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Classification and Properties of Rotation
Sampling Designs

Ronaldo Tachan! and Byron Jones®

Abstract: For repeated sampling in time, a
general class of rotation sampling designs is
iatroduced. The construction and classifica-
tion of such designs are followed by a de-
railed examination of their properties. For
this purpose, an additive model is proposed
that takes into account period and sampling

1. Introduction

In this paper we consider the construction,
classification, and properties of a class of
rotation sampling designs, drawing an anal-
ogy with incomplete block designs. Effici-
ency comparisons are made using a linear
additive model for survey responses.
Rotation sampling designs perform well
when one wishes to minimize sampling and
nonsampling errors. As for sampling errors,
current levels are best estimated (in the sense
of smallest sampling variance) when there is
some overlap between successive samples.
Partially overlapping samples provide a use-
ful compromise between the complete over-
lap (same unit interviewed over and over),
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unit effects and permits efficiency com-
parisons.
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ency; variance of period changes; construc-
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required for the most precise estimates of
period-to-period changes, and the drawing of
a new sample (no overlap) needed for the
most precise overall {aggregate) estimates.
See Cochran (1977, pp. 344-347) for related
arguments and some classical developments
for sampling on twoO Or MOTe occasions with
simple random sampling. With more than
two occasions, finding optimal designs be-
comes extremely complicated (even in a
restricted and approximate sense). Patterson
(1950) and Eckler (1955) have developed the
basic theory for this case. Extensions to more
general designs and estimators are given in
Ghangurde and Rao (1969), Jain (1981), and
Wolter (1979). As for non-sampling errors,
the rotation aspect of the design avoids
excessive respondent burden and sample
attrition that lead to increased response
errors and nonresponse errors.

The model-based approach of this paper
permits straightforward efficiency computa-
tions when more than two occasions are con-
sidered. Recommendations as to which
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design to use in what circumstances follow
from this methodology, so that design choices
can be tailored to fit survey priority objec-
tives.

In this paper we use some properties of
block designs that are used in comparative
experiments to derive rotation sampling
designs for surveys. A block design is used to
compare a number of “treatments,” e.g.,
different drugs, different fertilizers, etc. The
available experimental units, e.g., human
volunteers, plots of agricultural land, etc.,
are divided up into “blocks” so that the units
within a block are as similar as possible. The
units in different blocks may then differ
greatly. In the analysis of the data obtained
from block experiment, the differences
between the treatments are estimated from
within-block comparisons. In an incomplete
block design the number of units in a block is
smaller than the number of treatments. This
means that the estimates of the treatment
differences must be adjusted for the differ-
ences between the blocks. An instructive
review of the similarities between experi-
mental design and sample survey methodolo-
gies is provided by Fienberg and Tanur (1985).
They draw analogies between the design con-
cepts in the two areas such as randomization/
probability sampling, blocking/stratification
and split-plots/clusters. Then they discuss the
use of balanced incomplete block designsas a
means of achieving a restricted randomiza-
tion in sampling by reducing the “support” of
a sampling plan (Chakrabarti (1963)). The
support is the set of samples with positive
selection probabilities. These authors then
review analogies between the model-based
analyses used in the two areas: while Model 1
or fixed effects linear models have seen sev-
eral applications in sampling, Model II or
random effects models are used rarely in the
sampling literature (exceptions include
Hartley and Rao (1978) and Fuller and Harter
(1985)). Our paper is something of a synthesis
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in that linear models inspired by incomplete
block designs are used to guide the search for
optimal sampling designs. We use the frame-
work of what are known as cyclic incomplete
block designs to obtain alternatives to the
symmetric designs used in sample surveys.
Our designs reduce the response burden.

2. Rotation Sampling Designs

Many large-scale surveys are repeated peri-
odically using a rotation sampling design. In
such a design, a total sample is divided into b
rotation groups. A rotation group can consist
of a fixed number of primary sampling units
(PSU’s), segments within PSU'’s, or last stage
units. Let rotation group j, where j=1,2, ...,
b, be interviewed in each of the k; periods.
The total number of periods in the designis ¢
and k;=t, for all j. Furthermore, let f be the
constant fraction of the groups interviewed in
one period that are also interviewed in the
next period; the remaining fraction (1-f) of
the groups are replaced. The cyclical nature
of our designs should be noted. In each
period, » groups are interviewed, and this
requires that a particular group returns to the
sample.

The design used in the National Crime Sur-
vey (Fienberg (1980)), for example, has this
type of overlap pattern (slightly modified to
accommodate bounding of interviews).
Other rotation patterns are used in the
Current Population Survey carried out by the
U.S. Bureau of the Census (1978) and in
Statistics Canada’s Labor Force Survey
(Ghangurde (1982)).

A convenient representation of this design
is given by the incidence matrix N, which has
elements ny, i=1,2,...,¢;j=1,2,...,b. The
element n;=1 if group j is interviewed in
period i, and is zero otherwise. The analogy
with the construction of block designs, as
used in comparative experiments, is that
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b = the number of blocks,
the number of treatments,
r = the number of units which receive
each particular treatment,
k; = the number of units in block j, and
n; = the number of units in block j which
receive treatment I,
The class considered here is an important
subclass of the class of cyclic designs (see,
e.g., John et al. (1972)).

It

3. Construction

A rotation design is completely specified

by its incidence matrix N. The basic designs

considered in this paper have an incidence
matrix that is constructed as follows. Given

b, r, and a “shift parameter” s:

1. Set the first r entries of the first row equal
to 1 and the rest to 0. That is, set n;=1;
j=1,2, ..., rand ny=0forj=r+1, ..., b.

2. Construct the second row of N by shifting
all entries in the first row s places to the
right in a cyclical manner. That is, the
(p+s) th element of row 2 is set equal to the
p thelement of row 1, where (p+s) is taken
modulo b, and p=1,2, ..., b.

3. Rows 3, 4, ... are constructed in exactly
the same way from their directly preceding
rOWS.

4. Eventually row 1 will occur in the (++1) th
row. This last row is discarded to leave an
incidence matrix with r rows and b columns.
Then we see that the value of k; is the
number of ones in column j;j=1,2, ..., b.
These types of designs were constructed

for b=1,2,...,12. Foreach value of b, designs

were systematically obtained by varying r

from 1 to b-1, and for each r by varying s

from 1 to r. As an example, Table 1 gives the

incidence matrix for b=8, r=5, and s=2, con-
structed as explained above. This design has
t=4, ki=ky=ks=k,=3, and k,=k;=kg=kg=2.

More realistic examples will be given in the

following sections.

Table 1. Incidence Matrix for b=8, r=>5 and
§=2.

1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 0
1 0 0 0 1 1 1 1
1 1 1 0 0 0 1 1

An additional parameter that is useful for
describing a design is the “overlap,” /,
between rows. In Table 1 the overlap is /=3.
It will be noted that f =% . As will be seen in
the following, most designs have k=%, a con-
stant, for all j. Designs for which the inci-
dence matrices are the same (except for a per-
mutation of their columns) are considered
equivalent, since they correspond to a simple
relabelling of the groups.

4. Classification of the Designs

In order to classify the rotation designs, we
introduce a linear model for the character-
istic, Y, that is measured in the survey. For

i=1,2,..,tandj=1,2, ..., b, we assume
Y =u+o+ B+ &, 4.1
where

Y, = the observed value of the character-
istic for group j in period 1,

w = the overall mean,

a; = the effect of period i.

B; = the effect of groupJ,

and

g; 1s an independent random residual with
mean zero and variance o°.

It will be noted that the model is written in
terms of the group characteristic rather than
in terms of the characteristics of the individ-
ual units within each group, because in
block designs it is unusual to have more than
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one response from each treatment (period)
in a block (group). In sampling where there is
usually more than one unit in each period/
group combination, the above model could
be applied to the mean value of the character-
istic in each group in each period. This
simple model is adequate for our purpose of
obtaining efficient designs for comparing
periods. This point and others are taken up in
Section 7. We assume that the main objective
of a given survey is to obtain information on
contrasts, i.e., comparisons, between the
period effects. We are intferested in esti-
mating ici @, where Z¢  =0. Such

=1 i=1

contrasts include all period-to-period chang-
es, but exclude the mean response in each
period. The above formulation is congruous
with Wolter (1979) and also with Gurney and
Daly (1965).

To obtain the classification of cur designs
we consider comparisons of neighbouring
periods. The “1st neighbour ” comparisons
are o=y, Op—Cly, ..., Ol.i—0, O~0, where
here and in the following, the comparisons
are taken cyclically. The “2nd neighbour”
COMPpArisons are oy—0s, Op~Cy, ..., Cya—0O,
O,.~0y, O—0,. In a similar manner, 3 rd, 4 th,

.., neighbour comparisons can be defined

for a suitable 1. The estimates &, are taken to
be the usual least squares estimates, adjusted
for group effects.

The (model) variance of these compari-
sons is of interest and we define

Va 02 = V(& - d/\}, (42)

where &; and & are the estimated effects of
two » th neighbours, n=1,2, ..., m, and

m, = U; D if £is odd and

m, = Ztifris even. {4.3)

Some of these variances may be identical
and we denote the number of distinct ones by
d.
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A useful class of designs has
VIS VS SV,
This class is introduced initially, not only for
its practical interest, but for its conceptual
import and its simplicity. The properties of
rotation designs are more clearly understood
for these monotonic designs. Furthermore,
these basic designs are building blocks for
more complex designs, as will be described
later.

These designs give more importance to
comparisons between neighbours that are
closer together. That is, assign the smallest
variance to estimated changes between 1st
neighbours, next smallest to changes
between 2nd neighbours and so on. In partic-
ular, this means that period-to-period, e.g.,
month-to-month, changes will be estimated
precisely, a desirable characteristic in practice,

Let

Vi<l s SV KV = Vg = = Y,
We denote this class of designs by B,*. Note
that there is a dual class B, say, with just the
opposite property, namely,

V1>V2> T >Vd71>Vd VgL = = Vg

The latter class may be of interest, for
example, if m, = é and mid-cycle changes are
the main focus of attention. For instance, for
annual cycles (=12} semestral changes
might need to be estimated precisely. It will
be seen in the next sections, moreover, that
general rotation designs can be constructed
by “mixing” (adjoining/combining) basic
designs in these simple, monotonic, classes.

Balanced designs form the class B;" with
one single value for v,. It is worthwhile to
remark that for a symmetric balanced
incomplete block design, /corresponds to the
usual design parameter A, where A is the
number of times a pair of treatments occur
together in the same block. Designs currently
used in sample surveys can often be consid-
ered replicates of symmetric balanced incom-
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plete block designs and can also be repre-
sented as cyclic designs. The rotation sampling
designs, however, are cyclic designs which
reduce respondent burden. It may be of in-
terest to note that the properties of a cyclic
incomplete block design can be consideredin
terms of a corresponding paired comparison
design where each block of size k is thought
of as being divided into ! k(k~1) blocks of size
two. We do not pursue this correspondence
here since not all pairwise comparisons are of
interest. (See John {1966) for further details.)

Table 2 lists some of the more efficient
rotation designs of the B, type, constructed
using the method described earlier. In the
table some designs have a serial number
which is followed by a C. These designs are
complements of their partners with the same
serial number. A complement of a design
with incidence matrix N is a design with inci-
dence matrix N =J- N, where T is a X b ma-
trix of ones. Note that d =d, r.=b-r, and
k.=t-k relate the parameters of a design to
those of its compiement.

Table 2. Classification of Rotation Designs: b=3t0 12, 2 <r < b1
Serial No, b t ¥ i / 4%
1 3 3 2 2 1 1*
2 4 4 2 2 1 2R
3 4 4 3 3 2 1*
4 5 S 2 2 1 2%
4C 5 5 3 3 2 2%
5 5 5 4 4 3 1*
6C 6 6 4 4 3 3%
7 6 6 3 3 2 3*R
8 6 3 4 2 2 1
9 6 6 5 5 4 1*
10 6 3 5 2.3) 4 1
11 7 7 2 2 1 3%
12C 7 7 4 4 3 3%
13 7 7 6 6 5 1*
14 8 8 2 2 1 4*
14C 8 8 5 6 5 4%
15 8 8 3 3 2 4%
15C 8 8 5 5 1 e
16 8 8 4 4 3 4*R

(cont).
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Table 2. (Cont.) Classification of Rotation Designs: b=3to 12,2 <r = b-1

Serial No. b t r k* { d**
17 8 4 4 2 2 2R
18 8 4 5 (2,3) 3 2
19 8 4 6 3 4 1
20 8 8 7 7 6 1*
21 8 4 7 (3,4) 6 1
22 9 9 2 2 1 4*
2C 9 9 7 7 6 4*
23 9 9 3 3 2 4*
23C 9 9 6 6 5 4%
24 9 9 4 4 3 4%
24C 9 9 5 5 4 4%
25 g 3 6 2 3 1
26 9 3 7 (2,3) 5 1
27 9 9 8 8 7 1*
28 9 3 8 (2,3) 7 1
29 10 10 2 2 1 5*
29C 10 10 8 8 7 5%
30 10 10 3 3 2 5*
30C 10 10 7 7 6 5%
31 10 10 4 4 3 5*
31C 10 10 6 6 5 5%
32 10 5 4 2 2 2
32C 10 5 6 3 4 2
33 10 10 5 5 4 S*R
34 10 5 5 2,3 3 2R
35 10 5 7 3.4 5 2
36 10 5 8 4 6 1
37 10 10 9 9 8 1*
38 10 5 9 (4,5) 8 i
39 11 11 2 2 1 5%
39C 11 11 9 9 8 5%
40 11 11 3 3 2 5%
40C 11 11 8 8 7 5%
41 11 11 4 4 3 5%
41C 11 11 7 7 6 5*
42 11 11 5 5 4 5%
42C 11 11 6 6 5 5*
43 11 11 10 10 9 1*
44 12 12 2 2 1 6*
44C 12 12 10 10 9 6*
45 12 12 3 3 2 6*
45C 12 12 9 9 8 6*

(cont).
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Table 2. (Cont.)

Serial No. b ! r k* [ ar*
46 12 12 4 4 3 6*
46C 12 12 8 8 7 6*
47 12 6 4 2 2 3
47C 12 6 8 4 6 3
48 12 12 5 5 4 6"
48C 12 12 7 7 6 6*
49 12 6 5 (2,3) 3 3
49C 12 6 7 (3.4) 5 3
50 12 12 6 6 5 6*R
51 12 6 6 3 4 3R
52 12 4 6 2 3 2R
53 12 4 7 (2.3) 4 2
54 12 4 8 (2.3) 5 2
55 12 3 8 2 4 1
56 12 6 9 (4.5) 7 3
57 12 4 9 3 6 1
58 12 3 9 (2.3) 6 1
59 12 6 10 5 8 1
60 12 4 10 (3.4) 8 1
61 12 3 10 (2.3) 8 1
62 12 12 11 11 10 1*
63 12 6 11 (5,6 10 1
64 12 4 11 (3.4) 10 1
65 12 3 1 (2.3) 10 {

* Valwesof &, j=1,2, ..., b. Either k=Fk, allj, or k=k or k', k'=k+1.

** Value of d in Bg,

Also, in Table 2, some designs have values
of d which are written as d*. These designs
are symmetric and are such that b=¢, r=%
and N can be written as a symmetric matrix,
after possibly permuting its columns. Some
designs are reflexive in the sense that taking
their complements does not alter the designs
themselves. These designs are indicated by
an R in Table 2. We further denote by P, the
symmetric balanced design with r=lk=1-1.
{Note that all symmetric designs with a given
b=thave d=m, as in (4.3).)

Designs which have a block size of 1, or are
complements which have =1, have been
omitted from Table 2. Such designs are not
considered useful for the estimation of con-
trasts, i.e., changes. Moreover, for each of
the designs in Table 2 the varances v, were
obtained and are considered in Section 6.

5. Properties of the Designs

Other rotation designs can be obtained by
adjoining two or more basic rotation designs,
e.g., those listed in Table 2. A design D, is
adjoined to another D, by taking the b,
columns of D, and putting them alongside
the by columns of D,. Of course, both D, and
D, must have the same value of 1.

Some of the designs constructed in this way
had an incidence matrix which was obtained
by adjoining a Xt identity matrix I, to an
incidence matrix which had two or more 1's
in each column. For example, a design for
b=8, t=4, r=3, k=2or 1,j=1,2, ..., b, is
obtained by adjoining I, to the incidence
matrix for the second design in Table 2, and
suitably permuting the columns. Designs
with an identity matrix component have been
excluded from Table 2.
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Table 3 gives a list of the designs in Table 2,
which are, in fact, obtained by adjoining
other designs in Table 2. Clearly, other
designs not in Table 2 could be constructed

Table 3. Designs Obtained by Adjoining
Two or Three Other Designs

Serial No. Serial Nos, of
inTable2 adjoined designs
17 2,2
18 2,3
52 2,22
53 2,2,3
54 2,33
32 4.4
34 4,4C
32C 4C 4C
35 4C5
47 6,6
49 6,7
49C 7,6C
47C 6C,6C
56 6C.9
51 7,7
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by adjoining designs that are in Table 2. This
adjoining is, of course, subject to the final
design being a rotation design.

Clearly, a design obtained by adjoining
two balanced (B,") designs is also balanced.
Further, adjoining a B,” and a B," design
leads to another B," design. The effect of
adjoining one or more B;" designs to a B,*
design is to make the variances, v; and v,,
more similar in size (see Section 6).

A different operation consists of combi-
ning (vertically) designs with a common b, r,
and / to obtain larger rotation designs. In
fact, we note that each design of type P, for
non-prime r=hh,, may be formed by com-
bining its “component” design with 1=h; (4,
times), and similarly for t,=#h, (h; times).
Many of these components have biocks of
size 1 and are not given in Table 2. Table 4
presents the components of designs P, for
4=r=<10.

Table 4. Subclass P, of Symmetric Balanced Designs, 4 < t < 10, and their components’

b t y k { d
Py=D;®Dy: 4 4 3 3 2 1
Component: D 4 2 3 (1,2) 2 1
=Dy@® D3P D3: 6 6 3 5 4 1
Components: Dy 6 3 5 (2,3) 4 1
Dy 6 2 5 (1,2) 4 1
Pe=D,;ODy
Components: D 8 4 7 (3,4) 6 1
Ds 8 2 7 (1,2 6 1
Pg=D¢@D® Dy 9 9 8 8 71
Component: Dg 9 3 8 (2,3) 7 1
Pyg=D7® Dy
=Dg@Dg@ Dg@ Dg@® Dg: 10 10 9 9 8 1
Components: D~ 10 5 9 (4,5) 8 1
Dy 10 2 9 (1,2) 8 1

' The operation of combining (vertically) two designs, Dy and D, say, is denoted by D @ D5.
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Of course, in any real continuing survey fis
not fixed and the designs would evolve over
time by adjoining and combining designs. The
effects of adjoining and combining designs,
as described above, would then be of particu-
lar interest. For example, a rotation pattern
similar to that used in the U.S. National
Crime Survey (NCS) can be generated by
successive adjoining and combining opera-

Table 5. NCS Roration Pattern
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tions. By combining (6 X 12) matrix C =
(AIB) to (O]A) one derives the (NCS) pat-
tern displayed in Table 5. Note that the (6 X
12) matrix C = (A|B) is of the elementary
type described in Sections 2 and 3. The pat-
tern employed in the U.S. Current Popula-
tion Survey can be generated by more com-
plex mixtures of the elementary rotation
designs considered in Table 2.

Rotation groups (Panels)

(A) (B)
g :
T | 6 0 0 o 0 0
200 11t | 10 0 0o 0 o0
30 011 | 1 1 0 0 0 0
4l 0 00 | 1 1 1 0 0 0
510 o o0 0o 1 1 | 11 1 1 0 o0
61 0 0 0 0 0 1 ! 1 1 1 1 1 0
] i
o | z
o | (0) 66 j (A)
o | |

6. Variances of Estimated Period Changes

The values of v,, where v,0°=V(6-d,) are
given in Table 6 for d=1, 2 and 3 only, to save
space, the remaining ones being available
from the authors. The corresponding effi-
ciency factors for each variance are also
given. The efficiency factor E,, say, is de-
fined as
E = V(é;— ¢, in a saturated design
V(- dj) in the design under consideration

2

v,

Here, a saturated design is one in which
every group is interviewed in every period.

This definition is the one used in the design of
comparative experiments. The saturated
design of such experiments is the randomized
{complete) block design, with 7 blocks, each
of size t. Costs usually prohibit the use of a
saturated design in a survey. Nevertheless
the saturated design does provide a useful
yardstick for measuring the efficiency of
other designs. It would be possible to com-
pare the average value of v, with —%—, but this
would conceal the true range of the efficien-
cies in a given design.

For comparison purposes, the total size
n=rXt of the designs are also included in
Table 6.
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Table 6. Values of the Variances (v,) and Efficiencies for Designs withd = 1, 2 and 3

. } D o
SerialNo. b t r nl Variances (v,,) Efficiencies (ﬁ;x 100%
1 3 3 2 6 1.3333 75
4 4 2 8 1.5000 2.0000 67 50
3 4 4 3 12 0.7500 89
4 5 5 2 10 1.6000 2.4000 63 42
4C 5 5 3 15 0.7636 0.8727 87 76
5 5 5 4 20 0.5333 94
6 6 6 2 12 1.6667 2.6667 3.0000 60 37 33
6C 6 4 24 0.5359 0.5744 0.5769 93 87 87
7 6 6 3 18 0.7833 0.9333 1.0500 85 71 63
8 6 3 4 12 0.6667 75
9 6 6 5 30 0.4167 96
10 6 3 5 15 0.4444 90
11 7 7 14 1.7143 2.8571 3.4286 58 35 29
11C 7 7 5 35 0.4174 0.4356 0.4364 96 92 92
12 7 7 3 21 0.7944 0.9826 1.1498 84 68 58
12C 7 7 4 28 0.5396 0.5881 0.6336 923 85 79
13 7 7 6 42 0.3429 97
17 8 4 4 16 0.7500 1.0000 67 50
18 8 4 20 0.4870 0.5455 82 73
19 8 4 6 24 0.3750 89
20 8 8 7 56 0.2917 98
21 8 4 7 28 0.3000 95
25 9 3 6 18 0.4444 75
26 9 3 7 21 0.3333 86
27 9 9 8 72 0.2540 98
28 9 3 8 24 0.2667 94
32 10 4 20 0.8000 1.2000 63 42
32C 10 6 30 0.3818 0.4364 87 76
34 10 5 5 25 0.5053 0.6316 79 63
35 10 5 7 35 0.3126 0.3297 91 87
36 10 5 8 40 0.2667 94
37 10 10 9 90 0.2250 99
38 10 5 9 45 0.2286 97
43 11 11 10 110 0.2020 99
47 12 6 4 24 0.8333 1.3333 1.5000 60 37 33
47C 12 6 8 48 0.2679 0.2872 0.2885 93 87 87

(cont.)
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Table 6. (Cont).

SerialNo. b t ¥ nl! Variances (v,,) Efficiencies (F%ZX 100%)
49 12 6 5 30 0.518% 0.6838 0.7582 77 58 52
49C 12 6 7 42 0.3159  0.3515 0.3712 90 81 77
51 12 6 5 36 0.3917 0.4667 0.5250 85 71 63
52 12 4 6 24 0.5000  0.6667 67 50

53 12 4 7 28 0.3643 0.4286 78 67

54 12 4 8 32 0.2943 0.3158 85 79

55 12 3 8 24 0.3333 75

56 12 6 9 54 0.2341 0.2412 0.2414 95 92 92
57 12 4 9 36 0.2500 89

58 12 3 9 27 0.2667 83

59 12 6 10 60 0.2083 96

60 12 4 10 40 0.2143 93

61 12 3 10 30 0.2222 90

62 12 12 11 122 0.1833 99

63 12 6 11 66 0.1852 98

64 12 4 11 44 0.1875 97

65 12 3 i1 33 0.1905 95

! Total sample size = n = 7t,

Adjoining x copies of a design reduces the
value of v, in that design by a factor x, but
does not change £,. For example, the design
with serial number 8 can be constructed by
adjoining two copies of design 1. Adjoining
copies of a design of type B,” to a design of
type B, reduces the relative differences
between the values of v,. For example, ad-
joining designs 4C and 5 produces design 35.
In design 4 C the ratio of the two variances is
1:1.5 but in design 35 is 1:1.05.

Since taking the complement of a design
gives r,=b-r, without changing b, the com-
plement of a highly efficient design will have
low efficiency. By observing the values of the
efficiencies in Table 6, it is clear that, while
most designs have high efficiency, there are
some with particularly low efficiencies. The
low efficiencies occur, as one might expect,
for designs where the k; values equal 2. In
other words, all groups must be in the sample
more than twice to achieve a reasonable effi-
ciency.

The efficiencies allow a useful design to be
chosen out of a number of competitors. For
example, if r=6 and b=12 then design 49 is
much more efficient than design 47 and only
uses 6 more groups. Of course, design 47C
is even more efficient than design 49 but
requires 18 more groups.

7. Discussion

Some alternatives to the simple model
(4.1) may be considered. First, it may be
more realistic to consider the effects of indi-
vidual groups being random rather than
fixed. This would complicate the theory in
Sections 4-6 but is not likely to substantially
change the overall resulis.

A second alternative would be to model,
individually, each unit within a group. The
model for the measurement on the ¢ 1 unitin
the jth group in the i th period would then be
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Yijg = wt ot Bitvyy+ey,, (7.1)

where u, «;, B; are defined as in Secton 4; v;
is the period-by-group interaction effect; and
&;j4 1s the usual error term. This type of inte-
raction is manifested in practice via what is
called the rotation group bias (see, e.g,
Bailar (1975)). This bias is related to the
number of times different units have been
interviewed previously. The presence of an
interaction term will contaminate published
period-to-period changes, i.e., estimates of
the form f’, - f’,-«, which are of more direct
interest than contrast estimates & — .
Clearly, Y; - Y, differences will involve the
interaction parameters ;.
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Another model-based approach employs
time series models to estimate the current
mean response. References for this approach
are Blight and Scott (1973), Scott and Smith
(1974), and Jones (1980).

We have discussed in Section 4 the role of
the monotonic classes B, and B,;; in partic-
alar, Table 2 is concerned only with 8,".
We have also examined, however, other
diverse variance patterns that are not repor-
ted here. Of particular interest is an investi-
gation of the duals or “mirror images” in B~
of designs in the class B;". A summary for
t=5, d=2 and the designs in Table 2 is pres-
ented in Table 7.

Table 7. Mirror Images of Designs fort=5and = d =2

Serial No. Image b ¢ r k {
4 41 5 5 2 2 0
4C 4CIT 5 5 3 3 1

32 321 10 5 4 2 0

32C 32C1 10 5 6 3 2

34 341 10 5 5 (2,3) 1

35 351 10 5 7 3,4 4

It is worthwhile to remark that the ap-
proach in Sections 4-6 has completely ignored
the randomization imposed by the design. In
particular, all variances are considered with
respect to the model distribution. Denoting
such variances by V,, and expectations over
the sampling design, p, say, by £, one may
also consider the criterion £,V,,,. In this con-
text, Bellhouse (1984) has derived optimal
treatment assignments for certain subclasses
of treatment coutrasts. Other references
where complex sample design effects have
been considered include Nathan and Holt
(1980) and Holt, et al. (1980).
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