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Calibration as a Standard Method
for Treatment of Nonresponse

Sixten LundstroÈm1 and Carl-Erik SaÈrndal2

1. Introduction

Both producers and users of statistics are aware that nonresponse can impair the quality of

the estimates, and therefore considerable resources are spent on data collection procedures

aiming at preventing nonresponse from occurring. Nevertheless, we have to accept some

missing values. Since we can be practically certain that the nonresponse is not the result of

a simple random selection mechanism, we try to adjust for the selection bias at the estima-

tion stage. Furthermore, we know that the nonresponse creates an additional component of

variance.

The literature provides two standard methods for treating nonresponse: imputation and

weighting. In the ®rst method, missing values are replaced by proxies; in the second, the

design weights are multiplied by adjustment weights aiming at nonresponse bias reduction.

This article is concerned with weighting.

To ®x ideas we introduce some notation. Consider the ®nite population of N elements

U � f1;¼; k;¼;Ng. We wish to estimate the total Y � SUyk, where yk is the value of a

typical study variable, y, for the kth element. For short, SA will be used for Sk[A, where A Í U

is an arbitrary set. Let s be a sample of size n drawn from U with the probability p�s�. The

inclusion probabilities are then pk � Ss3kp�s� and pkl � Ss3fk;lgp�s�. Let dk � 1=pk denote
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the design weight of element k, and let dkl � 1=pkl. However, nonresponse occurs, and the

response set r of size m is obtained, where r Í s and m # n.

Strong auxiliary information is a prerequisite for a successful reduction of both the

sampling error and the nonresponse bias. We assume that there exists an auxiliary vector,

x, containing such strong information. Its value for the kth element is denoted xk. We

de®ne the two ``information levels,'' called Info-S and Info-U, to be examined in the

following sections:

i) Info-S: xk is known for all k [ s

and

ii) Info-U: SUxk is known and moreover xk is known for all k [ s.

In case (ii) the information goes ``up to the population level'' and is more extensive than in

case (i), where it goes ``up to the sample level'' only.

Before presenting our approach we comment on some conventional methods. Commonly a

two-phase approach is used, where the response mechanism is considered as the second

phase. Let us for the time being assume that the response distribution q�rjs� is known

with the corresponding known response probabilities denoted Pr�k [ rjs� � vk and

Pr�k&l [ rjs� � vkl (we assume these probabilities to be independent of the realized

sample s). Under these conditions SaÈrndal, Swensson, and Wretman (1992) suggest, in

their Chapter 9 on two-phase sampling, the following estimators at Info-S and Info-U,

respectively:

ÃYSSW ;sv � Sr dkgskvyk=vk �1:1�

where

gskv � 1 � qk�Ss dk xk ÿ Sr dk xk=vk�
0
�Sr dkqk xk x0

k=vk�
ÿ1xk �1:2�

and

ÃYSSW ;Uv � Sr dk gUkvyk=vk �1:3�

where

gUkv � 1 � qk�SU xk ÿ Sr dk xk=vk�
0
�Sr dk qk xk x0

k=vk�
ÿ1xk �1:4�

However, in practice the response probabilities are never known and so they have to be

replaced by some proxies Ãvk. Recognizing this, the literature suggests that a relevant

response model be ®rst formulated, then that its unknown response probabilities be

estimated. The conventional estimator of Y is then

ÃY � Srdk v1k v2k yk �1:5�

where v1k � 1=Ãvk and v2k is equal to the g-weights given either by (1.2) or by (1.4), where

vk is replaced by Ãvk.

Most of the response models considered so far in the literature are simple, for example

that the given sample s can be partitioned into groups such that all elements within the

same group are assumed to have the same response probability. SaÈrndal, Swensson, and

Wretman (1992) call these groups response homogeneity groups, (RHGs). Usually in

practice the weights v2k are also simple, as when they are poststrati®cation weights.
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The commonly used process is well expressed by Kalton and Kasprzyk (1986, p. 4): ``A

common approach is initially to determine the sample weights needed to compensate for

unequal selection probabilities, next to revise these weights to compensate for unequal

response rates in different sample weighting classes (e.g., urban/rural classes within

geographical regions), and ®nally to revise the weights again to make the weighted sample

distribution for certain characteristics (e.g., age/sex) conform to the known population

distribution for those characteristics.'' Other references in the same spirit are Binder,

Michaud, and Poirier (1994) and Singh, Wu, and Boyer (1995).

Examples of more complex response models include, for example those in Politz and

Simmons (1949) and Thomsen and Siring (1983). Some authors estimate the response

probabilities from logistic regression models, as in Little (1986) and Ekholm and Laaksonen

(1991), where the dependent variable is dichotomous (response, nonresponse) and the

explanatory variables are selected from the set of available auxiliary variables.

In the Scandinavian countries, much information is available from registers; for example,

Statistics Sweden's registers for individuals contain variables such as sex, age, nationality,

income, education and ®eld of occupation, and also geographical variables (address). All

these data are known at the population level. Moreover, the unique personal identi®cation

number makes it easy to transfer data to the response set. However, little of this abundance

of information seems to be used in practice, probably because the traditional methods are

viewed by many as time-consuming, complex and otherwise inconvenient. Thus, to

promote increased use of available auxiliary information it is essential to offer the users

a wide choice of simple and convenient, but still effective, methods within a common

framework. It should be possible within such a framework to access a wide class of esti-

mators via a well-designed computer software. We present in this article an approach that

is in our opinion simpler than the best of the current possibilities, but equally effective. In

our approach a weight which corresponds to the product of v1k and v2k is calculated in one

single step. No explicit response model is needed, this in contrast to the conventional methods,

where some auxiliary information is used in modeling and deriving the v1k and some in

deriving the v2k in (1.5). We include all the relevant auxiliary information in the vector

xk, with the dual purpose of reducing both the sampling error and the nonresponse bias.

The general features of our approach are as follows. After having speci®ed the auxiliary

information, we compute calibrated weights, denoted wk, and construct the estimator
ÃYw � Sr wkyk of Y . We call it the w-estimator. The weights wk are ``as close as possible''

to the dk, and they also satisfy a calibration equation given for Info-S by

Sr wk xk � Ss dk xk �1:6�

and for Info-U by

Sr wk xk � SU xk �1:7�

InSection 2 we describe the w-estimators for eachof the two information levels. InSection 3

we develop variance estimators for the w-estimators. These take into account the increased

variance caused by nonresponse. In Section 4 an expression for the nonresponse bias is

presented and discussed. We derive in Section 5 the expression taken by the general point

estimators for four speci®cations of the auxiliary vector corresponding to common types of

auxiliary information. In Section 6 we conduct an empirical analysis.
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An advantage with our approach is that it requires only a simple yet general one-step

procedure. Users (nonspecialists in statistical science) can easily carry out the computa-

tions by means of well-designed computer software. At Statistics Sweden, the general

purpose software CLAN is currently being extended to also manage auxiliary information

in the second phase of a regression estimator for two-phase sampling. Hence, in the near

future it will be possible to use CLAN to compute the variance estimators proposed in this

paper for surveys with nonresponse.

2. The Point Estimators Derived From Calibration

Calibration estimators in the full response case are described in Deville and SaÈrndal

(1992). They seek an estimator of the form ÃYDS � Ssw
o
kyk with weights wo

k as close as pos-

sible to the design weights dk while respecting the calibration equation Ssw
o
k xk � SUxk.

They discuss the merits of different metrics for the distance between wo
k and dk (see

also Dupont 1994).

In this article we use the calibration technique, but since yk-values are observed for

the response set only, rather than for the full sample, we seek new weights wk that

satisfy the calibration equation (1.6) or (1.7). The distance function to be minimized

is

Sr�wk ÿ dk�
2=dkqk �2:1�

where the qk are speci®ed positive factors. In the case of full response (r � s), this distance

function leads to the generalized regression estimator (see Expression (6.4.1) in SaÈrndal,

Swensson, and Wretman 1992).

The proof of the following proposition follows easily by the Lagrange multiplier

method.

Proposition 2.1: For Info-U, minimization of the distance (2.1) under the constraint (1.7)

leads to the w-estimator

ÃYwU � Sr dk vUk yk �2:2�

where

vUk � 1 � qk SU xk ÿ Sr dk xk

ÿ �
0 Sr dk qk xk x0

k

ÿ �ÿ1
xk for k [ r �2:3�

If the auxiliary total SUxk is unknown, we can instead calibrate on the unbiased

estimate Ss dk xk. In this case the Lagrange multiplier method leads to the following

proposition:

Proposition 2.2: For Info-S, minimization of the distance (2.1) under the constraint (1.6)

leads to the w-estimator

ÃYws � Sr dk vsk yk �2:4�

where

vsk � 1 � qk Ss dk xk ÿ Sr dk xk

ÿ �
0 Sr dk qk xkx 0

k

ÿ �ÿ1
xk for k [ r �2:5�

One can argue, for both of these calibrations, that fdk : k [ rg is inappropriate as a set of
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initial weights, since they are on average too small. In many cases this is, however, not a

serious ¯aw, as the following proposition shows.

Proposition 2.3: For Info-U, suppose that

(i) ®nal weights wk, k [ r, are sought to satisfy the calibration equation (1.7);

(ii) the distance to minimize is

Sr�wk ÿ d�
k �

2=d�
k qk �2:6�

where the d�
k are arbitrary initial weights;

�iii� qk � 1=m0xk for all k �2:7�

where m is a column vector of the same dimension as xk and independent of k.

Let c be an arbitrary positive constant. Then the initial weights fd�
k ; k [ rg and the initial

weights fcd�
k ; k [ rg give exactly the same ®nal weights, namely

wk � d�
k qk SU x0

k

ÿ �
Sr d�

k qk xk x0
k

ÿ �ÿ1
xk �2:8�

For Info-S, (1.7) is replaced by (1.6). Assuming that (ii) and (iii) remain unchanged, the

®nal weights are

wk � d�
k qk Ss d�

k x0
k

ÿ �
Srd

�
k qk xkx0

k

ÿ �ÿ1
xk �2:9�

irrespective of the choice of c.

The proof of Proposition 2.3 is given in the Appendix.

Remark 2.1: Suppose the population is divided into P groups U1;¼;Up;¼;UP and that

the group total SUp
xk is known for p � 1;¼;P, and used in the calibration. Let cp,

p � 1;¼;P, be arbitrary positive constants. Then the initial weights d�
k � dk and the

initial weights d�
k � cpdk, for k [ rp, give exactly the same ®nal weights when (ii) is

minimized and (iii) holds. The proof of this is similar to that of Proposition 2.3. The

same conclusion can be drawn for Info-S when Ssp
dk xk, p � 1;¼;P, is used in the

calibration equations.

3. Variance Estimation

3.1. The mean squared error of the calibrated estimator

We start by examining the mean squared error (MSE). Let ÃYw stand for the point

estimator, so that ÃYw is either ÃYws or ÃYwU , depending on whether the information level

is S or U. Both levels are covered simultaneously in the following discussion. Further,

let ÃYs denote the estimator implied by ÃYw if all elements in the sample s respond, that

is, when we set r � s in (2.2) or in (2.4). It is easy to see that ÃYws reduces to the (unbiased)

Horvitz-Thompson estimator

ÃYs � Ss dk yk �3:1�

and that ÃYwU reduces to the (approximately unbiased) generalized regression estimator

ÃYs � Ss dk gk yk �3:2�
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where

gk � 1 � qk SU xk ÿ Ss dk xk

ÿ �
0 Ss dk qk xk x0

k

ÿ �ÿ1
xk �3:3�

A decomposition of the MSE is given in the following proposition.

Proposition 3.1: Jointly under the sampling design p(s) and the response distribution

q�rjs�, the mean squared error of ÃYw is

MSEpq
ÃYw

ÿ �
� VSAM � VNR � 2Covp

ÃYs;BNRjs

ÿ �
� Ep B2

NRjs

ÿ �
�3:4�

where VSAM � Vp� ÃYs� is the sampling variance, VNR � EpVq� ÃYwjs� is the nonresponse

error variance, BNRjs � Eq� ÃYw ÿ ÃYsjs� is the nonresponse bias (conditionally on s), and

Covp� ÃYs;BNRjs� is the covariance of ÃYs and BNRjs under the sampling design.

The proof of this proposition is given in the Appendix.

Remark 3.1: If the condition

BNRjs � 0 for all s �3:5�

is veri®ed, then (3.4) becomes

Vpq� ÃYw� � V0
pq� ÃYw�

where

V0
pq� ÃYw� � VSAM � VNR �3:6�

There exists virtually no survey such that the condition (3.5) is exactly satis®ed.

Inevitably, whenever there is nonresponse, some bias is introduced. But calibration on

strong auxiliary information may go a long way toward eliminating the conditional non-

response bias BNRjs, and when this is the case, the inferences (con®dence intervals, and so

on) made by acting as if (3.5) is true will still be approximately valid. We shall work

under the assumption that (3.5) holds approximately, so that Vpq� ÃYw� < V0
pq� ÃYw� � VSAM

�VNR.

Our approach will consist in estimating each of the two components of V0
pq� ÃYw�, VSAM

and VNR, and to use the sum of the two component estimates, ÃV0
pq� ÃYw�, as an estimator

of Vpq� ÃYw�. As for 95% con®dence intervals, we propose to use

ÃYw ÿ 1:96

���������������
ÃV0

pq� ÃYw�

q
; ÃYw � 1:96

���������������
ÃV0

pq� ÃYw�

q� �
The real con®dence level of this interval is not exactly 95%, for three contributing reasons:

(a) ÃYw is not an unbiased point estimator, (b) ÃV0
pq� ÃYw� is not an unbiased variance estimator,

and (c) the normal distribution assumption that motivates the score 1.96 holds at best

approximately. However, if both ÃYw and ÃV0
pq� ÃYw� have modest bias, and the sample size

is not too small, the suggested con®dence interval will be approximately valid at the

95% level. (This is also con®rmed by the simulation results in Table 4.)

The complexity (except in the very simplest cases) of our point estimators ÃYws and ÃYwU

makes it dif®cult to obtain (even approximate) expressions for their variances. It is even

less evident how variance estimates should be constructed. Nevertheless, our objective is

to obtain variance estimators for ÃYws and ÃYwU that will work reasonably well. Moreover,
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they should be simple to calculate. Finally, we impose the condition that the variance

estimators must be model free: they must be constructed without recourse to a nonresponse

mechanism model. A strength of our approach is precisely the fact that point estimators are

derived without appealing to such models.

In order to obtain variance estimators for ÃYws and ÃYwU we shall exploit a similarity that

these point estimators have with the two-phase theory point estimators ÃYSSW ;sv and ÃYSSW ;Uv,

given by (1.1) and (1.3), respectively.

3.2. A useful analogy with estimation under two-phase sampling

SaÈrndal, Swensson, and Wretman (1992) suggested variance estimators for ÃYSSW ;sv and
ÃYSSW ;Uv. Let us adapt these to the situation with sampling followed by nonresponse, assum-

ing for simplicity that the sample elements respond independently, so that

Pr�k&l [ rjs� � vkl � vkvl for all k Þ l �3:7�

Under this assumption the suggested variance estimator for ÃYSSW ;sv, equation (9.7.28) in

SaÈrndal, Swensson, and Wretman (1992), gives, after some algebra,

ÃV� ÃYSSW ;sv� � SrS�dk dl ÿ dkl�
yk

vk

� �
yl

vl

� �
ÿ Sr dk�dk ÿ 1�

yk

vk

� �2

�1 ÿ vk�

� Srd
2
k �1 ÿ vk�

gskvekv

vk

� �2

�3:8�

where SrS denotes the double sum over k [ r and l [ r, gskv is given by (1.2),

ekv � yk ÿ x0
kBrv �3:9�

and Brv � �Sr dk qk xk x 0
k=vk�

ÿ1Sr dk qk xk yk=vk:

Under the assumption (3.7), the variance estimator for ÃYSSW ;Uv, derived from equation

(9.7.22) in SaÈrndal, Swensson, and Wretman (1992), becomes

ÃV� ÃYSSW ;Uv� � SrS�dk dl ÿ dkl� �gk ekv=vk� �gl elv=vl�

ÿ Sr dk�dk ÿ 1�
gk ek v

vk

� �2

�1 ÿ vk� � Srd
2
k�1 ÿ vk�

gsk v ek v

vk

� �2

�3:10�

where gk is given by (3.3), gsk v by (1.2) and ek v by (3.9).

Let ÃYSSWv stand for either ÃYSSW ;sv or ÃYSSW ;Uv, depending on whether the information level

is S or U. Then we can write the variance of ÃYSSWv as

V� ÃYSSWv� � VSAM � EpVq� ÃYSSWvjs� �3:11�

where VSAM is the variance of the estimator to which ÃYSSWv reduces under full response.

Note that VSAM is exactly the same as in (3.6) because ÃYSSWv and ÃYw reduce to the same

expression under full response, which can be seen from the following. The estimator

implied by (1.1) when all units respond with probability vk � 1, is the unbiased

Horvitz-Thompson estimator, Ss dk yk, with the variance VSAM � Vp�Ss dk yk�. Recall that

under full response, ÃYws also reduces to Ss dk yk; see (3.1). The corresponding full response

estimator, implied by (1.3) when all sampled units respond with probability vk � 1, is

the generalized regression estimator Ss dk gk yk, where gk is given by (3.3). Its variance
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is VSAM � Vp�Ss dk gk yk�. Recall that under full response, ÃYwU also reduces to Ss dk gk yk , as

noted in (3.2).

However, the second components in (3.6) and (3.11) differ, because ÃYSSWv and ÃYw are

constructed differently. The estimation of the nonresponse variance component VNR in

(3.6) would be simple if ÃYSSWv and ÃYw were identical, but since they are not, a special pro-

cedure, outlined in Sections 3.3 and 3.4, is required. (Note that although (3.11) is written as

an equality, a slight approximation is actually involved. This is because the expectation

over the second phase of ÃYSSWv ÿ ÃYs, conditionally on the ®rst phase sample s, is not

exactly zero but a close approximation to zero.) Aided by the theory just reviewed, we

now construct the desired variance estimators, ®rst for ÃYws in Section 3.3, then for ÃYwU

in Section 3.4.

Remark 3.2: We can expect (3.8) and (3.10) to give some underestimation of the variance.

This is a well-known feature in formulas such as these which are derived by Taylor

linearization. Part of the reason is that the ideal ``population residuals'' are replaced

with ``sample-based residuals'' (see SaÈrndal, Swensson, Wretman 1992, p. 363). This

entails a loss of degrees of freedom, and the resulting underestimation can be signi®cant,

particularly for smallish samples. In Section 3.3, we propose variance estimators patterned

on (3.8) and (3.10) and such that ek v is replaced by fk ek v, where fk adjusts for the number of

degrees of freedom lost when parameters are estimated. In Section 6, we propose fk-values

that are appropriate for each of the four different auxiliary vectors xk examined in that

section.

3.3. A variance estimator for ÃYws

Assuming that BNRjs < 0 for all s, we now develop a variance estimator for ÃYws. That is,

we seek to estimate V0
pq� ÃYws� given by (3.6). This variance is determined jointly by the

known sampling design p�s� and the unknown response mechanism q�rjs� with its

unknown response probabilities vk. The analogue of ÃYws in the two-phase approach is
ÃYSSW ;s v. A variance estimator for ÃYSSW ;s v, under condition (3.7), is given by (3.8), but it

cannot be used for ÃYws as it stands. Not only are ÃYSSW ;s v and ÃYws different estimators,

but in addition the vk in (3.8) are unknown. If (3.8) is to be of any help at all, we must ®rst

resolve the dif®culty with the unknown vk. To this end, we argue as follows: If ÃYws and
ÃYSSW ;s v were identical (that is, equal for all samples s), it would follow that their respective

variances, Vpq� ÃYw� and Vpq� ÃYSSW ;s v�, are equal. As already noted, these two variances share

the same ®rst component, VSAM � Vp�Ss dk yk�. It follows that if ÃYSSW ;s v and ÃYws could be

made identical, then the second components would also be identical. The route that we

shall follow is therefore ®rst to make the two estimators identical by a suitable choice

of the vk, then to substitute the resulting ``estimates'' of the vk in the already available

formula (3.8). This amounts to a parameter ®tting technique: We ®t the unknown vk to

the data available for the respondents. Two questions arise: What ®tted response probabil-

ities, if any, will make ÃYSSW ;s v identical to ÃYws? If we replace the unknown vk in (3.8) by

such ®tted response probabilities, will the result be a ``good'' variance estimator for ÃYws?

Proposition 3.2, which follows, answers the ®rst question. The second question can only

be answered by empirical studies performed on actual data. One such study is reported in

Section 6.

312 Journal of Of®cial Statistics



Proposition 3.2: Let vsk be given by (2.5). When vk is replaced by Ãvk � vÿ1
sk , then ÃYSSW ; sv

� Sr dk gsk v yk=vk becomes identical to ÃYws � Sr dk vsk yk. Moreover, the values Ãvk � vÿ1
sk

satisfy the reasonable condition Sr�dk xk=Ãvk� � Ss dk xk. When vk is replaced by Ãvk in the

weights gsk v, given by (1.2), then the resulting weights are equal to unity for all k.

The proof of Proposition 3.2 is given in the Appendix.

We now create our variance estimator for ÃYws by replacing the unknown vk in (3.8) by

the computable quantities Ãvk � vÿ1
sk and by inserting factors fk that compensate for loss of

degrees of freedom (see Remark 3.2). It is clear that Ãvk � vÿ1
sk may fall outside the interval

[0,1] suggested by viewing Ãvk as an estimated probability. But the possibility that some Ãvk

fall outside the unit interval is not seen as a serious de®ciency here, because our main

objective is that the Ãvk for k [ r perform well collectively, as substitutes for the true vk,

when the variance is estimated.

These operations, and the fact that all gsk v become equal to unity when vk is replaced in

(3.8) by Ãvk � vÿ1
sk , lead to the variance estimator ÃV0

pq� ÃYws� given in Proposition 3.3. The

performance of this variance estimator is tested by the empirical studies in Section 6.

Proposition 3.3: A variance estimator for ÃYws is given by

ÃV0
pq� ÃYws� � SrS�dk dl ÿ dkl� �vsk yk� �vsl yl� ÿ Sr dk�dk ÿ 1�vsk�vsk ÿ 1�y2

k

� Srd
2
k vsk�vsk ÿ 1� f 2

k e2
k �3:12�

where

ek � yk ÿ x 0
k Brv �3:13�

and Brv � �Sr dk vsk qk xk x 0
k�

ÿ1Sr dk vsk qk xk yk

3.4. A variance estimator for ÃYwU

Working still under the assumption that BNRjs < 0 for all s, we now develop a variance

estimator for ÃYwU . In this case we have auxiliary information at the population level.

Nevertheless, it seems reasonable to ``estimate'' the response probabilities in the same

way as for Info-S (Section 3.3), since the only information that we can possibly obtain

about the response behaviour comes from examining characteristics of respondents and

nonrespondents in the particular sample that was drawn. Therefore, for Info-U, we use

the same ``estimates'' for the vk as for Info-S, that is, Ãvk � vÿ1
sk , where vsk is given by

(2.5). Our proposal for a variance estimator for ÃYwU is obtained by replacing the unknown

vk in (3.10) by Ãvk � vÿ1
sk and by inserting the factors fk (see Remark 3.2). The result is given

in Proposition 3.4. We test its performance in the empirical investigations in Section 6.

(Note, however, that in this case ÃYSSW ;U v and ÃYwU will not be identical when vk is replaced

by Ãvk � vÿ1
sk .)

Proposition 3.4: A variance estimator for ÃYwU is given by

ÃV0
pq� ÃYwU� � SrS�dk dl ÿ dkl� �gkvsk fk ek��gl vsl fl el�

ÿ Sr dk�dk ÿ 1�vsk�vsk ÿ 1��gk fk ek�
2
� Sr d2

k vsk �vsk ÿ 1� f 2
k e2

k �3:14�

where gk and ek are given, respectively, by (3.3) and (3.13).
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4. A General Expression of the Nonresponse Bias

In this section we develop a general expression for the bias of the two estimators ÃYws and
ÃYwU . Even if such an expression will contain some unknowns, it can be highly useful

for identifying those auxiliary variables that are particularly powerful for reducing both

nonresponse bias and sampling error. Bethlehem (1988) and Fuller, Loughin, and Baker

(1994) also discuss expressions for the nonresponse bias.

Since the same bias expression is obtained for both information levels S and U, we let
ÃYw represent both ÃYws and ÃYwU .

Proposition 4.1: For large response sets, the nonresponse bias of ÃYw is

Bpq� ÃYw� < ÿSU�1 ÿ vk�E
v
k �4:1�

where Ev
k � yk ÿ x 0

k B v
U and B v

U � �SU vk qk xk x 0
k�

ÿ1SU vk qk xk yk

By introducing a weak restriction on the factors qk, we obtain from (4.1) another expression

that will be used in several examples in the following.

Proposition 4.2: Suppose that qk � 1=m0xk for all k [ U, where m is a column vector of

the same dimension as xk and not dependent on k. Then, for large response sets,

Bpq� ÃYw� < ÿSUE v
k � SU x 0

k B v
UE �4:2�

where E v
k is de®ned in Proposition 4.1 and B v

UE � �SU vk qk xk x 0
k�

ÿ1SU vk qk xk Ek;

Ek � yk ÿ x 0
k BU and BU � �SU qk xk x 0

k�
ÿ1SU qk xk yk

The proofs of Proposition 4.1 and 4.2 are given in the Appendix.

In Section 6 we examine the bias expressions (4.1) and (4.2) in special cases corre-

sponding to commonly used types of auxiliary information. However, let us at this point

make two statements which are valid generally, when qk � 1=m0 xk for all k [ U.

(1) When Ek � 0 for all k, B v
UE � 0, and consequently Bpq� ÃYw� < 0. The implication is

that if the auxiliary information is strong, the residuals Ek are near zero, and so is

the bias. Moreover, the sampling error will be small. Under those highly favour-

able conditions, whatever the relation between yk and vk, the bias will be near

zero.

(2) When each element responds with the same probability v0 it follows from (4.2) that

the bias will be zero.

In most surveys, we cannot expect the conditions in either (1) or (2) to hold. However,

in regularly repeated surveys there often exists considerable information about how

the response propensity is correlated with different auxiliary variables. The following

proposition can then be helpful in selecting auxiliary variables for inclusion in the auxiliary

vector xk.

Proposition 4.3: If there exists a constant column vector l such that vÿ1
k � 1 � qkl

0xk for

k [ U, then Bpq� ÃYw� < 0.

The proof of this proposition is given in the Appendix. The importance of Proposition 4.3

lies in the fact that we can specify the auxiliary vector xk and the factors qk as we like,
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within the bounds set by the total number of available auxiliary variables. This liberty of

choice provides a tool for controlling the nonresponse bias.

5. Special Cases

By following the general procedure outlined in Sections 2 and 3 we can construct estima-

tors that incorporate auxiliary information in an ef®cient manner. The purpose of this sec-

tion is to promote the credibility of the procedure by showing that many ``conventional

techniques'' are special cases. Therefore we derive in this section the expression taken

by the general point estimators suggested in Section 2 for four speci®cations of the vector

xk corresponding to common types of auxiliary information. Because of space limitations,

only four vectors xk are considered. For the ®rst three xk-vectors our point estimators

coincide with conventional estimators. For the ®rst two xk-vectors our variance estimators

also con®rm existing suggestions. But for the last two xk-vectors, although they are not

particularly ``complex,'' the literature that we have examined does not provide explicit

variance estimators. This is not surprising since closed formula variance estimation

rapidly becomes intractable as the xk-vector expands. But computationally speaking, var-

iance estimation remains simple when, as with our approach, one can rely on a general

software.

In all cases we choose to take qk � 1 for all k. For each of the speci®ed vectors xk, this

choice satis®es qk � 1=m0xk. Thus it follows from Proposition 2.3 that the calibration

yields the same ®nal weights whether the initial weights are speci®ed as dk or as cdk, where

c is an arbitrary constant. The ®ndings in Remark 2.1 apply in some of the cases.

In all cases we assume that simple random sampling (SRS) is used, that is, dk � N=n for

all k, where n is the size of s.

Example 5.1. No auxiliary information

By no auxiliary information, we mean that xk � 1 for all k. It is easily seen from (2.5) and

(2.3) that in this case vsk � vUk � n=m for all k and thus, from (2.4) and (2.2) we get
ÃYws � ÃYwU � NSryk=m, denoted ÃYEXP. This is the traditional expansion estimator.

We let fk � 1 for all k (see Remark 3.2) in the variance estimators ÃV0
pq� ÃYws�, given by

(3.12), and ÃV0
pq� ÃYwU�, given by (3.14). The two results differ slightly, but when m is large,

both are very close to N2
�1 ÿ m=N� S2

r =m. Now, this is the usual variance estimator for the

expansion estimator for an SRS sample of size m. That our approach gives this result

is reassuring, because in the absence of auxiliary information we have no grounds for

postulating anything but equal response probabilities for all elements. Moreover, when

n is large, the size m of the responding set, although random, has a very small variance.

Thus, to approximate the selection procedure by an SRS of size m seems very reasonable.

Turning now to the bias expression given by (4.2), we ®nd that it becomes, for large

response sets,

Bpq� ÃYEXP� < N
SU vk yk

SU vk

ÿ Y

� �
�5:1�

where Y � SUyk=N. It follows that when vk is constant for all k, the nonresponse bias of
ÃYEXP is approximately zero, a well-known result. The bias can be considerable if the vk
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are not constant, as most survey statisticians are aware. But with the extremely weak aux-

iliary information in this case, one cannot expect anything else.

Example 5.2 One-way classi®cation into P groups

In this case the auxiliary vector is xk � Gk, with Gk � �g1k;¼;gpk;¼;gPk�
0, where, for

p � 1;¼;P

gpk �
1 if k [ group p

0 otherwise

�
By the term ``group p'' we mean either the part of the sample s that falls in group p,

denoted sp, or the part of the population U that de®nes group p, denoted Up. We assume

that the groups are mutually exclusive and exhaustive and we have s � Èp
p�1sp; U �

È p
p�1Up. The components of the key vector totals are denoted as follows:

P
U xk �

�N1;¼;Np;¼;NP�
0;

P
s xk � �n1;¼; np;¼; nP�

0 and
P

r xk � �m1;¼;mp;¼;mP�
0.

For Info-S, xk is known for each k [ s, and we can calculate
P

s dk xk �

� ÃNp1;¼; ÃNpp;¼; ÃNpP�
0, where ÃNpp �

P
sp

dk � Nnp=n. For Info-U, we also know the vectorP
U xk � �N1;¼;Np;¼;NP�

0.

For Info-S, it follows from (2.5) that vsk � np=mp for k [ rp, so the point estimator (2.4)

becomes

ÃYws � ÃYWCL �
N

n

XP

p�1

npyrp
�5:2�

where yrp
� Srp

yk=mp

Known as the weighting class estimator, it is often discussed in the literature; see for

example Oh and Scheuren (1983), Kalton and Kasprzyk (1986), Little (1986), Statistics

Sweden (1980).

The corresponding variance estimator can be derived from the general form (3.12). The

resulting formula bears no close resemblance to the expressions suggested in earlier litera-

ture for this case. Anyway, our approach to variance computation is not dependent on a

particular algebraic expression; instead we rely on computer software based on the general

form.

For Info-U it follows from (2.3) that the weights are vUk � Np=
P

rp
dk � Npn=mpN for

k [ rp. Thus the general point estimator (2.2) becomes

ÃYwU � ÃYPST �
XP

p�1

Npyrp
�5:3�

It is sometimes called the poststrati®ed estimator, but this term is not ideal since it

conceals the fact that not one but two phases of selection are involved (the sampling phase

and the response phase). However, Kalton and Kasprzyk (1986) are more explicit and

distinguish the poststrati®ed estimator used in the full response case (a single phase esti-

mator) from what they call the population weighting adjustment estimator, that is, (5.3).

The latter term implicitly recognizes a sampling phase followed by a nonresponse phase.

Jagers (1986), Bethlehem and Kersten (1985), and Thomsen (1973, 1978) also discuss the

estimator (5.3).
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We now turn to the variance estimator ÃV0
pq� ÃYPST � given by (3.14). When mp is large,

p � 1;¼;P, the result becomes approximately equal to the variance estimator for the

pre-strati®ed estimator with mp elements drawn with SRS from stratum p, namelyXP

p�1

N2
p 1 ÿ

mp

Np

� �
1

mp

S2
rp

This is a reassuring result.

The general bias expression (4.2) becomes, under the present speci®cations,

Bpq� ÃYWCL� � Bpq� ÃYPST � <
XP

p�1

Np

P
Up

vkykP
Up

vk

ÿ Yp

 !
�5:4�

where Yp � SUp
yk=Np. It follows immediately from (5.4) that the WCL estimator and the

PST estimator are approximately unbiased when every element in Up responds with the

same probability. The practical implication is that one should strive to identify such

groups, if possible.

Example 5.3 One-way classi®cation and a numerical variable

In the preceding section we considered auxiliary information permitting each element in the

sample or in the population to be assigned to one out of P possible groups. To take a step further

towards more extensive information we now assume that a numerical auxiliary variable,

denoted x, is also available. We examine the case of the auxiliary vector xk � �G 0
k; xkG

0
k�

0.

For Info-S the calibration equation (1.6) becomes

Srwkxk � � ÃNp1;¼; ÃNpp;¼; ÃNpP; ÃXp1¼; ÃXpp;¼; ÃXpP�
0; where ÃNpp � Nnp=n and

ÃXpp � N
X

sp

xk=n; and for Info-U the calibration equation (1.7) becomes

Srwkxk � �N1;¼;Np;¼;NP;X1;¼;Xp;¼;XP�
0; where Xp �

X
Up

xk

The estimator ÃYws, given by (2.4) becomes

ÃYws �
XP

p�1

ÃNpp yrp
� xsp

ÿ xrp

� �
Bp

n o
�5:6�

where xsp
�

1

np

X
sp

xk; xrp
�

1

mp

X
rp

xk; Bp �
Covxyrp

S2
xrp

with Covxyrp
�

1

mp ÿ 1

X
rp

xk ÿ xrp

� �
yk ÿ yrp

� �
and S2

xrp
�

1

mp ÿ 1

X
rp

xk ÿ xrp

� �2

The estimator ÃYwU , given by (2.2), takes the well-known form of a separate regression

estimator,

ÃYwU �
XP

p�1

Np yrp
� Xp ÿ xrp

� �
Bp

n o
where Xp �

P
Up

xk=Np
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Let us examine the bias of ÃYwU (and ÃYws) in the special case of a single group, that is,

when xk � �1; xk�
0. With qk � 1 for all k, the general formula (4.2) becomes

Bpq� ÃYwU� <
1

C

�
SUvkxk

SUvkx2
k

SUvkxk

ÿ X

� �
SUvkEk

� SUvk X ÿ
SUvkxk

SUvk

� �
SUvkxkEk

�
�5:7�

where C � �SUvkSUvkx2
k ÿ �SUvkxk�

2
�=N and Ek � yk ÿ Y ÿ B�xk ÿ X� with

B � SU�xk ÿ X� �yk ÿ Y�=SU�xk ÿ X�2; Y � SU yk=N and X � SUxk=N

We already know from Section 4 that the bias is zero when each element responds with

the same probability. In practice this is not likely to occur. But (5.7) shows that other con-

ditions exist under which the bias is near zero, namely, if both SUvkEk and SUvkxkEk are

small. This will happen when all residuals are near zero (which is unlikely), but also if vk is

uncorrelated, or nearly so, both with Ek and with xkEk. If one has several x-variables to

choose from, but wants to select one of them, the question arises as to which one will

come closest to making both sums close to zero. It is not apparent how this could be

realized.

Example 5.4 Two-way classi®cation

In practice it is common to have two or more categorical auxiliary variables. In this section

we discuss the possibilities and problems that occur with a two-way classi®cation. The

principal problems would be similar in the case of a multi-way classi®cation.

Consider two crossing classi®cations. Let the ®rst of these be de®ned by a set of groups

indexed p � 1;¼;P as in Example 5.2. The second is de®ned by the indicators dh,

h � 1;¼;H, such that dhk � 1 if k [ group h and dhk � 0 otherwise. If all cell response

counts are reasonably large, and information exists at the cell level, then we can let the

xk be speci®ed as a vector of dimension PH composed of PH-1 entries ``0'' and a single

entry ``1'' indicating the cell membership of element k. We need not examine this case

here, because it reduces to that of a one-way classi®cation as discussed earlier; the only

difference is that we have PH classes instead of just P. However, in many situations a

more appropriate formulation of the auxiliary vector is xk � �G 0
k;D

0
k�

0, where Gk is de®ned

as in Example 5.2 and Dk � �d1k;¼; dhk;¼; dHÿ1:k�
0. (In order to avoid singularity of the

matrix Sr dk qk xk x0
k, the ®nal h-group is excluded.)

The resulting point estimators ÃYws and ÃYwU have no simple form and are not given here.

They are, however, studied empirically in Section 6. The bias formula (4.2) also gives a

complex expression in this case.

With this formulation of the xk-vector, an alternative is to use the raking ratio solution

(see for example, Oh and Scheuren (1983)). Raking ratio requires iteration; our solution

does not. Raking ratio always gives positive weights; our solution may give a few negative

weights. As LundstroÈm (1997) points out, the raking ratio derives from the minimization

of a different distance function than (2.1), which is the basis for our solution. As for the

point estimators, they will differ by very little, in most situations, whether raking ratio

or our solution is used. The literature on raking ratio does not propose a simple estimator
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of variance; our solution to variance estimation, if not explicit, is at least computationally

straightforward and used in the simulations in Section 6.

6. Simulations Based on an Empirical Data Set

In this section, Monte Carlo simulation is used to study how alternative speci®cations of

the auxiliary vector xk affect the quality of the estimators derived by the calibration tech-

nique in Sections 2 and 3. We compute quality measures such as relative bias, variance and

coverage rate of con®dence intervals. All simulations are based on one real data set, The

Annual Economic Reports of Swedish Clerical Municipalities, referred to in the following

as KYBOK, the Swedish acronym.

Throughout the section the only type of parameter estimated is a total for the entire

population. The SRS design is used in the ®rst phase, and in the second phase two different

response distributions are used.

KYBOK is a census of the 965 clerical municipalities in Sweden. This census provides

statistics on different economic variables such as incomes, expenses and investments. In

the 1992 census, 832 of the 965 municipalities responded to the postal inquiries. The

response rate was thus 86 per cent. The population used in the simulations consists of

the 832 responding elements. The study variable yk is a numerical variable measuring a

certain expense item (``central foÈrvaltning ± externa driftskostnader''). The ®rst auxiliary

variable, denoted Gk, is categorical, indicating one out of four possible types of clerical muni-

cipality (``pastorat'', ``kyrkliga samfaÈlligheter'', ``foÈrsamlingar'', ``stiftssamfaÈlligheter'').

The second auxiliary variable, denoted xk, is numerical and de®ned as the square root

of preliminary revenues (``foÈrskottsmedel''). One of our alternatives consists of a two-

way classi®cation involving Gk and a second categorical auxiliary variable, Dk, that points

out one of four equal-sized groups indexed by h � 1;¼;H that we created by size ordering

the 832 elements from the smallest to the largest according to the value of xk and in such a

way that the ®rst group consists of the ®rst 208 elements of the size ordering, the second

group of the next 208 elements, and so on.

Figure 1 shows a scatter plot of the study variable yk and the numerical auxiliary variable
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Fig. 1. The scatter plot of the study variable y and the auxiliary variable x. The population regression line is

also shown



xk; k � 1;¼;N. Also shown is the population regression line obtained by the least squares

®t for E�yk� � a � bxk; V�yk� � j2.

Table 1 shows some key characteristics of the study variable yk and its correlation with

the auxiliary variable xk.

From the population consisting of the 832 responding elements in the KYBOK census,

repeated simple random samples are drawn. For each sample, two response sets are realized

using two different response distributions. We refer to the ®rst response distribution as

the logit response distribution. It is based on a logistic model estimated from the KYBOK

census with its 965 elements. For these elements we know the dichotomous variable

``responding/not responding,'' which was treated as the criterion variable in the logistic

model ®t. The predictor variables were x2
k (� preliminary revenues, element k) and two

other numerical variables for which we also have data for all 965 elements. In the estima-

tion of the logistic model parameters we assumed a single response model for the entire

population, that is, the grouping indicated by the vector Gk was ignored. The estimated

(predicted) response probabilities for the 832 responding units are then used as ``true''

response probabilities vk in the simulation studies. The average response probability,

�1=N�SUvk, is 86%.

The second response distribution is arti®cially created, starting from a given mathema-

tical form. That is, in contrast to the logit response distribution, it is not ``adjusted'' to the

KYBOK population. The only thing that the two response distributions have in common is

the average response probability of 86%. We call it the increasing exponential response

distribution. It is de®ned by the response probabilities vk � 1 ÿ exp�ÿc1xk�, where we

®xed c1 � 0:318 in order to obtain the desired average response probability of 86%.

Our simulation studies involve drawing 10,000 samples of size 300 by SRS from

the population of size 832. For each sample, two response sets (one for each response

distribution) were realized by carrying out, for the sampled element k, a Bernoulli experi-

ment with parameter vk. These experiments are independent. For response set

j� j � 1;¼; 10; 000�, ÃYw� j� is calculated, where ÃYw� j� is the value of the point estimator
ÃYw for response set j. Here, ÃYw � ÃYws given by (2.4) for Info-S, and ÃYw � ÃYwU given by

(2.2) for Info-U. We study two measures, namely (i) the simulation relative bias in percent,

RBSIM� ÃYw� � 100�ESIM� ÃYw� ÿ Y�=Y , where ESIM� ÃYw� �
P10;000

j�1
ÃYw� j�=10; 000 is the simu-

lation expectation of ÃYw, and (ii) the simulation variance, VSIM� ÃYw� �P10;000
j�1 � ÃYw�j� ÿ ESIM� ÃYw��

2=9; 999.

In the simulations, we studied the point estimators generated by four different xk-vector
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Table 1. Some key characteristics of the study variable y

Characteristics Entire population Group (type of clerical municipality)

1 2 3 4

Total 1,025,983 132,788 241,836 343,359 308,000
Mean 1,233 609 889 1,184 5,923
Number of elements 832 218 272 290 52
Variance ´ 10ÿ3 3,598 228 566 1,683 20,369
Correlation coef®cient 0.92 0.87 0.90 0.84 0.91

between y and x (RyxU)



speci®cations, namely, xk � 1 for all k, xk � Gk, xk � �G0
k; xkG

0
k�

0, xk � �G0
k;D

0
k�

0. The

speci®cation xk � 1 for all k, which produces the expansion estimator ÃYEXP � NSryk=m,

is of interest only as a benchmark with which the more bias-resistant speci®cations can

be compared. It is a foregone conclusion that ÃYEXP will be heavily biased. The results

are displayed in Table 2.

For the variance estimator to be reasonably stable, the number of observations in a

group must not be too small. In the simulations we required this number to be at least

four. Since the last group in the partition de®ned by Gk (group 4) is very small, it will occur

in our simulation, for a certain number of response sets, that this condition is not met. For

these response sets, group 4 was collapsed with group 3.

We would expect the nonresponse bias to diminish with increasing amounts of auxiliary

information, and this is con®rmed by Table 2. A large simulation relative bias is observed

for the uninformative speci®cation xk � 1 for all k, namely 5.0% for the logit and 9.3%

for the increasing exponential response distribution. The bias drops substantially when

we go to the more informative auxiliary vector xk � Gk, but it still remains disturbingly

high. However, the bias is nearly eliminated when the numerical variable xk is also

included in the auxiliary vector, either in its original form or categorized and represented

by Dk.

We would also expect the variance to diminish with increasing amounts of auxiliary

information. Table 2 con®rms this. Not unexpectedly the reduction is much more striking

for Info-U than for Info-S. The most extreme illustration of this occurs for the increasing

exponential response distribution and xk � �G
0

k; xkG
0
k�

0, where the simulation variance is

only 743 ´ 106 for Info-U as compared to 5; 289 ´ 106 for Info-S. An interesting observa-

tion is that, for Info-U, xk � �G0
k; xkG

0
k�

0 gives much smaller simulation variances than

xk � �G0
k;D

0
k�

0, but for both xk-vectors the simulation relative bias is small.
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Table 2. Simulation relative bias and simulation variance for different response distributions and different point

estimators. SRS with n � 300

Response distribution Auxiliary Info-level RBSIM� ÃYw� VSIM� ÃYw� ´ 10ÿ6

vector xk

logit 1 S or U 5.0 6,955

Gk S 2.2 5,936
U 2.2 3,713

�G0
k; xkG

0
k�

0 S ÿ0.3 5,366
U ÿ0.2 807

�G0
k;D

0
k�

0 S 0.6 5,667
U 0.7 2,686

increasing exponential 1 S or U 9.3 7,013

Gk S 5.7 5,772
U 5.7 3,634

�G0
k; xkG

0
k�

0 S ÿ0.9 5,289
U ÿ0.8 743

�G0
k;D

0
k�

0 S 0.6 5,422
U 0.6 2,519



We now examine the variance estimator given by (3.12) for Info-S and by (3.14) for

Info-U. Let us denote it by ÃV0
pq� ÃYw�, where ÃYw is either ÃYws or ÃYwU , and let us denote

its value for sample j by ÃV0
pq� ÃYw� j��. In Table 3 the factors fk are de®ned, for each

auxiliary vector, by considering the loss of degrees of freedom to be 0, 1, 2 and

P � H ÿ 2, respectively.

We calculated (a) the simulation relative bias of ÃV0
pq� ÃYw�, RBSIM

ÃV0
pq� ÃYw�

� �
�

100 ESIM
ÃV0

pq� ÃYw�
� �

ÿ VSIM� ÃYw�
� 	

=VSIM� ÃYw�; where ESIM� ÃV0
pq� ÃYw�� �

P10;000
j�1

ÃV0
pq� ÃYw�j��=

10; 000, and (b) the simulation coverage rate for a nominal 95% con®dence interval based

on ÃV0
pq� ÃYw�, CRSIM� ÃV0

pq� ÃYw�� �
P10;000

j�1 I�j�=100 with

I� j� �
1 if �a1j; a2j� contains Y

0 otherwise

�
where a1j � ÃYw� j� ÿ 1:96� ÃV0

pq� ÃYw� j���
1=2; a2j � ÃYw� j� � 1:96� ÃV0

pq� ÃYw� j���
1=2. The simulation

results are displayed in Table 4.

When xk � 1 for all k, the two variance estimators ÃV0
pq� ÃYws� and ÃV0

pq� ÃYwU� are not iden-

tical, but very nearly equal. We found no numeric differences between them, to the degree

of precision used in Table 4, so they appear on the same line in the table.

Some noteworthy results in Table 4 are: (1) The variance estimators that we propose,
ÃV0

pq� ÃYws� and ÃV0
pq� ÃYwU�, perform well. In most cases, the relative bias is small, and the
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Table 3. The fk-values

Auxiliary 1 Gk �G0
k; xkG

0
k�

0
�G0

k;D
0
k�

0

vector xk

fk 1

��������������
mp ÿ 1

mp ÿ 2

s
for k [ rp

��������������
mp ÿ 1

mp ÿ 3

s
for k [ rp

�������������������������������
m ÿ 1

m ÿ P ÿ H � 1

r
for k [ r

Table 4. Simulation relative bias and simulation coverage rate for ÃV0
pq� ÃYw� for Info-S and Info-U, for different

response distributions and different point estimators. SRS with n � 300

Response distribution Auxiliary Info-level RBSIM� ÃV0
pq� ÃYw�� CRSIM� ÃV0

pq� ÃYw��

vector xk

logit 1 S or U 3.5 94.1

Gk S 0.3 94.6
U 0.6 94.1

�G0
k; xkG

0
k�

0 S ÿ1.3 93.2
U ÿ5.9 92.9

�G0
k;D

0
k�

0 S 0.1 94.0
U ÿ4.1 93.1

increasing exponential 1 S or U 4.6 85.9

Gk S 1.2 91.6
U 1.9 87.1

�G0
k; xkG

0
k�

0 S ÿ2.6 92.3
U ÿ6.2 91.6

�G0
k;D

0
k�

0 S 0.2 94.0
U ÿ4.3 93.1



coverage rate is with few exceptions close to the nominal 95%. (2) The cases where the

coverage rate drops considerably below the nominal 95% are, for obvious reasons, those

where the bias of the point estimator remains relatively high, as Table 4 shows the case to

be especially for the increasing exponential mechanism when xk � 1 for all k, and when

xk � Gk. (3) As expected, there is no tendency that increased auxiliary information will

reduce the relative bias of the variance estimator. (By contrast, such a tendency was

predicted, and con®rmed in Table 2, for the relative bias of the point estimator.) Although

the relative bias is never very large, it is more noticeable for Info-U (where in several cases it

lies between ÿ4% and ÿ6%) than for Info-S. This can perhaps be attributed to the fact

that the variance (see Table 2) is substantially lower for Info-U than for Info-S. Since the

variance consists of sampling variance and nonresponse variance, and the nonresponse

variance is the same for both information levels, we will have for Info-U, that the nonresponse

component is relatively more important. Any inaccuracy in estimating this component will

therefore be more noticeable.

7. Concluding Remarks

We believe that our approach can provide a useful general tool for the methodologist faced

with survey nonresponse. Questions beyond those discussed in this article need to be

addressed to make the approach fully operational in a survey. For example, we have con-

sidered only the estimation of population totals, but most surveys involve other parameters

of interest, such as means and ratios of totals. In addition, most surveys require estimation

for (perhaps numerous) domains of interest. Also, coverage errors are commonly present

in surveys. It would carry too far in this article to address these issues.

We have noted in Section 6 that a judicious use of auxiliary information can signi®-

cantly reduce both the nonresponse bias and the sampling error. In some surveys, there

is an abundance of auxiliary information, so that a selection of the most relevant variables

would have to precede the start of the calibration process. We do not necessarily recom-

mend that the totality of the information be used. To blindly add auxiliary information,

over and beyond a set of crucial variables, might do more harm than good. These problems

are indicated in Nascimento Silva and Skinner (1997) and LundstroÈm (1997). The selection

of an ``optimal'' set of auxiliary variables is thus not a trivial problem, and will in many

cases require the judgement of an experienced survey statistician.

Some of the issues mentioned in this section require further theoretical work. Empirical

studies are also important to gain further experience with the approach that we propose.

Also, since many applications of our approach would use information taken from admin-

istrative registers, it is important to develop computerized systems that would facilitate the

extraction and use of such information. Statistics Sweden is taking steps in this direction.

Appendix

A. Proof of Proposition 2.3.

When d�
k is replaced by cd�

k in (2.6) we have the developmentX
r

�wk ÿ cd�
k �

2

cd�
k qk

�
1

c

X
r

�wk ÿ d�
k �

2

d�
k qk

�
c2

ÿ 1

c

X
r

d�
k

qk

ÿ 2
c ÿ 1

c

X
r

wk

qk

�A:1�
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But, using (2.7) and (1.7),
P

r wk=qk � m0
P

r wkxk � m0
P

U xk �
P

U qÿ1
k , which is a

constant not dependent on the wk. Likewise, the term ��c2
ÿ 1�=c�

P
r d�

k =qk is independent

of the wk. Therefore, to minimize
P

r�wk ÿ cd�
k �

2=cd�
k qk under the constraint (1.7) gives

exactly the same ®nal weights wk as minimizing �1=c�
P

r�wk ÿ d�
k �

2=d�
k qk under the

same constraint.

That these ®nal weights are given by (2.8) is seen by the following. Insert dk � d�
k into

the expression (2.3), which gives

wk � d�
k 1 � qk SUx 0

k ÿ Srd
�
k x 0

k

ÿ �
Srd

�
k qkxkx 0

k

ÿ �ÿ1
xk

h i
�A:2�

That (A.2) simpli®es into (2.8) is shown by the following argument: Multiply each term in

the sum Srd
�
k x 0

k by qkm0xk, which equals 1 for all k by virtue of (2.7). Then (A.2) can be written

wk � d�
k �1 � qk�SUx 0

k ÿ m0T�Tÿ1xk� where T � Srd
�
k qkxkx 0

k. Since qkm0TTÿ1xk � 1 for

all k, it follows that wk � d�
k qk�SUx0

k��Srd
�
k qkxkx0

k�
ÿ1xk, which is the desired expression (2.8).

For Info-S, a simple modi®cation of the proof shows that the ®nal weights in that case

are given by (2.9).

B. Proof of Proposition 3.1.

The mean squared error can be written

MSE� ÃYw� � Vpq� ÃYw� � B2
pq� ÃYw� �B:1�

where Vpq� ÃYw� � Epq� ÃYw ÿ Epq� ÃYw��
2 and Bpq� ÃYw� � Epq� ÃYw� ÿ Y

Let us write Vpq� ÃYw� as a sum of components. First, we note that

Vpq
ÃYw

ÿ �
� EpVq

ÃYwjs
ÿ �

� Vp BNRjs � ÃYs

ÿ �
� EpVq

ÃYwjs
ÿ �

� Vp BNRjs

ÿ �
� Vp

ÃYs

ÿ �
� 2Covp

ÃYs;BNRjs

ÿ �
�B:2�

However; Vp BNRjs

ÿ �
� Ep B2

NRjs

ÿ �
ÿ Ep BNRjs

ÿ �� �2
� Ep B2

NRjs

ÿ �
ÿ EpEq

ÃYw ÿ ÃYsjs
ÿ �� �2

� Ep B2
NRjs

ÿ �
ÿ B2

pq
ÃYw

ÿ �
�B:3�

Using notation introduced in Proposition 3.1, we now get

Vpq
ÃYw

ÿ �
� VSAM � VNR � 2Covp

ÃYs;BNRjs

ÿ �
� Ep B2

NRjs

ÿ �
ÿ B2

pq
ÃYw

ÿ �
�B:4�

The desired result (3.4) now follows from (B.1) and (B.4).

C. Proof of Proposition 3.2.

It is easily seen that the two expressions (1.1) and (2.4) are identical when vsk � gsk v=vk.

This means that we seek the response probabilities vk that satisfy the equation

vk �
1 � qk �Ss dk xk ÿ Sr dk xk =vk�

0
�Sr dk qk xk x0

k=vk�
ÿ1xk

1 � qk�Ss dk xk ÿ Sr dk xk�
0�Sr dk qk xk x0

k �
ÿ1xk

for k [ r �C:1�

This equation usually has many solutions. Among all these solutions we choose the one

that satis®es

Sr

dk xk

vk

� Ssdk xk �C:2�
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This choice is reasonable because

Eq Sr

dk xk

vk

js

� �
� Ssdkxk:

Condition (C.2) inserted in (C.1) provides a solution that we denote Ãvk, namely,

Ãvk �
1

1 � qk�Ss dk xk ÿ Sr dk xk�
0�Sr dk qk xk x0

k�
ÿ1xk

for k [ r �C:3�

It is easy to see that (C.3) satis®es the condition (C.2). We have

Sr dk x0
k=Ãvk � Sr dk x0

k � �Ss dk xk ÿ Sr dkxk�
0
�Sr dk qk xk x0

k�
ÿ1Sr dk qk xk x0

k

� Sr dk x0
k � �Ss dk xk ÿ Srdkxk�

0
� Ss dk x0

k

D. Proof of Propositions 4.1 to 4.3.

To prove Proposition 4.1, we note from (2.2) that

ÃYwU ÿ Y � Sr dk yk � �SU xk ÿ Sr dk xk�
0Br ÿ SU yk �D:1�

where Br � �Sr dk qk xk x0
k�

ÿ1Sr dk qk xk yk

We obtain an approximation of the bias Epq� ÃYwU� ÿ Y by replacing each of the

random terms in (D.1) by its expected value. We have Epq�Sr dk yk� � SUvk yk and,

analogously, Epq�Sr dk xk� � SU vkxk. Further, for large response sets, Epq�Br� < Bv
U ,

where Bv
U is as de®ned in Proposition 4.1. Therefore, Epq� ÃYwU ÿ Y� < ÿSU�1 ÿ vk�yk�

SU�1 ÿ vk�x
0
kBv

U � ÿSU�1 ÿ vk�E
v
k, with Ev

k � yk ÿ x0
kB v

U . Proposition 4.1 is thereby

veri®ed.

It is easy to follow the proof just given for the bias of ÃYwU and see that the same expres-

sion is obtained for the estimator ÃYws.

To prove Proposition 4.2, note that the nonresponse bias expression (4.1) can be written

Bpq� ÃYw� < ÿSU�1 ÿ vk�E
v
k � SU�1 ÿ vk�x

0
kBv

U ÿ SU�1 ÿ vk�yk

� SUx0
k Bv

U ÿ SUvk x0
k Bv

U ÿ SU�1 ÿ vk�yk �D:2�

Now, by assumption, qkm0xk � 1 for all k, so the second component of (D.2)

becomes SUvk x0
k Bv

U � m0SUvk qk xk x0
k Bv

U � SU vk qk m0 xk yk � SU vk yk. Thus, Bpq� ÃYw�<
SU x0

k Bv
Uÿ SU yk � ÿSU Ev

k

Finally, it is easily seen that Bv
U � BU � Bv

UE, where BU and Bv
UE are as de®ned in Pro-

position 4.2. Therefore,

Bpq� ÃYw� < SUx0
k Bv

U ÿ SU yk � SU x0
k BU � SU x0

k Bv
UE ÿ SU yk � SU x0

k Bv
UE ÿ SU Ek

However, when qk � 1=m0xk for all k [ U, SU Ek � 0 and therefore Bpq� ÃYw� < SU x0
k Bv

UE.

Proposition 4.2 is thereby veri®ed.

To prove Proposition 4.3, multiply element k in the ®rst component of (D.2) by

vk�1 � qkl
0xk�, which by assumption equals 1 for all k. We get

SU x0
k Bv

U � SU vk x0
k Bv

U � l0SU vk qk xk x0
k Bv

U

325LundstroÈm, SaÈrndal: Calibration as a Standard Method for Treatment of Nonresponse



� SUvk x0
k Bv

U � l0SU vk qk xk x0
k�SU vk qk xk x0

k�
ÿ1SU vk qk xkyk

�
X

U

vk x0
k Bv

U �
X

U

vk qk l0 xk yk

However, since vk qk l0 xk � 1 ÿ vk, SU x0
k Bv

U � SU vk x0
k Bv

U � SU�1 ÿ vk�yk. Thus, it is

seen that (D.2) equals zero and Proposition 4.3 is veri®ed.
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