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I characterize the prevailing philosophy of official statistics as a design/model compromise
(DMC). It is design-based for descriptive inferences from large samples, and model-based
for small area estimation, nonsampling errors such as nonresponse or measurement error,
and some other subfields like ARIMA modeling of time series. I suggest that DMC involves
a form of “inferential schizophrenia”, and offer examples of the problems this creates.
An alternative philosophy for survey inference is calibrated Bayes (CB), where inferences
for a particular data set are Bayesian, but models are chosen to yield inferences that have good
design-based properties. I argue that CB resolves DMC conflicts, and capitalizes on the
strengths of both frequentist and Bayesian approaches. Features of the CB approach to surveys
include the incorporation of survey design information into the model, and models with weak
prior distributions that avoid strong parametric assumptions. I describe two applications to
U.S. Census Bureau data.
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1. Introduction

The mission of official statistics is to produce relevant, timely and credible statistics about

key social and economic phenomena. Statistical agencies face increased demand for data

products, and the questions asked by our society are becoming increasingly complex and

hard to measure. On the other hand, individuals and organizations are less willing to

respond to requests for information, voluntary or not. Surveys and censuses are expensive

and challenging to mount. Combining information from a variety of data sources is

attractive in principle, but difficult in practice. Disseminating information for small areas

is subject to the dangers from disclosure of confidential information from respondents.

For these reasons, the standard statistical approach of taking a random sample of the

target population and weighting the results up to the population no longer meets our

needs. We should see the traditional survey as one of an array of data sources, including

administrative records and other information gleaned from cyberspace. Tying this
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information together to yield cost-effective and reliable estimates requires modern

statistical analysis tools.

In response to these challenges, the U.S. Census Bureau has recently formed a new

Research and Methodology Directorate. I am its first Associate Director, and I write as the

first Bayesian statistician with a senior leadership position at the Census Bureau, and as

one who has great respect for the history and statistical traditions of the agency.

One of my responsibilities is to uphold statistical standards, and this role has led me to

ponder the prevailing statistical philosophy of the agency, which I believe many other

official statistical agencies share. I feel that some of the obstacles faced by official

statistics are attributable to the ambivalence of this prevailing philosophy. I suggest that an

alternative statistical philosophy, calibrated Bayes, provides a better vehicle for official

statistics in the future.

2. The Prevailing Philosophy of Statistical Inference in Official Statistics

Official statistics is largely concerned with censuses and surveys, with a strong emphasis

on probability sampling. There are three main competing general philosophies of inference

from probability sample surveys (e.g., Little and Rubin 1983; Little 2004): (a) design or

randomization-based inference, and (b) model-based inference, in its two main forms of

superpopulation inference and Bayesian inference.

2.1. Design-Based Inference

The classical randomization or design-based approach to survey inference (e.g., Hansen

et al. 1953; Kish 1965; Cochran 1977) has the following main features. For a population

with N units, let Y ¼ ( y1, : : : , yN) where yi is the set of survey variables for unit i, and let

I ¼ (I1, : : : , IN) denote the set of inclusion indicator variables, where Ii ¼ 1 if unit i is

included in the sample and Ii ¼ 0 if it is not included. Design-based inference for a finite

population quantity Q ¼ Q(Y) involves (a) the choice of an estimator q̂ ¼ q̂(Yinc, I), a

function of the observed part Yinc of Y, that is unbiased, or approximately unbiased, for Q

with respect to the distribution of I; and (b) the choice of a variance estimator v̂ ¼ v̂(Yinc, I)

that is unbiased or approximately unbiased for the variance of q̂ with respect to

the distribution of I. Inferences are then generally based on normal large-sample

approximations. For example, a 95% confidence interval for Q is q̂ ^ 1:96
ffiffiffî
v

p
.

Models can and often do play a role in determining the choice of estimator in this

approach. Specifically, regression or ratio estimates are based on implicit models, and

model-assisted methods such as generalized regression (Särndal et al. 1992) incorporate

model predictions. However, these methods are still fundamentally design-based, since the

distribution of I remains the basis for inference.

2.2. Model-Based Inference

The model-based approach bases inference on a model for the distribution for Y, perhaps

combined with the distribution of I. Initial model formulations did not overtly assign a

distribution for I, but modeling both Y and I allows assumptions about the method of

selection to be formalized, and clarifies the value of probability sampling. The model is
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used to predict the non-sampled values of the population, and hence finite population

quantities Q. There are two major variants: superpopulation modeling and Bayesian

modeling.

In superpopulation modeling (e.g., Royall 1970; Thompson 1988; Valliant et al. 2000),

the population values of Y are assumed to be a random sample from a “superpopulation”,

and assigned a probability distribution p(YjZ,u) indexed by fixed parameters u, and

conditioned on known design variables Z.

Bayesian survey inference (Ericson 1969, 1988; Basu 1971; Scott 1977; Binder 1982;

Rubin 1983, 1987; Ghosh and Meeden 1997; Sedransk 2008; Little 2003, 2004; Fienberg

2011) requires the specification of a prior distribution p(YjZ) for the population values.

Inferences for finite population quantities Q(Y) are then based on the posterior predictive

distribution p(YexcjYinc, Z, I) of the non-sampled values (say Yexc) of Y, given Z and the

sampled values Yinc. Probability sampling allows us to “ignore” the distribution of

the sample inclusion indicator I in this model, and base inferences on posterior predictive

distribution p(YexcjYinc, Z), simplifying the modeling task. The specification of the prior

distribution p(YjZ) is often achieved via a parametric model p(YjZ, u) indexed by

parameters u, combined with a prior distribution p(ujZ) for u, that is:

pðYjZÞ ¼

ð
pðYjZ; uÞpðujZÞdu:

The posterior predictive distribution of Yexc is then

pðYexcjY inc; ZÞ ¼

ð
pðYexcjY inc; Z; uÞpðujY inc; ZÞdu ð1Þ

where p(ujYinc, Z) is the posterior distribution of the parameters, computed via Bayes’

Theorem:

pðujY inc; ZÞ ¼ pðujZÞpðY incjZ; uÞ=pðY incjZÞ;

where p(ujZ) is the prior distribution, p(YincjZ,u) is the likelihood function, viewed as a

function of u, and p(YincjZ) is a normalizing constant. This posterior distribution induces a

posterior distribution p(QjYinc, Z) for finite population quantities Q(Y).

Some Bayesians have downplayed the role of randomization, but its importance

becomes clear when the model is expanded to the joint distribution of Y and I, as in the

above summary. Randomization provides a practical way to assure that the selection or

allocation mechanisms are ignorable for inference (Rubin 1978; Sugden and Smith 1984;

Gelman et al. 2003, Chapter 7), without making ignorable selection a questionable

assumption. On the other hand, making randomization the basis for inference, as with the

design-based approach, is restrictive, since it does not provide a framework for handling

deviations from randomization, or other non-sampling errors.

The specification of p(YjZ,u) in the Bayesian formulation is the same as in parametric

superpopulation modeling, and in large samples, the likelihood based on this distribution

dominates the contribution from the prior distribution of u. As a result, large-sample

inferences from the superpopulation modeling and Bayesian approaches are often similar,

with the key distinction then being between design-based and model-based inference.

Bayes modeling is to my mind superior to superpopulation modeling in small samples,
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since the integration over u in (1) propagates uncertainty in the estimation of u, yielding

better inferences than approaches that fix u at an estimate.

2.3. The Current Design/Model Compromise

A recent comparative assessment of these approaches is given in Rao (2011).The status

quo for statistical inference at the U.S. Census Bureau is a combination of design-based

and model-based ideas, which I shall term the “design/model compromise” (DMC);

I believe that a similar philosophy pervades other official statistical agencies. DMC applies

design-based inference for descriptive statistics like means and totals in large samples, and

models are used for small area estimation, to handle survey nonresponse, and in some

specialized areas like time series analysis (e.g., Kalton 2002; Rao 2003, 2011). The

design-based approach is often model-assisted, in that models are used to incorporate

auxiliary information. A common form of model assistance is regression calibration,

where model predictions are adjusted by adding design-weighted residuals to protect

against misspecification (e.g., Cassel et al. 1977; Särndal et al.1992).

Models are used for small area estimation, since direct design-based estimates are too

imprecise to be useful. An important early example is Fay and Herriott (1979). Models are

used for nonresponse, though sometimes they are implicit, as in hot deck methods. In time

series analysis, models are commonly used to smooth and summarize series of estimates

collected over time.

Design-based and model-based systems of statistical inference both have strengths and

weaknesses, and the key is to combine them in a way that capitalizes on their strengths.

For reasons given below, I do not think that DMC is the best way to do this. In the next

section, I describe an alternative approach, calibrated Bayes (CB), which avoids

“inferential schizophrenia” by assigning distinct roles to models (for the inference) and

frequentist methods (for formulating and assessing the model).

3. Calibrated Bayesian (CB) Inference

3.1. Calibrated Bayes Inference for Statistics in General

In CB, all inferences are explicitly Bayesian and hence model-based, but models are

chosen to yield inferences that are well calibrated in a frequentist sense; specifically,

models are sought that yield posterior credibility intervals with (approximately) their

nominal frequentist coverage in repeated sampling. Seminal references are Box (1980)

and Rubin (1984). Since my arguments in favor of CB have been presented elsewhere

(Little 2006, 2011), I summarize them here, specifically in the context of survey

sample inference.

Frequentist inference is in essence a set of concepts, like unbiasedness, consistency,

confidence coverage, efficiency, and robustness, for assessing properties of inference

procedures. It is not a prescriptive system leading to a clear choice of estimator and

inferential procedure. Of the many frequentist tools, such as least squares, method of

moments, generalized weighting equations or maximum likelihood (ML), asymptotic

inferences based on ML seem the closest to being prescriptive, but ML is not satisfactory

for small-sample inference. Exact small-sample inferences have been developed for some
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problems, but in many others there is no exact frequentist method, in the sense of yielding

a confidence interval that has exact nominal confidence coverage for all values of the

unknown parameters.

Design-based survey inferences are not only asymptotic, they fail for probability

sampling schemes where the number of distinct repeated samples is limited. For example,

consider systematic sampling of units with a sampling interval of five, from a random start.

The design-based standard error exists, but design-based estimates of standard error are not

available, and since there are only five possible repeated samples and hence five possible

estimates, design-based 90% or 95% confidence intervals do not exist. Models are needed

to create and provide meaning to interval estimates.

Frequentist inference violates the likelihood principle (Birnbaum 1962), and is

ambiguous about whether to condition on ancillary or approximately ancillary statistics

when performing repeated sampling calculations (Cox 1971; Cox and Hinkley 1974).

In the sample survey context, this issue arises in the question of whether the sampling

distribution of post-stratified means should condition on post-stratum counts (Holt and

Smith 1979; Little 1993).

The Bayesian approach avoids these problems with frequentist inference. Once a model

and prior distribution are specified, there is a clear path to inferences based on the posterior

distribution, or optimal estimates for a given choice of loss function. Problems of inference

under a model become purely computational, and a rich array of Bayesian computational

tools are now available, even for complex high-dimensional problems. The likelihood

principle is satisfied, issues about conditioning on ancillary statistics do not arise, and

uncertainty about nuisance parameters is propagated by integrating them over their

posterior distribution, an approach that (with noninformative prior distributions) leads to

better small-sample inferences than ML. In the simplest case of a normal model and simple

random sampling, integrating out the variance leads to inferences based on the t distribution.

The problem with Bayesian inference in practice is that it generally requires full

specification of a likelihood and prior, and we never know the true model (Efron 1986).

All models are wrong, and bad models lead to bad answers: under the frequentist

paradigm, the search for procedures with good frequentist properties provides a degree of

protection against model misspecification, but there seems no such built-in protection

under a strict Bayesian paradigm where frequentist properties are not entertained.

We want model-based inferences with good frequentist properties, such as 95%

credibility intervals that cover the unknown parameter approximately 95% of the time if

the procedure is applied to repeated samples. The Bayesian has some important tools for

model development and checking, like Bayes factors and model averaging, but in my view

frequentist ideas are essential when it comes to model development and assessment.

A natural compromise is thus to use frequentist methods for model development and

assessment, and Bayesian methods for inference under a model. This capitalizes on the

strengths of both paradigms, and is the essence of calibrated Bayes (CB) (Peers 1965;

Welch 1965; Dawid 1982; Box 1980; Rubin 1984; Draper and Krnjajic 2010). Rubin

(1984) wrote that

“The applied statistician should be Bayesian in principle and calibrated to the real world

in practice – appropriate frequency calculations help to define such a tie: : : frequency
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calculations are useful for making Bayesian statements scientific, scientific in the sense

of capable of being shown wrong by empirical test; here the technique is the calibration

of Bayesian probabilities to the frequencies of actual events.”

3.2. Calibrated Bayes Inference for Sample Surveys

What are the implications of CB for sample survey inference? The main features that

distinguish survey sampling inference from other areas of statistics are (a) the focus on

descriptive finite population quantities (though analytic parameters are also of interest)

and (b) the presence of survey design features like stratification, weighting and clustering,

which render simple “iid” assumptions invalid.

Bayesian inference is highly suited to finite population quantities; the tool is the

posterior predictive distribution. This distribution automatically incorporates finite

population corrections – the uncertainty in the posterior predictive distribution goes to

zero as the sampling fraction goes to one. The target population quantity does not need

to be a parameter of the CB model used for inference; it could be the quantity obtained

by applying a “target model” to the full population. CB inference is then based on the

posterior predictive distribution of this finite population quantity, for an “analysis

model”, which captures key features of the sample design, and which may differ from

the target model. This point is developed in the context of multiple regression in

Section 4.2 below.

Concerning (b), the need for calibration, combined with the appreciation that all models

are approximations and hence to some degree misspecified, leads to Bayesian models that

incorporate design features like stratification, weighting and clustering. Design features

need to be included in the model to protect against the effects of model misspecification.

Specifically, models for cluster samples that assume units within clusters are

independent overstate precision when outcomes of units within clusters are correlated.

Thus, hierarchical Bayes models that include random effects for clusters, as in the

seminal work of Scott and Smith (1969), are needed to model clustering of the sample.

Models for stratified unequal probability samples that do not allow distinct parameters

across strata make the dubious assumption that strata variables are unrelated to outcomes.

Thus, stratified samples require models that include strata indicators as covariates.

For probability proportional to size samples, models that misspecify the relationship

between the outcome and size are not well calibrated. Robust modeling of this

relationship, for example by modeling the outcome as a spline function of size, avoids

this problem, and has been shown to yield Bayesian inferences with superior frequentist

properties to sample-weighted estimates in simulations (Zheng and Little 2004, 2005;

Yuan and Little 2007, 2008; Chen et al. 2010).

Frequentist concepts like design consistency or asymptotic design unbiasedness

(Brewer 1979; Isaki and Fuller 1982) are useful in developing CB models, particularly for

inference with large samples where asymptotic properties are relevant. Strictly speaking,

design consistency of estimates is not a requirement of CB, since a design-inconsistent

Bayes estimate for a well-specified model can still achieve good frequentist coverage.

However, design consistency plays a role in CB as a useful robustness property that tends

to promote good confidence coverage, particularly in large samples; the class of Bayesian
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models that yield design consistent estimates is very broad, so design consistency is

relatively easy to achieve under the CB paradigm.

Other features of CB models for surveys are that (a) relatively weak prior distributions

should be favored so that the evidence in the data dominates the evidence in the prior;

and (b) model checks become an important feature of the analysis. The latter point should

not be controversial, since any statistical approach, frequentist or Bayesian, needs to

evaluate assumptions. Diagnostic approaches include posterior predictive checks (Rubin

1984; Gelman et al. 1996), and cross-validation approaches (Draper 1995; Draper and

Krnjajic 2010).

The following simple examples from Little (2003) illustrate these ideas.

Example 1. Stratified Random Sampling. Suppose the population with units

i ¼ 1, : : : , N is divided into H strata and nh units are randomly selected without

replacement from the population of Nh units in stratum h. Define Z as a stratum variable,

with zi ¼ h, if unit i is in stratum h. A CB model for an outcome Y that conditions on the

stratum variables zi is

yijzi ¼ h; uh;s
2
h

� �� �
,ind G uh;s

2
h

� �
; ð2Þ

where G(a, b) denotes the normal (Gaussian) distribution with mean a, variance b.

Suppose first s2
h is known and the stratum mean are assigned a flat prior

pðuhjZÞ / const:

Bayesian calculations lead to the posterior predictive distribution for the population

mean Y :

YjZ; data; s2
h

� �� �
, G yst;s

2
st

� �
the normal distribution with posterior mean:

yst ¼
XH

h¼1

Phyh;Ph ¼ Nh=N; yh ¼ sample mean in stratum h;

and posterior variance:

s2
st ¼

XH

h¼1

P2
hð1 2 f hÞs

2
h=nh; f h ¼ nh=Nh:

These Bayesian results lead to Bayes posterior credibility intervals that are identical

to standard confidence intervals from design-based inference for a stratified random

sample. In particular, the posterior mean weights each case by the inverse of its

inclusion probability, and the posterior variance equals the design-based variance of the

stratified mean.

With unknown variances, the standard design-based approach has weaknesses.

Replacing the variances {s2
h} by sample stratum variances leads to normal confidence

intervals that fail to achieve nominal coverage when some {nh} are small, since

uncertainty in the estimated variances is not incorporated; or pooling the sample stratum

variances assumes the variances {s2
h} are equal, leading to confidence intervals with the
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wrong width when this assumption is strongly violated. The CB approach addresses these

weaknesses, by assigning {log ðs2
hÞ} uniform prior distributions. The resulting posterior

distribution of Y is a mixture of t distributions, yielding improved frequentist coverage in

small samples because uncertainty in estimating the stratum variances is propagated.

Suppose we ignore stratum effects, that is, we assume uh ¼ u,sh ¼ s in Eq. (2). The

posterior mean of Y is then the unweighted sample mean, which is potentially very biased

if the sampling rates vary across the strata. The problem is that inferences from this model

are nonrobust to violations of the assumption of no stratum effects, and we expect stratum

effects in most settings. The CB perspective leads to a model like (2) that allows for

stratum effects.

Example 2. Two-stage Sampling. Suppose the population is divided into C clusters,

based for example on geographical areas. A simple form of two-stage sampling first selects

a simple random sample of c clusters, and then selects a simple random sample of nc of

the Nc units in each sampled cluster c. The inclusion mechanism is ignorable conditional

on cluster information, but a CB model needs to account for within-cluster correlation in

the population. A normal model that does this is:

yci ¼ outcome for unit i in cluster c; i ¼ 1; : : : ;Nc; c ¼ 1; : : : ;C:

ycijuc;s
2

� �
,ind G uc;s

2
� �

;

½ucjm;f� ,ind Gðm;fÞ:

ð3Þ

Unlike the model for stratified sampling in Eq. (2), the cluster means cannot be assigned a

flat prior, p(uc) ¼ const, because only a subset of the clusters are sampled; the uniform

prior does not allow information from sampled clusters to predict means for non-sampled

clusters. The model that assumes no cluster effects, f ¼ 0 in (3), yields poor confidence

coverage in the presence of cluster effects, particularly in highly clustered samples.

If the first stage clusters are sampled with probability proportional to size, a CB model

needs to include the size variable as a covariate in Eq. (3); see, for example Zheng and

Little (2004).

4. DMC and CB Perspectives on Some Analysis Issues

4.1. Design-Based Statistical Standards for Model-Based Analysis

The statistical standards at the U.S. Census Bureau are essentially design-based, whereas

many Census Bureau researchers are social scientists targeting substantive journals in

disciplines such as economics and demography, where statistical models are the norm.

This difference in underlying philosophy leads to confusion and conflict. The statistical

standard-bearers play the role of high priests in a religion that many social scientists have

not embraced.

If, on the other hand, statistical standards were written from a CB perspective, the

inference would always be model-based, greatly reducing the communication gap between

social science modelers and standard-setters; the role of design features in the analysis is to

find robust and well-specified models. The fact that the inference is Bayesian is admittedly a

departure for modelers more versed in superpopulation frequentist modeling. The gap may
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not be as large as sometimes suggested – for example, economists act very much like

Bayesians, in the sense that prior judgment enters strongly into model specification through

variable selection, assumptions about instrumental variables, exclusion restrictions, and

so on. The additional information injected by including a diffuse Bayesian prior distribution

is usually minor compared to the assumptions required to identify models.

Bayesian inferences have repeated sampling properties, like any other inferential

procedure. All modelers interested in obtaining robust inferences should embrace the

calibrated part of CB. In the finite population context, estimates for a model fitted to the

sample should be close to the estimates that would be obtained if that model were fitted on

the entire population. One way of achieving this is to incorporate features of the sample

design, such as weighting and clustering, into the model, since ignoring features like the

design weights yields inferences that are vulnerable to model misspecification (Kish and

Frankel 1974; Holt et al. 1980; Hansen et al. 1983; Pfeffermann and Holmes 1985).

4.2. Role of Sampling Weights in Regression

The conflict between design-based statisticians and modelers arises in the role of sampling

weights. A design-based analysis weights units in the regression analysis by the inverse of

their selection probability (Horvitz and Thompson 1952), but this form of weighting is

seen as unnecessary in many branches of economics, where extrapolation to a population

is not the primary aim, and weights, if used at all, model nonconstant variance (Konjin

1962; Brewer and Mellor 1973; Dumouchel and Duncan 1983; Smith 1988; Pfeffermann

1993; Little 2004).

From a CB viewpoint, it is useful to distinguish the case where the variables defining the

sampling weights (e.g., the strata indicators in Example 1 above) are or are not included as

predictors in the model. If they are, then design weighting is unnecessary if the model is

correctly specified. However, from a CB perspective, a comparison of estimates from the

weighted and unweighted analysis provides an important specification check, since a

serious difference between a design-weighted and unweighted estimate is a strong

indicator of misspecification of the regression model. Since specification checks for the

hard problem of selection on unobservables are popular in econometrics (e.g., Heckman

1976), we should welcome checks for the much easier problem of selection on

observables! Dumouchel and Duncan (1983) propose a test comparing the weighted and

unweighted regression coefficients, and extensions of this idea to other complex survey

designs would be useful; furthermore, determining what constitutes a “serious” difference

between weighted and unweighted estimates is not obvious.

If the variables defining the weights are not included as predictors in the regression

model, the design-weighted regression is a simple way of correcting for selection bias in

the sample. In fact, the design-weighted estimates have an interpretation as approximate

posterior means for a CB model, as in the following example (Little 1991, 2004).

This example also illustrates the distinction between a target model and an analysis model

mentioned in Section 3.2.

Example 3. Distinct Target and Analysis Models, Leading to a Bayesian Interpretation

of Design-weighted Regression Estimates. I noted in Section 3.2 that the target quantity

in a CB analysis does not have to be a parameter in a CB model (or its finite population
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equivalent). It is useful to distinguish a target model, which determines the target quantity

of interest, and the analysis model, the basis for inferences about the target quantity.

Consider first inference about a population mean from a stratified sample, as in

Example 1. The target model assumes the outcome yi for unit i has a mean that does not

depend on stratum, and a non-constant variance, namely

Target model:

½ yijui; zi ¼ h; u;s2
i

� �
� ,ind G u; s2=ui

� �
; ð4Þ

where ui is a known constant. The target quantity is the result of applying this model to the

whole population with an uninformative prior, namely the precision-weighted mean:

Y ðuÞ ¼
XN

i¼1

uiyi

 !, XN

i¼1

ui

 !
: ð5Þ

This is the finite population mean if ui ¼ 1 for all i, but other choices of {ui} lead to useful

target quantities. For example, if yi ¼ xi/ui then Eq. (4) defines the ratio model, and Eq. (5)

is the population ratio
�PN

i¼1xi

���PN
i¼1ui

�
.

A standard design-based approach weights cases in stratum j by their sampling weight

wj ¼ Nj / nj, yielding design-unbiased estimates of the numerator and denominator of

Eq. (5):

y ðw *Þ ¼
XJ

j¼1

wj

i[sj

X
uiyi

0
@

1
A, XJ

j¼1

wj

i[sj

X
ui

0
@

1
A¼

XJ

j¼1 i[sj

X
w

*

jiyi

0
@

1
A, XJ

j¼1 i[sj

X
w

*

ji

0
@

1
A; ð6Þ

where w
*

ji ¼wjui is the product of the sampling weight and the precision weight. This

estimator can also be motivated as an approximate posterior mean under a CB model,

as follows:

The target Model (4) ignores the stratified nature of the sample, and for inference

purposes it is vulnerable to misspecification if the means of Y and selection rates vary

across the strata. Thus for inference about (5), we replace (4) by an analysis model that

allows different parameters for the mean and variance in each stratum, that is:

Analysis model:

yijzi ¼ j; uj;s
2
j

n oi
,ind G uj; s2

j =ui

	 
h
;

p mj; logs2
j

n o	 

¼ const:

ð7Þ

This model yields a posterior predictive distribution for the nonsampled values, and hence

for the target quantity (5). If {ui} are known for all units of the population, a standard

Bayesian calculation yields

E Y ðuÞjdata; {ui}
� �

¼
XJ

j¼1

yðuÞj uþj

 !, XJ

j¼1

uþj

 !
;

where yðuÞj ¼
P

i[sj
uiyi=

P
i[sj

ui is the precision-weighted mean of the sampled units

i [ sj in stratum j, and uþj is the sum of ui for all units i in stratum j. If {ui} are only known
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for sampled units of the population, a model is also needed to predict values {ui} for

nonsampled units. A variety of models for {ui} that involve distinct means in each stratum

yield a posterior mean of the total in stratum j of the form EðuþjjdataÞ < wj

P
i[sj

ui, where

wj ¼ Nj / nj is the sampling weight for stratum j. Then

EðY ðuÞjdataÞ¼E
XJ

j¼1

yðuÞj uþj

 !, XJ

j¼1

uþj

 !
jdata

" #

<
XJ

j¼1

yðuÞj E uþjjdata
� � !, XJ

j¼1

E uþjjdata
� � !

¼
XJ

j¼1

yðuÞj wj

i[sj

X
ui

0
@

1
A, XJ

j¼1

wj

i[sj

X
ui

0
@

1
A¼

XJ

j¼1 i[sj

X
w

*

jiyi

.XJ

j¼1 i[sj

X
w

*

ji ¼ y ðw *Þ;

the design-weighted estimator (6). The approximation in the second line of this expression

results from replacing the posterior expectation of a ratio by a ratio of posterior

expectations, which ignores terms of order O(1/n). Hence, under this formulation, the CB

approach leads to weighting by the product of the sampling weight and precision weight,

as in the design-based approach.

An extension of this analysis yields design-weighted estimates for regression

coefficients. Consider more generally the target regression model

Target model:

ðYjX;bÞ , GðXb;U 21s2Þ; ð8Þ

where Y consists of the population elements as an (N £ 1) vector, X is an (N £ p) matrix

of covariates, and U is a (N £ N) diagonal matrix with the value {ui} on the diagonal.

The target quantities are the precision-weighted least squares estimates:

B ðuÞ , ðX TUXÞ21X TUY : ð9Þ

For inference about (9), we assume an analysis model that allows different stratum

regression coefficients, namely

Analysis model:

YjjXj;bj;s
2
j

	 

, G Xjbj; U21

j s2
j

	 

;

p bj; logs2
j

n o	 

¼ const:

ð10Þ

where Yj, Xj are the components of Y and X in stratum j, with dimension (Nj £ 1)

and (Nj £ p) respectively. An approximation to the posterior mean of B (u) under (10)

is obtained by writing (9) as a function of sums B(u) ¼ g(T1, : : : ,TL), where

{Tl ¼
PJ

j¼1

PNj

i¼1ujihlji; l ¼ 1; : : : ; L}, for difference choices of {hlji} represent the

set of sums, sums of squares, and sums of cross products of the covariates and outcome.
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Then

EðB ðuÞjdataÞ ¼ E gðT1; : : : ; TLÞjdata
� �

¼ g EðT1jdataÞ; : : : ;EðTLjdataÞ
� �

þ Oð1=nÞ

by a linearization argument similar to that used for design-based inference. Also,

EðTljdataÞ <
XJ

j¼1 i[sj

X
w

*

jihlji;

where w
*

ji ¼ wjuji and wj is the sampling rate in stratum j, applying an argument similar

to that for the mean model to {hlji}. Hence the posterior mean is approximated by the

design-weighted regression estimates:

EðB ðuÞjdataÞ < X T
s W

*

sXs

	 
21

X T
s W

*

sYs; ð11Þ

where the subscript s denotes sample quantities (Little 2004).

Can sampling weights be ignored when interest lies in “analytic” inference for the

parameters b of the target Model (10), rather than in the finite population quantity (9)?

I would say no, Eq. (11) should still be used to estimate b. The inference differs only in the

omission of finite population corrections, which follows directly from the application of

Bayes’ theorem. My reason is that the finite population is assumed to be a random sample

from the superpopulation under the superpopulation model, so b differs from the finite

population quantity B (u) by a (small) quantity of order O(1/N). Since ignoring the

sampling weights yields a poor estimate of B (u), it also yields a poor estimate of b.

What is gained by the CB approach if the analysis model (10) merely recovers the

design-based estimator? The Bayesian paradigm allows for better small-sample

inferences, by propagating error in estimating the variances, and by allowing the

possibility of shrinkage of the weights by mixed models.

4.3. DMC and CB for Small Area Estimation

The DMC philosophy suggests that when there are sufficient data to support “direct”

estimates that do not borrow strength across subdomains, inferences are design-based, but

when the data are too limited then model-based small area estimates are acceptable. This

dichotomy implies, for any particular survey, the existence of a tipping point (say n0), the

“point of inferential schizophrenia”, such that inferences are design-based when n . n0

and model-based when n , n0. The choice of n0 is of course rather arbitrary, and it bothers

me that one’s entire philosophy of statistics, and the nature of the estimator, changes

depending on where the sample size falls relative to this value (Fig. 1A). In particular, the

(design-based) confidence intervals for the mean for sample sizes slightly more than n0

will be wider than the (model-based) confidence intervals for the mean for sample sizes

slightly less than n0, even though they are based on more data.

The CB philosophy avoids “inferential schizophrenia”, since all inferences are model-

based. Hierarchical Bayes models yield estimates close to “direct” estimates when sample

sizes are large, and as the sample size decreases, move seamlessly towards predictions

from a fixed-effects model (Fig. 1B). Consider, for example, the following simple
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hierarchical Bayes model for simple random sampling, relating an outcome Y to a

covariate X measured for all units in the population:

yaijaa , N mai;s
2

� �
;mai ¼ aa þ bxai;

aa , N a; t2
� �

;
ð12Þ

where xai, yai are the value of Y and X for unit i in area a, and aa is a random intercept

for area a. (A more complex model would entertain interactions between the areas and

covariates). If the sampling fraction in area a is small, the posterior mean of the population

mean Ya in area a given (s 2,t 2) has the form

E
�
Yajdata

�
¼ waya þ

�
1 2 wa

�
y þ b̂

�
xa 2 X

� ��
; ð13Þ

where ya, xa, na are the sample means of Y and X and sample size in area a,�
y þ b̂

�
xa 2 X

��
is the regression prediction for the mean of Y aggregated over all areas,

and wa ¼ nas
2=ðnas

2 þ t2Þ assigns most of the weight to the sample mean when na is

large, and most of the weight to the regression prediction over all areas when na is small.
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Fig. 1. (A) Discontinuity between design-based and model-based inference in DMC. (B) Hierarchical Bayes

estimate for area a is weighted combination of direct estimate ȳpa and regression estimate m̂a. Weight wa on the

direct estimate increases with the sample size n
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The weights here depend on the variances, which in practice need to be estimated.

Empirical Bayes approaches replace the variances by point estimates, typically computed

by the method of moments or maximum likelihood. When the estimate of t 2 goes

negative, it is replaced by a value 0 on the boundary of the parameter space. Uncertainty in

the variance estimates is not reflected in inferences. Fully Bayes methods based on weak

priors on the variance components propagate uncertainty and avoid estimates on the

boundary of the parameter space, though care is needed with the choice of prior

distribution for t 2 (Gelman 2006).

What precisely is the role of CB in small area estimation? Essentially, that Bayes is

preferable to empirical Bayes because it addresses uncertainty in the variance

components, and as a result, it tends to be better calibrated, that is, yields credibility

intervals with better confidence coverage. Two other related issues raised by the

referees are that (a) model-based estimators have a bias that does not necessarily vanish

with increasing sample size, and that can be substantial and dominate the MSE if the

model fails; and (b) CB for small areas yields estimates that do not necessarily sum to

design-based estimates for higher levels of aggregation. My view is that “design

consistency”, not “design bias”, is the important issue, since the essence of shrinkage

estimates is that exact unbiasedness is secondary to mean squared error. Estimates for

any single CB model are automatically internally consistent, since predictions of

quantities at high levels of aggregation are sums of the predictions at lower levels.

(Of course, this property no longer holds if different models are applied at different

levels of aggregation.) Design-inconsistent estimates from a CB model may be

adequately calibrated for small areas, because design bias is not an important com-

ponent of mean squared error; but design bias from model misspecification becomes

an issue when these small area estimates are aggregated to higher levels. Thus, if

aggregation to higher levels is important, then I recommend seeking a CB model that

yields design-consistent estimates.

4.4. CB for Small Area Inference: Fixing the “Standard Error Error”

Official statistics often presents uncertainty in the form of standard errors or margins of

error. In particular, users of the U.S. American Community Survey (ACS) have the ability

to generate tables of estimated counts of individuals by race, age and gender, in small

areas. Results are reported by an estimate and a margin of error, chosen so that the estimate

plus or minus the margin of error is asymptotically a 90% confidence interval. However, in

many instances the margin of error is larger than the estimate, yielding intervals containing

negative counts of people! The ACS documentation suggests truncating the resulting

intervals so that they are bounded below by zero, but the confidence interval based on

the margin of error still fails to have the nominal coverage in small samples, since it is

based on a large-sample approximation.

This exemplifies a general weakness of design-based inferences – that they are too

focused on estimates and standard errors, assuming that we are in the “land of asymptotia”

where an estimate plus or minus two standard errors is truly a 95% confidence interval.

We learn in elementary statistics that this is false when the sample size is small, as when a

t correction is applied to a normal test or confidence interval when the variance is not

Journal of Official Statistics322



known. In simulation studies with realistic sample sizes, design-based confidence intervals

often fail to achieve the nominal coverage (e.g., Zheng and Little 2004, 2005; Yuan and

Little 2007, 2008; Chen et al. 2010). A comprehensive theory for finite samples should be

able to deal with small sample sizes, and (as discussed below) the simplest general way to

achieve this is to make the inference Bayesian. The concern is that the introduction of the

prior distribution adds subjective information, but Bayes credibility intervals with

noninformative priors tend to be more, not less, conservative than design-based confidence

intervals.

In particular, it is well known that asymptotic Wald confidence intervals for proportions

do not achieve nominal coverage when the sample size is small, particularly for

proportions close to zero or one (Brown et al. 2001). Simple fixes such as the Wilson

estimate, which for a 95% interval adds 2 to the numerator and 4 to the denominator of the

proportion (Agresti and Coull 1998), have a Bayesian interpretation. The Bayesian

posterior credibility interval based on a noninformative Jeffreys’ prior distribution is

constrained to lie between 0 and 1, is appropriately asymmetric when the estimate is close

to zero or one, and has better confidence coverage than the asymptotic Wald interval

(Brown et al. 2001). Extensions of the Bayesian approach to unequal probability sampling

show similar improved frequency properties over design-weighted and model-assisted

approaches (Chen et al. 2010).

4.5. Model-Assisted Estimation

The prevailing paradigm of design-based inference is model-assisted, where model

predictions are calibrated to yield estimates that are design-consistent (Brewer 1979;

Isaki and Fuller 1982) and hence protected from model misspecification – note that this

use of the term “calibration” differs from the calibration in CB. This popular approach

uses regression models on auxiliary data to increase the efficiency of design-based

inferences while retaining the randomization distribution as the basis for inference.

A weakness of the method is that, by modifying the prediction estimator to improve its

robustness, the resulting estimator can involve parameter estimates from conflicting

models held simultaneously. I would rather base inferences on predictions from a

model that yields design consistent estimates. Since design consistency is a rather weak

property, this is not hard to do in many problems (Firth and Bennett 1998). In short,

model-assisted estimators represent for me a rather ad hoc way of making a design-

based estimator robust to model misspecification, whereas a more direct approach is

simply to choose a more robust model. The following example (Little 2007) illustrates

this point.

Example 4. Generalized Regression in An Equal Probability Sample Based on a

Regression Model Without An Intercept. Opsomer et al. (2007) applied the model-

assisted approach to incorporating auxiliary information into an equal probability

sample, where the regression models for prediction did not include the constant term.

Let y and x denote sample means of an outcome Y and a vector of covariates X, b̂x the

vector of least squares slopes for the regression of Y on X with no intercept, and X the

population mean of X. The resulting regression prediction of the mean of Y is b̂xX, and

the average residual for the sampled cases is y 2 b̂xx, so the generalized regression
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estimator has the form

YGREG ¼ b̂xX þ y 2 b̂xx
� �

¼ b̂0 þ b̂xX; where b̂0 ¼ y 2 b̂xx:

Observe that the slopes bx are estimated under the regression model that assumes no

intercept, but the inclusion of b̂0 in YGREG implies a model that includes an intercept. If

an intercept is needed, it should be included in the model when estimating b̂x. Since

any linear model with an intercept yields design-consistent predictions under equal

probability sampling (Firth and Bennett 1998), there is then no need for calibration at

all in this situation. Other examples of model inconsistency in model-assisted estimates

from unequal probability samples are given in Little (1983).

Is this a “counter-example”? It depends on the extent to which one cares about the

logical consistency of estimators from the viewpoint of the prediction – since the CB

perspective views the task of statistics as fundamentally to provide posterior predictive

inference for unknowns given the data, it places considerable weight on this aspect.

A more pragmatic CB argument against model-assisted approaches is that the resulting

confidence intervals do not achieve the nominal coverage, particularly when the sampling

weights applied to the residuals are highly variable (Zheng and Little 2004, 2005; Yuan

and Little 2007, 2008; Chen et al. 2010).

Another comment about model-assisted estimation is that it is a tool for incorporating

auxiliary data, but not effective for small area estimation – hierarchical Bayes models like

(4) above that incorporate shrinkage via random effects are more suited to this purpose.

For example, in the setting of Model (4) with equal probability sampling, the form of the

generalized regression estimator with predictions based on the regression of Y on X is

yGREG;a ¼ b̂0 þ b̂1Xa þ ya 2 b̂0 2 b̂1xa ¼ ya þ b̂1ðXa 2 xaÞ;

which incorporates information in the auxiliary variable X, but does not incorporate

shrinkage to the regression estimate y þ b̂1ðxa 2 XÞ combined over areas, as in the CB

estimate (13). This lack of shrinkage also applies to unequal probability samples, where

the model-assisted approach calibrates the regression estimate by adding weighted

residuals. For discussions of model and design-based approaches to survey weights, see

Little (2004, 2008) and Gelman (2007).

4.6. Methods for Propagating Imputation Uncertainty

Single imputation methods lead to confidence intervals that are too narrow (that is, have

less than nominal coverage) when imputation uncertainty is not propagated. There are

model-based and design-based approaches to correcting this problem. A Bayesian

approach is multiple imputation, where multiple data sets are generated with different sets

of draws from the predictive distribution of the missing values (Rubin 1987, 1996).

A design-based approach is to apply replicate methods such as the jackknife (Rao 1996;

Fay 1996), with different imputations in each replicate; these methods are design-based

in spirit but “pseudo” randomization-based in fact, since they rely on an assumption

that, within classes, nonresponse is in effect a form of random sampling. Multiple

imputation does not yield consistent estimates of variance under particular forms of

model misspecification (Meng 1994; Rao 1996; Fay 1996; Robins and Wang 2000;
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Kim et al. 2006). Modelers accept model misspecification as inevitable, and seek multiple

imputation models that capture key features of the population – they also point to

simulations suggesting that multiple imputation under plausible models generally yields

good or conservative confidence coverage.

I view this as a proxy fight for the more basic underlying philosophical differences.

At the Census Bureau it has led to a form of stalemate, where single imputation methods

that fail to propagate imputation error continue to be applied, even though both of the

alternatives mentioned above are clearly superior to the status quo.

4.7. DMC-Induced Constrictions of the Total Survey Error Paradigm

Total survey error (TSE) centers around a decomposition of mean squared error of a

survey estimate into components of sampling error, and nonsampling errors such as

frame errors, errors due to nonresponse, response errors, editing and interviewer effects.

In a recent review of TSE, Groves and Lyberg (2010) note that the explicit attention to

the decomposition of errors in TSE, and the separation of phenomena affecting

statistics in various ways, provides a central conceptual basis for the field of survey

methodology. At the same time, they point out the following weaknesses of the current

TSE paradigm:

i) quantitative measurement of many components is burdensome and lagging;

ii) the TSE paradigm has not led to enriched error measurement in practical surveys;

iii) assumptions required for some estimators of error terms are frequently not true;

iv) there is a mismatch between existing error models and theoretical causal models of

the error mechanisms;

v) there is a misplaced focus on descriptive statistics; and

vi) there is a failure to integrate error models developed in other fields.

I believe that a primary source of these weaknesses is the design-based tradition of survey

inference, making it difficult to harmonize in a single inference the design-based approach

for sampling errors and model-based approach needed for non-sampling errors. An

explicitly model-based CB representation of the TSE concept, drawing heavily on Rubin’s

unified concepts of causal inference and missing data (Rubin 1974), addresses many of the

failures in implementing the TSE paradigm.

4.8. Incorporating Information from Multiple Data Sources

The modeling paradigm of CB is particularly relevant to problems of combining data

across data sources. The design-based paradigm can incorporate known administrative

data, using methods such as post-stratification or raking, and methods from multiple frame

probability samples, but a modeling framework like CB is required for combining

information from probability samples with information from nonprobability sources, or

sources where nonsampling errors need to be modeled. The topic is too large for an

extended treatment here, but see Elliott and Little (2005), Schenker and Raghunathan

(2007), and Raghunathan et al. (2007) for examples of Bayesian approaches to combining

information from different data sources.
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5. Two Census Bureau Applications

While DMC is the prevailing philosophy of statistics at the Census Bureau, there is an

increasing acceptance of model-based, and even Bayesian methods. In this section I

describe two small area estimation topics that are being addressed from a CB perspective.

Example 5. Small Area Income and Poverty Estimates. The U.S. Census Bureau Small

Area Income and Poverty Estimates (SAIPE 2011) are intercensal estimates of selected

income and poverty statistics for school districts, counties, and states, for the

administration of federal programs and the allocation of federal funds to local

jurisdictions. Data from administrative records, intercensal population estimates, and the

decennial census are combined with direct estimates from the American Community

Survey to provide consistent and reliable single-year estimates. Direct survey estimates

(from the Current Population Survey, CPS, or more recently from the American

Community Survey, ACS) are too unreliable for many areas, and a small area model is

applied to integrate survey data with data from administrative records and the previous

census long form. The basic form of the model (Fay and Herriott 1979) is

yajua; va , Nðua; vaÞ

uajb;s
2 , N x 0

ab;s
2

� � ;
where ya is the direct survey estimate of population quantity ua for area a, va is the

sampling variance of ya, xa is a vector of regression variables for area a with associated

regression parameters b, and s 2 is the variance of small area random effects. Initially the

variances va and s 2 were treated as known, but more recent formulations have included

prior distributions as part of a Bayesian formulation.

In particular, for the state poverty rate model for ages 5–17, the direct survey estimates

yi were originally from CPS, but since 2005 are from the ACS; the regression variables in

xi include a constant term and, for each state, pseudo-poverty rate for children from tax

return data tax “nonfiler rate”, SNAP (food stamp) participation rate, previous census

estimated state 5–17 poverty rate, or residuals from regressing previous census estimates

on other elements of xi for the census year. Table 1 presents CPS sample size, direct

variance va and posterior variance for four states from the State Model for 2004 CPS 5–17

Poverty Rates. For California (CA), the sample size is large, most of the weight (61%) is

on the direct estimate, and the posterior variance (0.8) is not much smaller than the direct

variance (1.1). For Mississippi (MS), the sample size is small, most of the weight (87%) is

on the model prediction, and the posterior variance (3.9) is much smaller than the direct

variance (12.0). The other two states lie between these two.

Table 1. Posterior Variances from SAIPE State Model for 2004 CPS 5-17 Poverty Rates. Results for four states

State na va Var(Yajdata) Approx. wt. on Ya in E(Yajdata)

CA 5,834 1.1 0.8 .61
NC 1,274 4.6 2.0 .28
IN 904 8.1 2.0 .18
MS 755 12.0 3.9 .13
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Example 6: Language Provisions of the Voting Rights Act. The Voting Rights Act

determines that certain counties and townships are required to provide language assistance

at the polls. Determinations are based in part on there being more than 5 percent of voting

age citizens in a political district who are members of a single language minority and are

limited English proficient (LEP). The Census Bureau is charged with determining which

jurisdictions are covered under the Act, and until now have used direct estimates from

Long Form Decennial Census Data. With the replacement of the long form, estimates are

henceforward to be based on the smaller ACS, and some districts have small ACS samples

and hence have direct estimates with unacceptably high variance. The 2011

determinations use a small area model that combines information from the 2005–2009

ACS and 2010 Census data. To see why a model is needed, let P be the proportion of

voting age citizens in a voting district who are members of a single language minority and

are LEP. Suppose the ACS was a simple random sample; then a direct estimate of P is the

sample proportion m/n, where n is the sample count of voting age citizens in a district, and

m is the number of minority voting age citizens in that district who are LEP. For a small

District A with n ¼ 105, m ¼ 5, m=n , 0:05, and the 5% provision would not apply,

but for a District B with n ¼ 105, m ¼ 6, m=n . 0:05 and the 5% provision would

apply. That is, a change in the sample count of just one changes the outcome. A small

area model is applied to increase the precision of the estimate, and hence the reliability

of the outcome.

The approach to the “more than 5%” provision was to build a district level regression

model to predict P based on variables in the ACS, and Census 2010 counts of minority

groups. Classify districts into classes with similar predicted P based on the model –

predictive mean stratification; and then within classes, apply a hierarchical random-effects

model that pulls the direct ACS estimate of P towards the average P for districts in that

class; and compare the model estimate with 5% for this aspect of the determination.

Comparison of the Bayesian model estimates with the direct ACS estimates indicated

large gains in precision, particularly for the small voting districts. The predictive mean

stratification is used to reduce dependency on model assumptions, since the regression

model is used to group similar jurisdictions rather than to create direct predictions. See

Joyce et al. (2012) for more details.

6. Conclusions

I have argued for a paradigm shift in official statistics, away from the current DMC

towards Bayesian models that are geared to yield inferences with good frequentist

properties. My design-based statistical colleagues raise two principal objections to this

viewpoint.

First, the idea of an overtly model-based, even worse Bayesian, approach to probability

surveys is not well received, although the calibrated part of CB is welcomed for its focus

on good randomization properties. Models are mistrusted, and should be avoided at all

costs! My view is simply that classical design-based methods do not provide the

comprehensive approach needed for the complex problems that increasingly arise in

official statistics: small area estimation, nonresponse and response errors, file linkage and

combining information across probabilistic and nonprobabilistic sources. Judicious
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choices of well-calibrated models are needed to tackle such problems. Attention to design

features and objective priors can yield Bayesian inferences that avoid subjectivity, and

modeling assumptions are explicit, and hence capable of criticism and refinement.

The second objection is that Bayesian methods are too complex computationally for the

official statistics world, where large numbers of routine statistics need to be computed

correctly and created in a timely fashion. It is true that current Bayesian computation

may seem forbidding to statisticians familiar with simple weighted statistics and replicate

variance methods. Sedransk (2008), in an article strongly supportive of Bayesian

approaches, points to the practical computational challenges as an inhibiting feature.

I agree that much work remains to meet this objection, but I do not view it as insuperable.

Research on Bayesian computation methods has exploded in recent decades, as have our

computational capabilities. To take as an example my research area of missing data,

methods have evolved from simple imputation methods, to maximum likelihood for

general patterns of missing data via iterative algorithms like EM, to Bayesian multiple

imputation methods for increasingly complex models based on Gibbs’ sampling, now

widely available in standard software (Little and Rubin 2002; Little 2011). Bayesian

models have been fitted to very large and complex problems, in some cases much more

complex than those faced in the official statistics world.

Part of the problem here is a lack of familiarity with modeling and Bayesian methods

among government statisticians, since unfamiliar tasks are often easier than they seem.

Clearly government statisticians need to be skilled in statistical computation, a better

marriage is needed between computer science and statistics, and infrastructure is needed

to bring more sophisticated analysis methods into production environments. These are

challenging problems, but I do not see them as insuperable, if there is recognition that they

are worth tackling.

The move to a more overt modeling approach means that government agencies need to

recruit and train statisticians who are adept in modeling (and yes, Bayesian) methods, as

well as being familiar with survey sampling design. Survey sampling needs to be

considered a part of mainstream statistics, in which Bayesian models that incorporate

complex design features play a central role. A CB philosophy would improve statistical

output, and provide a common philosophy for statisticians and researchers in substantive

disciplines such as economics and demography. A strong research program within

government statistical agencies, including cooperative ties with statistics departments in

academic institutions, would also foster examination and development of the viewpoints

advanced in this article (Lehtonen et al. 2002, Lehtonen and Särndal 2009).

Change is also needed before statisticians are recruited into government agencies.

Currently Bayesian statistics is absent or “optional” in many programs for training

MS statisticians, and even Ph.D. statisticians are often trained with very little exposure

to Bayesian ideas, beyond a few lectures in a theory sequence dominated by frequentist

ideas. This is clearly incompatible with the rising prominence of Bayes in science, as

evidenced by the strong representation of modern-day Bayesians in science citations

(Science Watch 2002).

The examples in Section 5 are for me an encouraging sign that the Census Bureau is

more open to the CB approach I favor, at least in the context of small area estimation.

I would like to see it applied more generally to other problems, such as the treatment of

Journal of Official Statistics328



missing data, and applications that require combining across data sources, which are

becoming more urgent with the attempts to incorporate administrative record data into

Census Bureau products. Aside from the statistical benefits of modeling, direct

substitution of administrative records may be problematic because of privacy and legal

issues, but using the administrative records as predictors in a model to impute missing

records is often more acceptable (Zanutto and Zaslavsky 2001).

When it comes to consumers of statistics, Bayes is not a part of most introductory

statistics courses, so most think of frequentist statistics as all of statistics, and are not aware

that Bayesian inference exists. Defenders of the status quo claim that Bayesian inference is

too difficult to teach to students with limited mathematical ability, but my view is that

these difficulties are overrated. The basic idea of Bayes’ Theorem can be conveyed

without calculus, and Bayesian methods seem to me quite teachable if the emphasis is

placed on interpretation of models and results, rather than on the inner workings of

Bayesian calculations. Indeed, Bayesian posterior credibility intervals have a much more

direct interpretation than confidence intervals, as noted above. Frequentist hypothesis

testing is no picnic to teach to consumers of statistics, for that matter.

Formulating useful statistical models for real problems is not simple, and students need

more instruction on how to fit models to complicated data sets. We need to elucidate the

subtleties of model development. Issues include the following: (a) models with better fits

can yield worse predictions; (b) all model assumptions are not equal, for example in

regression lack of normality of errors is secondary to misspecification of the error

variance, which is in turn secondary to misspecification of the mean structure; (c) if

inferences are to be Bayesian, more attention needs to be paid to the difficulties of picking

priors in high-dimensional complex models, objective or subjective.

Models are imperfect idealizations, and hence need careful checking; this is where

frequentist methods have an important role. These methods include Fisherian significance

tests of null models, diagnostics that check the model in directions that are important

for the target inferences, and model-checking devices like posterior predictive checking

and cross-validation. Such diagnostics are well known for regression, but perhaps

less developed and taught for other models, particularly when complex survey designs

are involved.
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