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Combining Link-Tracing Sampling and Cluster Sampling
to Estimate the Size of Hidden Populations

Martin H. Félix-Medina' and Steven K. Thompson*

We present a variant of Link-Tracing Sampling which avoids the ordinary assumption of an
initial Bernoulli sample of members of the target population. Instead of that, we assume that a
portion of the target population is covered by a sampling frame of accessible sites, such as
households, street blocks, or block venues, and that a simple random sample of sites is
selected from the frame. As in ordinary Link-Tracing sampling, the people in the initial
sample are asked to nominate other members of the population, but in this case we trace only
the links between the sampled sites and the nominees. Maximum likelihood estimators of the
population size are presented, and estimators of their variances that incorporate the initial
sampling design are suggested. The results of a simulation study carried out in this research
indicate that our proposed design is effective provided that the nomination probabilities are
not too small.

Key words: Capture-recapture; design-based approach; finite population; hard-to-access
population; maximum likelihood; model-based approach; sampling frame.

1. Introduction

Link-tracing sampling (LTS) has been proposed as an appropriate methodology for
sampling hidden and hard-to-access human populations, such as drug users, homeless
persons or undocumented worker populations. The basic idea behind this sampling
methodology is to start with an initial sample of people from the population of interest, and
then to increase the sample size by asking the people in the initial sample to nominate
other members of the population. The nominated people might in turn be asked to
nominate other members of the population, and so forth until a specified stopping rule is
satisfied. (See Spreen (1992), and Thompson and Frank (2000) for descriptions and
reviews of different variants of this sampling methodology.) For example, in a study of
injecting drug users in relation to the risk of HIV infection, a drug user often can refer
researchers to injecting and sexual partners and others in the at-risk population, so that
starting from an initial sample the sample can be built up by following these social links.
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For such studies, link-tracing sampling tends to produce a larger number of individuals
from a hidden population, in comparison with other sampling designs.

An attractive characteristic of LTS is that it allows the researcher to make valid model-
based inferences about a number of population parameters. For instance, model-based
estimation of the population size has been considered by Frank and Snijders (1994). These
authors have derived a number of estimators of the size of a hidden population from the
following two assumptions: (i) The initial sample is a Bernoulli sample; that is, persons are
independently included in the initial sample and with equal inclusion probabilities.
(ii) People are independently nominated by the persons in the initial sample and the
nominations are made with equal probabilities. Other models and inferences about other
parameters have been considered by other authors; for a review see Thompson and Frank
(2000).

Although valid model-based inferences can be made using LTS, one problem is that
model assumptions may not be realistic. For example, in real studies the assumption (i) of
Frank and Snijders (1994) is frequently violated because researchers often carry out the
initial recruitment by using health centers or police stations, so that members of the hidden
population may not be encountered independently or with equal probabilities.

In this article, we develop a variant of LTS which avoids the assumption of an initial
Bernoulli sample. We do that by supposing that a portion of the population of interest is
covered by a sampling frame of accessible sites where members of the population can be
found with high probability. An initial sample of sites (clusters) is selected by using an
ordinary cluster sampling design and, as in an ordinary LTS, persons in the initial sample
are asked to nominate other members of the population. However, because the sites are the
sampling units, instead of tracing links between initial responders and their nominees, we
follow the links between the clusters in the initial sample and the people nominated from
these clusters. Here, a person will be meant to be nominated by a cluster if any person in
the cluster nominates him or her.

The structure of the article is as follows. In Section 2, we describe the proposed
sampling design and present some of the notation to be used throughout the article. Next,
in Section 3, we describe a design-based estimator of the size of the population covered by
the sampling frame and which does not use the nomination information. In Section 4, we
present two models for the nomination probabilities, and under each model we derive
maximum likelihood estimators (MLE’s) of the population size, as well as model-based
and design-based estimators of their variances. Then, in Section 5, we describe the results
of two simulation studies carried out to explore the performance of the proposed sampling
strategy. Finally, in Section 6, we present some final remarks and some possible extensions
to our proposal.

2. Sampling Design and Notation

Let U = {uy, . .. ,u.} be a finite hidden-human population of unknown size 7. We will
assume that a portion of the population can be found in accessible sites, such as work
places, parks, hospitals, city-blocks, or households, and that a list of N of those accessible
sites can be constructed. We will also assume that we are able to define an operational rule
which allows us to determine whether or not a person belongs to one of the sites on the list,
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and in the affirmative case, to which site that person belongs (a person can belong to only
one site). Let U; be the portion of U covered by the sampling frame (list), and let 7; be
its size. Let A; be the i-th cluster (site) on the list and let m; be the number of members of
the population who belong to A;,i =1, . . ., N, sothat 7} = levm, Let Uy =U — U, be
the portion of U not covered by the sampling frame, and let m = 7— 7, be its size
(see Figure 1).

The sampling design is as follows. By using a simple random sampling without
replacement (SRSWOR) design a sample Sy = {A, . . .,A,} of n clusters is selected
from the sampling frame. (Although we are using as subscripts the integers 1, . . ., n, this
does not mean that the first n clusters in the frame are the clusters in the sample.) We will
assume that each of the m; persons who belong to A; € Sy is identified. Thus, the number
of people in Sy is m = Y_m;. Next, the persons who belong to the cluster A; € S are
asked to nominate other members of the population outside of A;; that is, in U — A;. This
nomination procedure is carried out in every cluster A; € Sy, and we will say that a person
is nominated by a cluster if at least one of the members of the cluster nominates him or her.
We will assume that the nominations from different clusters are carried out independently,
but we will not assume that the same nomination strategy is used in every cluster.
(For instance, in cluster A;, the m; members, as a group, might be asked to nominate other
members; whereas, in cluster A;, each of the m; members might be separately asked to
nominate other members.) For each nominated person, we will assume that the following
information is obtained: the clusters that nominated him or her, and whether that person
belongs to a cluster in Sy, or to a nonsampled cluster (a cluster in U; — S), or to the
portion not covered by the sampling frame (U,) (see Figure 1).

U, U,

Fig. 1. Population U divided into U; and U,. Bold squares represent sampled clusters. From a sampled cluster
there might be three types of arcs: to a person in Uy, to a person in a sampled cluster (A; € Sy) and to a person in
U= So
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It is worth noting that this sampling design resembles that of Multiple Capture-
Recapture Sampling (MCRS). (See Otis et al. (1978) and the International Working Group
for Disease Monitoring and Forecasting (1995a, b) for reviews of this methodology in the
contexts of wildlife and human populations, respectively.) To see this, notice that in
MCRS the population of interest is sampled on a specified number of occasions, and the
elements captured (sampled) on any occasion are marked and then released to the
population so that they can be captured on different occasions. Thus, a cluster in our
sampling design corresponds to a sampling occasion in the context of MCRS. Similarly,
the people nominated by a cluster correspond to the elements captured on a sampling
occasion, and the probability that a person is nominated by a cluster corresponds to the
probability that an element is captured on an occasion. Furthermore, models similar to
those used in MCRS can be specified in our case, and consequently the estimators derived
under those models will resemble those used in MCRS. However, in our design we have
two additional complexities. The first one is that here the clusters are randomly selected,
whereas in MCRS the sampling occasions are fixed. The second one is that here an initial
sample of clusters is selected, and consequently a person can be included in the final
sample if either he or she belongs to a sampled cluster or he or she is nominated from a
sampled cluster, whereas in MCRS, an initial sample is not considered, and therefore an
element is in the sample only if it is captured on a sampling occasion. Thus, these two
factors introduce problems that are not found in MCRS.

We will end this section by introducing the matrix x = [x;] of indicator variables x;,
where x; = 1 if person u; € U is nominated by cluster A;, and x;; = 0 otherwise. Because
we do not have a sampling frame of people, the labels of the individuals are not
observable; consequently, the matrix x is known only up to permutations of its columns.
For this reason, the x;’s will not be used for making inferences but only for defining
models. Inferences will be based on the observable set of counts y,, o« C Q = {1, . . ., n},
of the people who are nominated by every sampled cluster A; with i in the set w # 0, but
not otherwise. (For instance, if w = {1,3,9}, y,, would be the number of people who are
nominated by only A, Az and Ag.) The set of counts y, will be denoted by y. Other
variables will be used in this article, but they will be introduced as they are required.

3. A Design-based Estimator of 7

Because of the sampling design used to select the initial sample S,, we have that
71 = Nm/n is a design-unbiased estimator of 7;. The design-based variance of 7 is

V(%) N2<1 n)l 1 N( 7-1>2
T) = - m; — —
s N/ nN— 14 N

and a design-unbiased estimator of V,(7) is

. 1l 1 < 7\’
Vo =N (1-5) -
o) ¥ a2 "y

i=1

The estimators 7; and \V/p(ﬁ) have the attractive property of being free of model
assumptions; that is, regardless of the stochastic process that generated the m;’s, 7, and
V,(71) should be reasonable estimators of 7; and V,(7), respectively. However, we do not
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expect 71 to be an efficient estimator (in terms of variance) of 7|, because it does not
incorporate the information about the nominations contained in the variables y,,

4. Maximum Likelihood Estimators of 7, 7», and 7

Our goal is to estimate 71, 7, and 7 by using the information on both m; = (my, . . .,m,)
and y. We will do that by assuming stochastic models for the distributions of these
variables. Let us first consider the distribution of the cluster sizes. We will suppose that the
number of persons m; in A; is a realization of a Poisson random variable M; with mean A,
i=1,...,N, and that the M;s are independently distributed. Although the assumed
distribution for the M;’s might seem restrictive, we will later justify the robustness of the
proposed likelihood estimators to deviations from the assumed model. To have 7, as a
parameter, we will work with the conditional distribution of the M;s given that
E]IVM,« = 71. By a well-known property of the Poisson distribution, we have that the
conditional joint distribution of My = (My, .. .,M,), given that ZIIVMi =171, is a
multinomial distribution with parameters 7; and {1/N}| [which will be denoted by
Mult(7y; {1/N}))]; that is,

_ 7! _m\nm(1 :
flmy, .. .,mnlﬂ)—(,HT)!H?,M(1 N> <N> v

It is worth noting that under this model, the estimator 7}, which should now be written as
71 = NM /n, where M = )M, is a maximum likelihood and an unbiased estimator of 7;.
The model-based variance of 7| is

vy a2 P\ T1

v =N (1-5) o @)
and the MLE of this variance is V(%) = N%(1 — n/N)7 /Nn.

Therefore, the assumed model gives rise to an MLE of 7, that is robust to the
misspecification of the model. However, the model-based variance and variance estimator
are not robust to the misspecification of the model. In fact, if the M;’s do not have the same
mean A, the value given by Expression (2) will be less than the actual variance.

We will now specify a model for the distribution of the indicator variables. First, we will
assume that given M; = m;, x;; is the realization of a Bernoulli random variable X;; with
mean p;;. Furthermore, we will assume that given M; = my, the X;;’s are independently
distributed. Second, we will reduce the dimensionality of the vector of probabilities p;;’s
by imposing an appropriate restriction on the p;’s. In this article we will consider the
following two models for the p;;’s:

Model I:  p;; = p; for every u; € U — A;, and
Model II: p;; = p(l) ifu € Uy —A; and p;; = pl(-z) if uy € U,

l

Notice that in the first model the p;’s only depend on the clusters, whereas in the
second one they depend on both the clusters and the regions in which the nominees are
located.

Clearly, other models might be assumed. For instance, if we supposed that the
persons in a cluster make independent nominations, each with probability p, then
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pij = 1 — (1 — p)™ would be a reasonable model. As another example, we might suppose
that p; = 1 — exp(—Bm;), which is the ordinary model assumed in catch-effort studies
(see Seber 1982, Ch. 7). However, because of the generality of Models I and II
(they do not need the specification of functional forms for the p;;’s), we will focus on these
models.

4.1. Model I

The likelihood for 7y, 7, and p = (p1, . . .,p,) has two components: the conditional
distribution of M; given 7, = levmi, and the conditional distribution of Y given 7 and
M; = my;. The first component is given by (1). The second component can be factorized into
three factors which correspond to the three possible locations of the nominees: Sy, U; — So,
and U,. To obtain these factors, let Y, Yo, and Y,4,, A; € So, be the sets of the variables Y,,’s
that correspond to the counts of the people in U; — Sy, U,, and A; € Sy, respectively. The
sets of variables Y|, Y, and Y4, A; € So, are conditionally distributed, given m, as
Mult(r; = m; (P} e, @), MUlt(m2: { P} o, @), and Mult(m;; {Pu} o (1, @/ (1 — i),
where P, = Ilic,pillig,(1 — p;j), and Q =1II'_,(1 — p;). Then, following Darroch’s
(1958) approach, we get that the factors of the second component of the likelihood that
correspond to the locations Sy, U; — Sy, and U, are the following:

n ©) o
Li(71,plya,, - - -,¥a,,my) o< prr (1 — pyym—m—= 3)
i=1
(11 — m)! o ()
L2(TI7P|Y1’m‘v)“mHM (1=p)™ ™% and (4)
“i=1
7! n® s
Ls(Tz,P|Y2,ms)°C7Hpi' (1 —p)? = )
(1 =)t

where Z§0)7 zgl) and z
that count the number of nominees in So — A;, U; — Sp, and U,, respectively, who are
nominated by people in clusterA; € Sy,i = 1, . . ., n; and r; and r, are the observed values
of the random variables, R, and R,, that count the total number of nominees in U; — Sy and
U,, respectively.

Notice that the conditional distributions of Zl(-o),
bin(m — m;, p;), bin(t; — m, p;) and bin(m,, p;), respectively. Similarly, the conditional
distributions of R; and R,, given my, are bin(r;y —m, 1 — Q) and bin(m, 1 — Q),
respectively.

From the previous results, and the independence of the nominations, we have that the
likelihood function for 7y, 7, and p is the product of (1), (3), (4), and (5).

To obtain the likelihood equations we will follow Darroch’s (1958) approach; that
is, the parameters 1, 7, and p;, i = 1, . . ., n, will be treated as continuous variables,
and the partial derivatives of the log-likelihood with respect to these parameters will
be computed (using the fact that for large x the derivative of In x! is approximately

Inx) and will be set to zero. Doing this we obtain the following system of nonlinear

2

. are the observed values of the random variables, zV Zfl), and Zﬁz),

i

Zgl) and ZEZ), given m;, are



Félix-Medina and Thompson: Combining Link-Tracing Sampling and Cluster Sampling 25

equations:
N Zi =1
i = a2 a0 =L ...,n
p T+T— M, :
M+ R
= S B ©)
1= (1= n/NIZ, (1= p)
_ M + R, 7)
1= =n/NIT_ [1 = Z;/(F1 + T — M))]
and
. Ry
THh =
- IT_, (1 = py)
R
2 (3)

TI L, 0 = Zi)(F + 7 — M)

where Z; =7\ + 7V + 7 is the random variable that counts the number of
nominees in U — A; that are nominated from A; i=1,...,n. (Notice that the
conditional distribution of Z;, given m;, is bin(7 — m;, p;).)

The MLE’s 7; and 7 of 7, and 7, are obtained by solving the previous system of
equations, and the MLE of 7is 7= 7| + 5.

Notice that the likelihood equations are very natural. For instance, p; is the ratio of the
number of people in U — A; who are nominated by persons in A; to the estimated number
of people in U — A;, and 7 is the ratio of the number of people in U; who are in the final
sample to an estimate of the final sample inclusion-probability (see Equation (6)).

Now, if 7 is large enough so that p; = Z; /(¥ — M;) = Z;/ %, then from (7) we have that

. (n/N)Ti + Ry

T =

1= - n/NII, (1 - Z/%)

Therefore, 7; depends on the M;’s mainly through 7|, and since 7| is robust to the
misspecification of the distribution of the M;’s, we should expect 7 to have this property
too. Similarly, since 7, and 7 depend on the M;’s through 7|, we also expect these
estimators to be robust to deviations from the assumed distribution of the M,’s.

Approximations to the model-based variances of 7|, 7> and 7 can be obtained by using
the formula

V(#) = VAE¢(FImy)] + Ee[ Ve (Flmy)] ©))

where E¢(-|my) and V(-|m,) denote the conditional model-based expectation and
variance operators, given My =my, and E;(-) and V¢(-) denote the model-based
expectation and variance operators computed with respect to the conditional distribution
of the M;’s given that 7 = Z’lvm,

From Equations (7) and (8), we have that 7;, 7 and 7 are functions of
wy = My, Zs,R1,Ry), where Z; = (Zy, . . .,Z,). Therefore, using the first-order Taylor
approximations to these estimators about E . (w;) (the model-based conditional expectation
of w; given 1) and applying (9) to these approximations, we get

Ve(#) = E"N(C—D), Ve(h)=E '(B—D), and Vi(3)=E '(B+0C)



26 Journal of Official Statistics

where E=BXC — (B+ C)XD,

pol"U-wWNQ  1-0  opo L N~
(1 = n/N)Q 0 T—7/N —~ 1 —p;

Even though variance estimators can be obtained by replacing the unknown quantities in
the expressions for the variances by their respective estimators, we will use the alternative
estimators obtained by using the variant of the Delta method suggested by Binder (1996).
In this variant, the derivatives that appear in the Taylor expansion are evaluated at
the observed values of the variables instead of at their expected values; however, the
derivatives are treated as constants (as in the ordinary Delta method). This approach yields
variance estimators that are still less model dependent than those obtained by the ordinary
Delta method.

Thus, using the Taylor approximations to 7;, % and 7, with the derivatives evaluated at
ws, replacing the unknown parameters by their estimators, and applying (9) to the
approximations, we obtain that model-based estimators of the variances are

Ve(31) = E;(Cs — Dy), Vg(h) =E,'(B, — D,), and V(%) =E,'(B,+C,)

where E; = By X Cg — (Bs + Cy) X Dy,

M +R R & Di 1
By=—— 1 C=-——"—" and D,= b
Tt —M —Ry) (T — Ry) L —piT— M,

We expect 7, T and 7 to be robust to the misspecification of the distribution of the
M;’s; however, we do not expect their model-based variances and model-based variance
estimators to be unaffected by deviations from this distribution. Therefore, our goal is
to derive approximations to the variances of these estimators, as well as estimators of
their variances, which are more robust to model misspecifications than the previous
ones. Our strategy is to compute approximate variances and variance estimators by
replacing, whenever possible, the assumption on the distribution of the M;’s by the
design-based distribution used to select the initial sample Sy. This strategy is not new,
and it has been used by Wolter (1986) in the context of estimating the census
undercount.

The initial sampling design will be incorporated in the variances and variance
estimators by replacing in (9) the model-based expectation and variance operators E¢(-)
and V¢(-) by their corresponding design-based operators E,(-) and V,(-) which are
computed with respect to the distribution used to select the initial sample.

Let us first derive an approximation to the variance of 7;, as well as an estimator of its
variance. Using the first-order Taylor approximation to 7; about E¢(w,) we get that
E: (7 |my) =~ a;m + ¢, where ¢, does not depend on the m;’s, and a; = [E~'(C — D)]/
[71(1 — n/N)]. Then, treating a; and ¢ as constants with respect to the distribution used to
select Sy, we have

V,[E(Rilmy)] = n(1 - )

a

2
1

N

(-5
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Using again the first-order Taylor approximation to 71, we get that

) I (s 1 ~ Pi o Ti—m
V§(7'1|ms)~E {C [(T_Tl/N)221—p-(T ml) ZDTl(l_n/N)]

1 l

—CXDZ[I—Z T }—i—(C—D)szXTZ(Tl_m)} (11)

_n-m
(1 —n/N) [m(1 —n/N)]?

Therefore, by (9) an approximation to V(7;) is obtained by summing (10) and the design-
based expectation of (11).

A design-based estimator of V(7;) is obtained by using Binder’s (1996) approach.
Following that strategy we obtain that an estimator of E¢(#|lm,) — ¢; is a;m, where
ay = [E; ' (Cs — DX)Q]/(%I ~M —Ry),and 0 = IT{(1 — p;). Consequently an estimator
of V,[E¢(#1Imy)] is

Vllzn(l—%) &%li:(m,»—m)2 (12)
1

n—

where /m = m/n, and an estimator of E,[V; (% [my)] is

Vi = Esz{Cst<1 _2h m)Q> P01 -0)

1 —m— Ry * (% — Ry)?

> (B —m)Q(1 — Q)

(/i —m — Ry)?

+ (C, — Dy) +2C,0%2Q

TRy — (7] — mRy }
(f1 —=m = R)(%2 — Ry)
Therefore, V(ﬁ) = V1 + V, is an estimator of V(#).

An approximation to the variance of 7,, as well as an estimator of its variance, can be
derived using the same analysis as that used in the case of 7;. Thus, an approximation to
V,[E¢(%2lmy)] is given by (10) but replacing a, by a = (E~'D)/[11(1 — n/N)].

Similarly, an approximation to Vg(f'zlms) is

o =2 2 1 . Di N
Ve(hlm,) ~ E {B LT—TMNPZZI—pr m) — 2D

+ 2B X D?

T —

_ m (T —m)
71(1 — n/N)

X |1 P —
[n(1 = n/N)PP

]+C><D2X +C(B—D)2} (13)

Therefore, by (9) an approximation to V(#,) is obtained by summing V,, [E¢(%2|my)] and
the design-based expectation of (13).

An estimator Vgl of V,,[Esc(%zlms)] is given by (12) but replacing a; by
& = (E;'D,Q)/(h = M — Ry).
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Similarly, an estimator of Ep[Vg(%zlms)] is

%Fiﬁgw(kqu>+y@—mgra>

# — R, S (H —m—R)

»0(1 — Q) s (7 — m)Ry — BR,
+(By — Dy’ ————"+2B,D*0— K
(2 — Ry)? S (3 —m—R)(H — Ry

Thus V(%g) = \721 + \722 is an estimator of V(7).

Applying the previous approach to # we obtain that an approximation to V,[E¢(#my)]
is given by (10) but replacing a; by a; + a,.

An approximation to V¢ (#lmy,) is

_ BXC a Di
Ve(4lmy) = Ve(#1my) + Ve(%:lmy) + 2E 2 —m;
£ (Almy) = Ve (71 my) + Ve(%,]my) {u—rwNVZ:I—pr m;)

(. —mn/N T —m
[71(1 — n/N)P2 b {B—i_cxn(l—n/N)]} (14)

Thus, an approximation to V(7) is obtained by summing V,J[Eg(f'lms)] and the design-
based expectation of (14).

An estimator Vl of V[E(#|my)] is given by (12) but replacing &; by a; + a,. Similarly,
an estimator of V¢ (flmy) is

—D(C — D)

~

N N . 2 — O 1=
Vo=V +Vp+ 2E:2 B;C;Dg — Dy(Cs — Dv)w B; — AiQ
Tl_m—Rl Tl—m—R1

_DS(BS—DS);zQ (Cs— 1—Q> —D?Q( B% N Cx(@—m))}

_R2 %Z_RZ %2_R2 i\']_m_Rl

Thus \7(%) =V, + V, is an estimator of V(7).

4.2. Model 11
In this case the parameters of interest are 7, m, p’ = (p(ll), . .,pil”)) and
p? = (p(lz), Ce pf)). The likelihood function for these parameters can be constructed

using the same approach as that used in the case of Model 1. Using that approach, we
obtain that the three factors of the second component of the likelihood function are still
given by (3), (4), and (5) but replacing p; by pl(-') in (3) and (4), and p; by p§2> in (5). Notice
that now the conditional distributions of Z\”, Z" and Z® are bin(m — m;,p\"),
bin(t; — m, pl(-')) and bin(7, pﬁz))7 respectively. Similarly, the conditional distributions of
R, and R,, given m, are bin(7; — m, 1 — Q) and bin(7,, 1 — Q,), respectively, where
0 =11, (1 - p{") and Q, =TI (1 — p{?).

As in the case of Model I, the likelihood function for 7, 7, p(” and p(z) is given by the
product of (1), (3), (4), and (5). Likewise, using Darroch’s approach we obtain the
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following likelihood equations:

70D 7@

~(1) __ i ~(2) _ “i . __

I e N R N T
Di ’7_1 _Miv Di ;,._2 ) l ) ,n

_ M+ R, (13)

T f—

= - NI, 1= 2 /(R - My)]

and
R

7 2 (16)

-, (1-20)5)

where ZEOI) = Z§0) + Zgl).

The MLE’s 7 and 7, of 7 and 7, are obtained by solving Equations (15) and (16),
respectively, and the MLE of 7is = 7| 4+ %.

Similarly to the case of Model I, the likelihood equations are very natural. Also, from
(15) we can see that if 7 is large enough so that [351) = ZEOI)/(ﬁ -M) = ZSOU/ﬂ, then
we should expect 7|, and consequently 7, to be robust to deviations from the assumed
distribution of the M;’s. Furthermore, since 7, is not a function of the M;’s, it is also robust
to deviations from the hypothesized joint distribution of the M,’s.

Approximations to the model-based variances of 7] and 7, can be obtained using the
same approach as that used in the case of Model I. From (15) and (16), we have that 7| and
# are functions of w() =My, ZOY R)) and w?® = (Z® R,), respectively, where
ZOY =% .70 and Z® = (2P, ..., Z?). Therefore, using the first-order
Taylor approximations to 7 and % about E;(w(") and E¢(w®), respectively, and
applying (9) to these approximations, we get that

Vi(7)=K;'n and Vi(H)=K,'m

where K| =F; =G|, Ky=F,—G,, Fi=[1—-0-n/N)Q1/[(1—n/N)Qil,
Fy=(1-02)/0>,

G N n pl(l) i G n pl@)
l N_lzlzl—n‘” ’ Zl—pﬁz)

Since we have that Eg(fglms) ~ 7y, then Covg(#,%) =0, and consequently
Ve(7) = Ve (7)) + Ve(5).
Estimators of these variances obtained using Binder’s (1996) approach are

Ve(i) =K', Ve(h)=K,'%, and Vi(H = Ve(f1) + V()
where Ky, =Fi;, — Giy;, Kopy=Fo— Gy, Fiy=M+R)/[F(Fi —M—R)],
F, =Ry/(F%, — Ry),
n ]351) n ~§2)

G15227; and stzz%
1

=R -7

We can obtain approximations to the variances of 7, 7, and 7, as well as variance
estimators, which are more robust to the misspecification of the distribution of the M;’s
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than the previous ones by using the same approach as that used in Model I. Thus, using the
first order Taylor approximation to 7 about E¢(w{"), we obtain that an approximation to
V,[E¢(71Imy)] is given by (10) but replacing a; by by = N/[K{(N — n)], and that an
approximation to V¢(7|my) is given by

(m —m)(1—01) {2(71 —m)_T}G }
(1 —n/N)*Q, 1—-n/N T

Therefore, an approximation to V(%) is obtained by summing V,,[Eg(ﬁlmx)] and the
design-based expectation of (17).

An estimator Vi, of Vp[Eg(ﬁImS)] is given by (12) but replacing a; by
by = 01/[K1s X (7 = M = Ry)], where 0y = IT_,[1 — p{"].

Similarly, we have that an estimator of E,[ V(% Imy)] is

Vi = Kg{(ﬁ -m0i1(1 - 01) {2(71 -mQ; 1} G, }

Is (f1 —m—Ry)? F—m—R

Vi (71|my) = Kﬂ{ (17)

Thus, V(5) = V; + V5 is an estimator of V(5).

In the case of %, we have that V,[E(%|m,)] = 0, and V¢(%|m,) = K5 ', which is
exactly the same as the model-based variance Vg (7). Therefore, V(7,) is the design-based
expectation of Vg(f’zlmS)7 and a variance estimator of V(%) is V(%) = K 2}1 7,, which is the
same as the model-based estimator \75(7'2).

An approximation to the variance of 7is V(7) = V(%) 4+ V(%,), and a design-based
estimator of V(%) is V(¥) = V(F) + V().

5. Monte Carlo Studies

In order to observe the performances of the estimators derived in the previous section, two
simulation studies were carried out. The first study was based on data obtained from a real
study. The second one, which was more extensive than the first one, was based on data
obtained from simulated populations.

5.1. Monte Carlo study based on the Nuevo Laredo sex worker population

In the Nuevo Laredo study on high-risk behavior in relation to HIV/AIDS transmission
(Valdez 2000), a sampling frame of N = 107 venues (bars, clubs, and other
establishments) where sex workers can be found with high probability was constructed.
The sampling frame was divided into eleven strata, which were formed taking into account
the characteristics and locations of the venues. A stratified sample of n = 27 venues was
selected, and an average of about two sex workers were interviewed in each sampled
venue. The median of the numbers of people in the target population nominated by the
interviewed sex workers was 20. It is worth noting that the sampling design used in this
study was not the same as that considered in this article. In particular, in the study the
sample of sites was stratified and the responders only indicated the number of sex workers
known by them, but the nominees were not identified. However, the information contained
in the study allowed us to set realistic values to the population parameters used in this
numerical study.
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From the results of the study we set the following values to the parameters used in
this simulation study: N =107, {mi}llv ={5,...,5 (18 times), 6,...,6 (16 times),
8,...,8 (33 times), 9,9,9,10,...,10 (5 times), 11,11,11,15,15,22,...,22 (6times),
23, ...,23 (5 times), 25,25,25,26,26,26,27, . ..,27 (5 times), 36,36,36,37,37},
71 = 1307, 7 = 1193, 7= 2500, n = 27, and p\"’ = p® = 016,i=1, . . .,n.

The simulation study was executed as follows. From the finite population of N = 107
values of the m;’s, r = 10,000 samples of n = 27 values were selected using an SRSWOR
design. For cluster A;, in the sample, the values of the indicator variables X;’s, were
generated using 7, independent identically distributed Bernoulli random variables with
mean P§2)7 and 7, — m; independent identically distributed Bernoulli random variables
with mean pl(l).

The six estimators 7y, 7, 7, 71, T2, and 7, their respective model-based and design-based
variance estimators, and their corresponding 95% normal-based confidence interval
estimators were considered. The performances of an estimator 7 and a variance estimator
V(%) were evaluated by their simulation relative-biases (r-bias) and the square root of their

simulation relative mean squared error (r-mse), defined as r—bias = Ei(éi — 0)/(r6) and
Jr—mse = \/Zi(é,' — 60)?/(r62), where 6,, is the value of % or V(#) obtained in the i-th
replication, and 6 is the value of 7 or that of the simulation variance of V(f'). Finally,
the performance of a confidence interval estimator 7% 1.96+/ V(%) was evaluated by
its simulation relative frequency of coverage, and by the simulation mean of its
semi-length.

The results of the numerical study (Tables 1 and 2) indicate that every one of the
estimators of the population size performed very well. They all are practically unbiased

and the squared roots of their mean squared errors are less than 0.1. Notice that even
though the simulation study was carried out using the assumption that pgl) = pl(.z), the
performances of the estimators derived under the assumption that the probabilities are not
necessarily equal were almost as good as those derived under the assumption of equal
probabilities.

With respect to the performances of the variance estimators, we have that the model-
based variance estimators behaved very badly, whereas the design-based estimators
performed very well. The model-based estimators greatly underestimated the actual
variances (except V§(7~'2), which is also a design-based estimator), and their biases affected
the performances of the confidence intervals. The poor behaviors of these estimators were
consequences of the fact that the M;’s were not distributed as Poisson random variables.
On the other hand, the design-based estimators were practically unbiased, and the relative
frequencies of coverage of the confidence intervals were close to 95. Thus, according to

Table 1. Simulation results for the population of sex workers in Nuevo Laredo: Estimators of population size.
First entry in each cell is r-bias, second entry is \/r-mse

Cluster-element link probability T T T T i F
E[p"] = .016 002 002 .002 | .002  .008  .005
E[p®] = .016 065 067 060 | .071  .092  .057




Table 2.  Simulation results for the population of sex workers in Nuevo Laredo: Variance estimators

Model r-bias I —mse Coverage Semi- Design  r-bias r —mse Coverage Semi-

based length based length

\:’5(%1) —.735 736 .686 85.2 \:/(%1) —.007 307 930 163.2

V() —.319 338 .889 128.9 V(%) .001 236 943 155.7
E[p"] = 016 | V(%) -616 619 776 181.5 V(#)  —.002 290 931 290.3
E[pgz)] = .016 \:’5(?1) —.755 755 .668 89.5 V(#) —.008 .320 925 177.8

Vi(7) —.004 322 950 211.9

V(%) —.314 367 .895 230.5 V() —.004 .230 946 278.4
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the results of this study, we have that the model-based variance estimators are very
sensitive to deviations from the Poisson distribution.

5.2. Monte Carlo study based on simulated populations

This study was more extensive than the previous one, but because of the limited number of
situations considered, the character of the study was still exploratory. Four finite
populations of N = 250 values of M;’s were generated. A description of each of those
finite populations is presented in Table 3.

The nomination probabilities pfj), j=1,2, were obtained by means of the model
pgj) = 1 — exp(—Bjm;), where the values of B; were set so that the specified values of
E( pfj)) were obtained. This Monte Carlo study was carried out similarly to the previous
one. Although several situations were considered in this study, because of limitations of
space only some selected results are shown in Tables 4 to 6.

A summary of the results of the estimators of the population sizes (Table 4) follows:

— The use of the Negative binomial distribution as the distribution of the cluster sizes
did not have a serious effect on the performances of the estimators.

— The violation of the assumption p!"” = p® affected the unbiasedness of the
estimators derived under this assumption. The biases of these estimators were large
enough to affect the coverage properties of their corresponding confidence intervals.

— The average value of the nomination probabilities had a great effect on the
performance of the estimator 7,, and a moderate effect on the performances of the
other estimators. When both the probabilities and the initial sample size were small
( plgz) =~ .01 and n = 20), ¥, was highly variable and excessively overestimated 7.
Its performance improved considerably when the sample size was increased
(n = 50), but it was not good enough to yield good estimates of 7,. Finally, when the
probabilities were large (about .05), its performance was good regardless of the
sample size. The behavior of 7 was affected by the behavior of 7,. The performances
of the other estimators were not greatly affected by the size of the probabilities.

— The fraction of coverage of the sampling frame did not have a great effect on the
performances of the estimators 7 and 7 However, these estimators performed
slightly better in the case in which the fraction of coverage of the sampling frame was
large, 71 /7 = 0.8, (and omitting the case in which %, performed very badly), than in
the case in which the fraction of coverage was small, 7 /7 = 0.4.

Table 3. Simulated finite populations

Population I Population II Population III Population IV

M, Poisson M; Neg. binomial M; Poisson M; Neg. binomial
EWM;) =8 EWM;) =8 EWM;) =4 EM,) =4
VM) =8 V(M;) = 29.33 VM) =4 VM) =12

71 =2,002 71 =2,023 71 =980 71 =1,011

™ = 500 7 = 500 7 = 1,500 7 = 1,500
T=2,502 T=2,523 T=2,480 T=2,511

m/T=.8 m/7=.8 m/T=4 /7= 4




Table 4.  Simulation results for the estimators of the population sizes. First entry in each cell is r-bias, second entry is \/t—mse

Population I

Population II

n T1 T T T1 ) T T1 p) T T1 ™ T
E[p!"]= .01 20 —.002 .002 —.001 —.002 407 .080 —.007 —.006 —.007 —.007 1.32 256
063 118 065 064 14.08 2.81 104 138 104 107 31.3 6.19
E[p®] = .01 50 —.001 —.000 —.001 —.001 013 002 —.003 —.002 —.002 —.003 013 .000
.030 063 .030 .030 122 034 043 068 043 045 123 043
E[p!"] = .05 20 —.001 —.000 —.001 —.001 .002 —.000 —.004 —.003 —.004 —.004 .001 —.003
022 038 021 023 054 021 025 039 024 027 055 024
E[p?] = .05 50 —.000 .000 —.000 —.000 .000 —.000 —.000 —.000 —.000 —.000 .000 —.000
.006 013 .006 .006 015 .006 .006 013 .006 007 014 .006
E[p"] = .02 20 .020 — 436 —.071 —.002 530 .105 013 —.440 —.077 —.008 1.46 283
053 441 085 048 212 4.24 073 446 102 071 35.7 7.07
E[p?] = .01 50 020 — 361 —.056 —.001 .009 001 019 — 360 —.056 —.002 012 .001
028 363 059 019 122 029 030 362 061 023 124 031
E[p!"] = .07 20 019 —.144 —-.013 —.000 .003 .000 017 —.144 —.015 —.002 .002 —.001
025 148 020 016 054 017 024 149 023 017 055 018
E[p?] = .05 50 .005 —.046 —.005 —.000 .000 —.000 .004 —.046 —.005 —.000 .000 —.000
.006 048 .007 .003 015 .004 .006 048 .007 004 015 .004
Population 111 Population IV
n 7A'1 f'z f' 7~'1 fz T %1 7A'2 "l\' 7:1 fz 7
E[p"] = .01 20 —.005 —.000 —.002 —.004 038 021 — 011 —.008 —.009 —.009 .040 021
.086 109 .092 .095 216 134 118 125 115 134 228 142
E[p®] = .01 50 —.001 —.000 —.001 —.001 .004 .002 —.003 —.002 —.002 —.004 .005 002
.040 050 .040 044 071 046 .049 052 045 057 068 046
E[p"] = .05 20 —.002 —.001 —.001 —.002 .001 —.001 —.004 —.002 —.003 —.006 .000 —.002
028 027 023 034 032 023 031 028 024 038 032 024
E[p®]= .05 50 —.000 —.000 —.000 —.000 —.000 —.000 —.001 —.000 —.000 —.001 —.000 —.000
.009 .008 .006 .009 .009 .006 009 .008 .006 .009 .009 .006
E[p"] = .02 20 .098 — 381 —.192 —.005 035 020 089 385 —.194 —.013 .040 019
123 386 201 072 221 135 132 391 208 092 230 139
E[p?] = 01 50 .095 — 295 —.141 —.001 .005 .003 092 —.293 —.138 —.003 .004 .001
100 296 143 028 072 045 097 295 141 031 .069 043
E[p\"] = .07 20 075 —.094 —.028 —.001 —.000 —.001 070 —.094 —.028 —.004 .001 —.001
078 .097 034 023 032 021 074 .098 035 025 032 022
E[p®] = .05 50 020 —.031 —.011 —.000 —.000 —.000 018 —.029 —.010 —.000 .000 —.000
021 032 012 .005 .009 .006 019 .031 012 .005 .009 .006
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Table 5.  Simulation results for Population I: Variance estimators

Model r-bias Jr—mse  Coverage Semi- Design r-bias  r—mse  Coverage Semi-
based length based length
Ve(#1) —.040 080  .945 2414 V(&) —.014 216 942 243.4
n =20 Ve(#2) 011 186 .948 1159 V(%) 016 192 948 116.3
Ep =01 ¥ —-.033 095 946 3126 V(%) —.007 204 944 315.4
i Ve (7)) —.043 082 943 2458  V(F) —-.018 223 942 247.7
EpP1=.01  Vi(%) 85.5 5,891 932 2,626
Ve(7) 85.6 5,897 959 2,711 V(%) 85.6 5,897 959 2,713
Ve(#1) —.020 160 948 848  V(#) —.030 157 947 84.4
n =20 V() —.030 154 944 367 V(h) —.031 153 944 36.7
EpV = 05 Ye(®) —.021 169 948 1023 V(%) —.027 164 948 102.0
i Ve(71) —.025 163 .947 889 V(%) —.030 158 946 88.7
E[p”1=.05 V(%) —.003 304 949 51.8
Vi (%) —.014 177 951 103.0 V(%) —.017 172950 102.9
Ve(71) —.039 093 .930 1882 V(#) —.044 143 929 187.5
n =20 Ve () - 211 249 000 543 V(h) - 212 249 000 54.3
EpV =02 Ve —.085 122 619 2151 V(%) —.087 156 615 214.5
i Ve (7)) —.033 094 944 186.9 V(%) —.027 144 944 187.1
EpP1=.01 V(%) 97.4 5,804 932 4217
Ve(7) 97.4 5,804 958 4,269 V(%) 974 5804 957 4,269
Ve(#1) 061 203 779 623 V(&) 049 198 776 61.9
n =20 Ve(#2) — 358 372 .002 252 V() — 359 372 .002 25.2
EpP =07 % —.080 190 834 723 V(%) —.088 191 .833 72.0
i Ve() - .016 189 950 604 V(%) -.017 187 949 60.4
EpP1=.05 Vi(%) .001 304 951 52.0
Ve () —.026 210 .949 798 V(%) —-.026 209 949 79.8

Surjdwng 42151y puv Sunpdwng Surdond -yury Sunuiquio) UoSduloy ] pup vuipap-x112.]

43



Table 6. Simulation results for Population II: Variance estimators

Model r-bias Jr—mse Coverage Semi- Design r-bias r—mse Coverage Semi-
based length based length
Ve(31) — 655 656 750 2414 V(&) —.020 310 922 402.2
n =20 Ve (%) - 278 309 .894 1147 V(%) .008 245 935 135.2
B0 = o1 Ve(®) —.627 629 772 3117 V(%) - 014 303 .926 501.7
i Ve (1) —.663 663 747 2457 V(%) —-.019 317 922 413.9
E[pP] =01 V(%) 1079 3,695 934 1,766
Ve(7) 108.1 3,700 884 11,851 V(%) 108.1 3,700 951 11,968
Ve(#1) — 244 320 916 853  V(#) —.091 273 938 93.5
n =20 Ve () —.038 250 944 367 V(h) -.019 254 946 37.0
BV = 05 V(D) - 227 318 920 1029 V(%) —.087 283 .940 111.8
i Ve(71) - 263 331 915 89.4  V(7) —.093 272939 99.1
E[p”1=.05 Vi(%) .001 475 948 52.5
Ve(7) - 202 317 925 103.8 V(%) —.067 291 .943 1123
Ve(#1) — 566 568 795 187.7  V(4#) - 117 244 923 266.2
n =20 Ve () - 350 367 .000 537 V(h) —.250 287 .000 57.7
B0 = 02 Ve®) - 575 576 569 2143 V(%) - 157 256 736 299.9
i Ve (1) - 557 559 .809 1863  V(F) —.081 241 921 266.7
E[pP1= .01 Vi(%) 117.0 3,837 932 13,849
Ve (%) 117.1 3,841 922 13,901 V(%) 117.1 3,841 953 13,948
Ve (7)) —.047 327 773 627 V(&) 046 364 798 65.7
n =20 Ve (%) — 476 498 .002 251 V(%) — 473 496 .002 25.2
B0 = 02 Ve®) - 237 356 819 727 V(%) —.170 338 .836 75.8
i Ve(71) -.163 337 934 609  V(#) —-.073 339 945 64.0
E[pP1=.01 Vi(%) 103 492950 52.5
Vi (%) —.105 364 937 80.5 V(%) —.050 371 945 82.9
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A summary of the results of the variance estimators and confidence interval estimators
(Tables 5 and 6) follows:

— When the cluster sizes were distributed as Poisson random variables, both model-
based and design-based variance estimators and the confidence intervals associated
with them behaved reasonably well, provided that their corresponding estimators of
the population size behaved well.

— When the cluster sizes were distributed as Negative binomial random variables, the
model-based variance estimators underestimated the actual variances, and the biases
affected the coverage properties of the confidence intervals. The distortion of the
relative frequencies was more serious when the probabilities were small than when
they were large. The design-based variance estimators and their corresponding
confidence intervals behaved reasonably well.

6. Conclusions and Directions for Future Research

In this article we have developed two sets of estimators of population sizes: one based on
@ and another on the assumption p{" # p'®. For each estimator,
model-based and design-based estimators of its variance have been developed. From two
simulation studies carried out in this research we obtained the following results. Firstly,
the performance of the estimator 7, which does not use the information about the cluster
sizes strongly depends on the average size of the nomination probabilities: with small
probabilities the estimator is not reliable, whereas with large probabilities it behaves
reasonably well under its assumed model. (A similar result have been reported by Otis et al.
(1978) for the well-known Schnabel estimator used in MCRS). The performances of the
other estimators are not greatly affected by the size of the probabilities. Secondly the
estimators derived under the assumption pgl) = pgz)
assumption. Thirdly and finally, the estimators are robust to deviations from the assumed
Poisson distribution of the cluster sizes. This property is shared by the design-based
variance estimators, but not by the model-based variance estimators.

In future research, the study of other sampling strategies obtained by using other initial
sampling designs should be a topic of interest. In addition, the development of estimators
that perform reasonably well with small nomination probabilities should be considered.
An alternative might be the use of estimators obtained by means of the Bayesian approach.
(See Fienberg, Johnson, and Junker 1999, for a review of the Bayesian approach in the
context of MCRS.) Also, the development of design-based variance estimators that are not
completely based on asymptotic expansions, like those presented here, should be a topic of
study. For instance, the use of bootstrap variance estimators might be considered. (See
Buckland 1984, for the use of bootstrap in MCRS.) Finally, the development of estimators
that take into account the effect of heterogeneous nomination probabilities should also be
considered. (See Chao et al. 1992, and Fienberg, Johnson, and Junker 1999, for
descriptions of this type of estimator in the context of MCRS.) This is important because
studies carried out by Otis et al. (1978) in the context of capture-recapture sampling
indicate that the Schnabel estimator is not robust to deviations from the assumption of
homogeneous probabilities.

the assumption pl(.l) =p

are not robust to deviations from that
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