1
4 0.1 0.46 12.72 (5.51) (5,32)
5 0.5 0.70 7.63 (0.97) (5,13)
6 0.9 0.94 5.36 (0.10) (5,7)



that P�N, # N # Nujk� � 1 ÿ g. Here we choose to use an equal-tailed interval with

g � 0:05, so then
�

N,
ÿ¥ pN�njk�dn �

� ¥
Nu

pN�njk�dn � g=2: This can be calculated by using

the sample quantiles: rank the ni-values and denote them as n�1� # n�2� # ¼ # n�5;000�.

Take n�5;000:g=2��1� as the estimate of N,, and n��5;000:�1ÿg=2���1� as the estimate of Nu.

(Here, �y� denotes the largest integer less than or equal to y. If (5,000(g=2)) or

(5,000(1 ÿ g=2)) is itself an integer, then 1 is not added.) This interval is equivalent to

that obtained by inverting the empirical CDF at g=2 and at 1 ÿ g=2. The results are shown

in Table 5.

It is clear (and reassuring) that the results are very consistent across the various values

chosen for a and b. Given the assumptions made about the prior distribution on Q, these

results tell us that there could be about (7 ÿ 7 � � 0 to (11 ÿ 7 �� 4 blood lead studies on

this hypothesis which were unseen. The researcher must now make his or her best guess at an

appropriate value for r. In the most optimistic case, r � 9=10; most nonsigni®cant and all

signi®cant studies are published. In this case, we expect no unseen studies, so our sample

of published studies can be considered entirely trustworthy. In the least optimistic case,

r � 1=10 and most nonsigni®cant studies are not published, whereas all signi®cant studies

are. In this case, we could have four unseen studies. If all of them are strongly nonsigni®cant,

or signi®cant in the opposite direction, it is possible that our combined p-value could be

overturned. However, Needleman and Gatsonis (1990, p.677) make a very good point:

``Given the expense of conducting human studies of lead exposure and the amount of atten-

tion directed to this question, it is unlikely that this number of negative studies have escaped

notice.'' For the tooth lead studies, there could be about (5 ÿ 5 �� 0 to �13 ÿ 5 �� 8

unseen studies. As above, in the most optimistic case, we expect no unseen studies, and

the results of our meta-analysis seem trustworthy. In the least optimistic case, there could

be more nonsigni®cant studies out there than studies on hand. The meta-analysis could be

giving us very biased results. Again, though, it seems unlikely that results with strong

conclusions contrary to published conclusions would not have been noticed. Clearly,

knowledge of the subject matter is needed to make a judgment on the probable value for r.

In cases where individual study p- and Z-values are available, it may be helpful to com-

pare the simulation results to two other source augmentation methods. Rosenthal's fail-

safe (FS) number (Rosenthal 1979) calculates the number of unseen studies averaging

null results (i.e., a p-value of 0.5 or a Z-value of zero) needed to bring a signi®cant overall

p-value to a speci®ed level. The fail-safe numbers are based on the same method of combin-

ing Z-values that was used above. Since those two Z-values are both signi®cant, it makes

sense to calculate Rosenthal's estimates and compare them with our simulation results:

FSBlood �

P k
i� 1 Z i

ÿ �2

�1:645�2
ÿ k

 !�

�
�ÿ3:86 ÿ 1:67 � ¼ ÿ 1:8�2

�1:645�2
ÿ 7

� ��

� 66:99

FSTooth �

P k
i� 1 Z i

ÿ �2

�1:645�2
ÿ k

 !�

�
�ÿ3 ÿ 2:23 � ¼ ÿ 1:17�2

�1:645�2
ÿ 5

� ��

� 16:63

Hence, 66 unseen studies giving null results are needed to overturn this combined

p-value of zero from the blood lead studies, while 16 are needed to overturn the

0.0003 from the tooth lead studies. Since from Table 5 only 5 to 11 studies of any kind
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(signi®cant or not, published or not, measuring blood or tooth lead levels) are expected

to be out there on average, it seems highly improbable that there are enough unseen

null studies to overturn the p-value, no matter what the value of r.

An additional comparison can be made with Gleser and Olkin's (1996) frequentist method

of estimating N. This method assumes that we have obtained the m smallest p-values,

plus a random sample of k ÿ m p-values from the remaining N ÿ m studies out there. The

value of m can be estimated empirically be plotting the ranked p-values p�i� versus i for the k

observed studies. These data should be roughly well-®tted by two straight lines, one through

the ®rst m points and another through the remaining k ÿ m points. Plotting the ranked p-values

p�i� versus i from Table 4 indicates that m � 6 for the blood lead and m � 4 for the tooth lead

studies (plots are not shown here). Thus, ÃNBlood � �m ÿ 1�=p�m� � 5=0:05 � 100 and
ÃNLead � 3=0:12 � 25. Unfortunately, having to estimate m in this manner means ÃN is no

longer unbiased. Gleser and Olkin (1996) also give a formula for a 100�1 ÿ a�% lower bound

for N as minq $ 0fq : F2m;2�q�1�;a < �q � 1��1 ÿ p�m��=�mp�m��g � m. We take a � 0:025 to

match the level of our credible intervals, giving N Blood
L � 8 and N Lead

L � 7. These lower

bounds are very close to our lower bounds.

Taken in concert, the three source augmentation methods discussed here offer reassur-

ance that the meta-analyses are reliable. Rosenthal (1979) offers his own guidelines on

what an ``unlikely'' number of unseen studies might be. He suggests that some ®elds

may consider 100 or 500 unseen studies plausible, whereas other ®elds may deem only

10 or 20 as likely. Rosenthal's recommendation is to consider 5k � 10 the level at which

the number of unseen studies becomes implausible. The 5k suggests that it is unlikely that

there are more than ®ve times as many studies ®led away as there are on hand, while 10

sets the minimum number of studies at 15 when k � 1. In this example, the cutoffs would

be 45 and 35 for the blood and tooth studies, respectively.

As a caution, the p-values calculated in Equation 4 above are based on what may or may

not be a good estimate of the overall Z-values. One must always keep in mind that there are

many other ways to calculate an overall p-value, ones that, for example, take sample sizes

or sample variances into account (see Rosenthal 1978). Some of those methods could give

nonsigni®cant overall results, in which case any consideration of FS is nonintuitive. In

addition, since this is a one-sided hypothesis testing situation, the researcher must consider

the possibility of unpublished studies that are signi®cant in the opposite direction.

Rosenthal's estimates are a useful (and possibly reassuring) comparison to make when

the data are available to calculate them. However, they are strictly ad hoc estimates and

the statistical properties associated with them are not known; caution should be used in

interpreting them.

5. Conclusions

We have derived a method for approximating the total number of studies done on a parti-

cular hypothesis, given a selection probability (r), a distribution of the probability of

publication (Q), and a meta-analysis of k available studies. The theory is complex only

in that it must adapt to circumvect practical computational dif®culties (i.e., Metropolis

simulation and Gibbs sampling). One drawback of this theory, of course, is that the prior

distribution on Q must be speci®ed. Very few researchers will be able to choose parameter
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values for the Beta prior distribution with any degree of assuredness. Our application

shows, however, that those choices do not much in¯uence the results of the simulations.

Research in Bayesian statistics has shown that (as we saw here) posterior distributions can

be robust to the choice of the prior distribution; see, for example, Berger (1993). In addi-

tion, there is a small but growing literature on the formal elicitation of prior information

from expert opinion, which may be well-suited for this situation (see for example, Carlin,

Chaloner, Church, Louis, Matts 1993, or Steffey 1992). Further investigation should be

done regarding the effect of varying a and b on the stability of the simulations and on

the precision of the approximations.

Another potential problem is the violation of assumptions. It is conceivable that the

probability of publication is not constant across studies. In situations where a great deal of

funding is allocated for large-scale nationwide clinical trials, for example, it is almost a

certainty that these results will be published, signi®cant or not. As a related issue, the biggest

criticism of the fail-safe numbers is that they fail to distinguish between studies which are

signi®cant due to a large effect size, and studies which are signi®cant due to a large sample

size. Our method sidesteps this criticism by requiring that all studies considered are roughly

of the same size. In practice, this requirement is not likely to be satis®ed, but it is likely to be an

improvement over the fail-safe criterion. As a partial ®x, the next step would be to place a prior

distribution on the probability r, thus allowing it to vary across studies.

Given the simulation program, these methods are easy to implement and easy to interpret.

An obstacle to using these methods in a speci®c application is that a value (or possibly

values) for r must be chosen. A researcher must have a good familiarity with both the

publication process and the activities of other researchers in his or her ®eld to be able

to give a reliable estimate. We recommend, therefore, that the simulations always be

run for a range of values for r. Hopefully, from personal experience, this range can at least

be limited to only a small portion of the interval (0,1). The application of this theory would

be much improved if a method for estimating r were developed. Another disadvantage is

that any application of this theory can only start from a count of the number of signi®cant

studies (i.e., to calculate z=k), not from individual p-values nor Z-values. It seems there is a

loss of information at some level here. Sample sizes and sample variances from the studies

under consideration do not affect this procedure, when ideally it seems they should. The

next step is perhaps to consider a model that depends not only on r, but also on other

relevant covariates. Either r could be modeled deterministically, by choosing some

function of the covariates, or a prior distribution for r could be chosen. A further and

perhaps more realistic generalization of another aspect of the model would be to let

Q � dR � r�1 ÿ R�, so that not all signi®cant studies are assumed published. In conclu-

sion, using a range of values for r and the Gibbs/Metropolis procedure, a reasonable

picture of the number of unseen studies can be formed for a speci®c meta-analysis appli-

cation. Rosenthal's fail-safe estimates and Gleser and Olkin's lower bounds can be used as

comparative indications of the reliability of a signi®cant overall p-value.
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