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For a stratified three-stage sampling design with simple random sampling without
replacement at each stage, only the Bernoulli bootstrap is currently available as a bootstrap
for design-based inference under arbitrary sampling fractions. This article extends three other
methods (the mirror-match bootstrap, the rescaling bootstrap, and the without-replacement
bootstrap) to the design and conducts simulation study that estimates variances and constructs
coverage intervals for a population total and selected quantiles. The without-replacement
bootstrap proves the least biased of the four methods when estimating the variances of
quantiles. Otherwise, the methods are comparable.
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1. Introduction

For most stratified multi-stage sampling designs, unbiased variance estimators of statistics

expressed by linear functions of the observations are available. However, for nonlinear

statistics and functionals, closed-form variance formulas are often unavailable.

Consequently, bootstrap methods can serve for variance estimation of such statistics

under stratified multi-stage sampling designs.

When the sampling fractions at the first stage are small, bootstrap methods for stratified

multi-stage sampling designs are simplified because without-replacement sampling can be

approximated by with-replacement sampling (Shao and Tu 1995, p. 235). But when the

sampling fractions at the first stage are not negligible, bootstrap methods for consistent

variance estimation become complicated and few have been developed. For instance, for a

stratified three-stage with simple random sampling without replacement at each stage

(ST–SI3) with arbitrary sampling fractions, no bootstrap procedure is available except the

Bernoulli Bootstrap (BBE) proposed by Funaoka, Saigo, Sitter, and Toida (2006) for the

1997 Japanese National Survey of Prices (NSP).

A resampling method for quantile estimation is particularly important for the NSP

because to analyze price formations for major consumers’ goods, comprehensive quantile

estimates are presented in the NSP report. In 1997, ST–SI3 was conducted in the NSP.
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First, 3,233 municipalities (the primary sampling units) were stratified into 537 strata

according to prefectures, economic spheres, and population sizes. At the first stage, the

simple random sampling without replacement was conducted. Since price formations were

locally correlated, large first-stage sampling fractions were adopted according to

population size: 1/1, 2/3, 1/3, 1/5, and 1/15. At the second stage, all large-scale outlets

were enumerated, while for small scale outlets, sampled municipalities were divided into

survey areas (the secondary sampling units) each consisting of about 100 outlets.

Systematic sampling was used to choose survey areas. The second-stage sampling

fractions were between 0.1 and 1.0. Finally, in each selected survey area, about 40 small

outlets were selected via ordered systematic sampling. Funaoka et al. (2006) regarded the

systematic sampling at the second and third stages as simple random sampling without

replacement and applied the BBE for quantile estimation.

However, Funaoka et al. (2006) studied only the BBE. A comparative study of several

resampling methods is necessary. Although thorough simulation studies have been

conducted about the bootstrap for sampling from a finite population (e.g., Kovar, Rao, and

Wu 1988; Sitter 1992a, 1992b), none of them has compared the methods under ST–SI3.

The study is particularly important not only for the NSP but also the Family Income

Expenditure Survey in Japan, where the ST–SI3 design is employed.

In this article, we extend the following bootstrap approaches to ST–SI3 and compare

them with the BBE for variance estimation as well as interval estimation through a

simulation study using pseudo-populations: the mirror-match bootstrap (BMM) by Sitter

(1992a) which covers ST–SI2; the rescaling bootstrap (BRS) originally proposed by Rao

and Wu (1988) for ST–SI2 by rescaling the study variable and then modified by Rao, Wu,

and Yue (1992) for ST–SI with replacement by rescaling the sampling weights to handle

quantile estimation; and the without-replacement bootstrap (BWO) originally argued by

Gross (1980) for ST–SI and then extended by Sitter (1992b) to ST–SI2. The with-

replacement bootstrap (BWR) is included as a special case of the BMM (Sitter 1992a).

A theoretical comparison of the four methods is beyond the scope of this article.

This article is organized as follows. Section 2 describes ST–SI3. Section 3 presents the

BBE and an extension of the BMM, the BRS, and the BWO to ST–SI3. In Section 4, we

conduct a simulation study to compare the four bootstrap methods under ST–SI3.

Concluding remarks are made in Section 5.

2. Stratified Three-Stage Design

In this section, we describe ST–SI3, a stratified three-stage design with simple random

sampling without replacement at each stage (see Särndal, Swensson, and Wretman 1992,

pp. 146-150).

Suppose that a population is stratified into H strata, labeled as h ðh ¼ 1; 2; : : : ;HÞ.

Stratum h has Nh primary sampling units (PSUs) in it, labeled as i [ Ph1 ¼

{1; 2; : : : ;Nh}. Primary sampling unit i [ Ph1 has Mhi secondary sampling units

(SSUs) in it, labeled as j [ Ph2i ¼ {1; 2; : : : ;Mhi}. Secondary sampling unit j [ Ph2i

has Lhij ultimate sampling units (USUs) in it, labeled as k [ Ph3ij ¼ {1; 2; : : : ; Lhij}.

Ultimate sampling unit k [ Ph3ij has the characteristic(s) of interest yhijk. The population

total is given by Y :::: ¼
PH

h¼1

P
i[Ph1

P
j[Ph2i

P
k[Ph3ij

yhijk.
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Under ST–SI3, sampling is carried out independently in different strata. In stratum h,

we take a simple random sample without replacement (SI) of size nh from Ph1 and denote

the set of the sampled labels by Sh1. Then, for i [ Sh1, we take an SI of size mhi from Ph2i

and denote the set of the sampled labels by Sh2i. Finally, for j [ Sh2i, we take an SI of size

lhij from Ph3ij and denote the set of the sampled labels by Sh3ij.

An unbiased estimator of the population total is given by

Ŷ:::: ¼
XH
h¼1

X
i[Sh1

X
j[Sh2i

X
k[Sh3ij

whijkyhijk ð1Þ

where whijk ¼ f21
h1 f

21
h2i f

21
h3ij with f h1 ¼ nh=Nh, f h2i ¼ mhi=Mhi, and f h3ij ¼ lhij=Lhij.

An unbiased variance estimator for Ŷ:::: is given by

vðŶ::::Þ ¼
XH
h¼1

N2
hð1 2 f h1Þ

nh
S2
h1 þ

Xnh
i¼1

NhM
2
hi ð1 2 f h2iÞ

nhmhi

S2
h2i

(

þ
Xnh
i¼1

Xmhi

j¼1

NhMhiL
2
hij ð1 2 f h3ijÞ

nh mhi lhij
S2
h3ij

)

where S2
h1 ¼ ðnh21Þ21

P
i[Sh1

Ŷhi::2 Ŷh:::
� �2

, S2
h2i ¼ ðmhi21Þ21

P
j[Sh2ij

Ŷhij:2 Ŷhi::
� �2

,

and S2
h3ij ¼ ðlhji21Þ21

P
i[Sh3ijk

yhijk2 �yhij:
� �2

with Ŷhi:¼
P

j[Sh2i

P
k[Sh3ij

f21
h2i f

21
h3ij yhijk,

Ŷh:::¼ n21
h

P
j[Sh1

Ŷhi::; Ŷhij:¼
P

k[Sh3ij
f21
h3ijyhijk, Ŷhi::¼m21

hi

P
j[Sh2i

Ŷhij:; and �yhij: ¼

l21
ijk

P
k[Sh3ij

yhijk.

To estimate the distribution function FðxÞ ¼
PH

h¼1

P
i[Ph1

P
j[Ph2i

P
k[Ph3ij

Ið yhijk # xÞ=
PH

h¼1

P
i[Ph1

P
j[Ph2i

Lhij, where I(·) is the indicator function, an unbiased

point estimator is given by

F̂ðxÞ ¼
XH
h¼1 i[Sh1

X
j[Sh2i

X
k[Sh3ij

X
whijk I ð yhijk # xÞ

.XH

h¼1 i[Sh1

X
j[Sh2i

X
k[Sh3ij

X
whijk

A closed-form variance formula is provided by replacing yhijk with Ið yhijk # xÞ in vðŶ::::Þ.

For estimating quantile F21ð pÞ ¼ inf {x : FðxÞ $ p} for p [ ð0; 1Þ, the direct inversion

estimator F̂21ð pÞ ¼ inf {x : F̂ðxÞ $ p} is available. However, no closed-form variance

formula is available for F̂21ð pÞ. Although the Woodruff method can handle variance

estimation (Woodruff 1952; see also Shao and Tu 1995, p. 238), the bootstrap is

a reasonable choice because it can accommodate nonsmoothed statistics other than

quantiles as well.

3. Bootstrap Methods

The bootstrap methods considered here can be described as follows. Suppose an

estimator of the parameter u can be written as û ¼ tðwhijk; yhijk; h ¼ 1; 2; : : : ;H;

i [ S1h; j [ Sh2i; k [ Sh3ijÞ, where the sample weight whijk is given in (1). Then, through

the bootstrap method employed, obtain a bootstrap sample S*
h1; h ¼ 1; 2; : : : ;H;

�
S*
h2i; i [ S*

h1;S*
h3ij; j [ S*

h2i

�
and calculate û* ¼ tðw*

hijk; yhijk; h ¼ 1; 2; : : : ;H; i [ S*
1h;

j [ S*
h2i; k [ S*

h3ijÞ. The methods below are different in values of w*
hijk and creation
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of a bootstrap sample {S*
h1; h ¼ 1; 2; : : : ;H;S*

h2i; i [ S*
h1;S*

h3ij; j [ S*
h2i}. But all of

them satisfy the condition that for Ŷ*:::: ¼
PH

h¼1

P
i[S*

h1

P
j[S*

h2i

P
k[S*

h3ij
w*
hijkyhijk,

E*ðŶ
*::::Þ ¼ Ŷ:::: and V*ðŶ

*::::Þ ¼ vðŶ::::Þ, where E*ð·Þ and V*ð·Þ are the expectation and

variance under repeated bootstrap resampling, respectively. The proofs of the results for

the four methods are given in a separate appendix available from the author upon request.

For variance estimation, one can perform a Monte Carlo simulation, i.e., repeat

the above resampling and calculation of û* a large number of times B and obtain

an estimate by vbootðûÞ ¼ ðB2 1Þ
PB

b¼1 û
*

b 2 û
_
*

� �
2
, where û

*

b is the value of û* in the

bth bootstrap sample and û
_
* ¼ B21

PB
b¼1û

*

b.

3.1. Bernoulli Bootstrap

In the BBE proposed by Funaoka et al. (2006), a bootstrap sample is constructed through

random replacement of the sampled units. The procedure is performed independently for

h ¼ 1; 2; : : : ;H.

Step 1. Choose (nh 2 1) labels by simple random sampling with replacement from Sh1.

Denote the candidate set by C*
h1. For each i [ Sh1, we: (a) keep it in the bootstrap

sample with probability ph1 ¼ 1 2 ð1=2Þ 1 2 n21
h

� �21
ð1 2 f 1hÞ; or (b) replace it with

one randomly selected from C*
h1. If (a) is the case, go to Step 2.

Step 2. For i kept at Step 1, choose (mhi 2 1) labels by simple random

sampling with replacement from Sh2i. Denote the candidate set by C*
h2i. For each

j [ Sh2i, we: (c) keep it in the bootstrap sample with probability ph2i ¼ 1 2 ð1=2Þp21
h

f 1hð1 2 m21
hi Þ

21ð1 2 f 2hiÞ; or (d) replace it with one randomly selected from C*
h2i. If (c) is

the case, go to Step 3.

Step 3. For j kept at Step 2, choose (lhij 2 1) labels by simple random sampling with

replacement from Sh3ij. Denote the candidate set by C*
h3ij. For each k [ Sh3ij, we:

(e) keep it in the bootstrap sample with probability ph3ij ¼ 1 2 ð1=2Þp21
h f 1hp

21
h2i

f 2hið1 2 l21
hij Þ

21ð1 2 f 3hijÞ; or (f) replace it with one randomly selected from C*
h3ij.

Denote the resultant bootstrap sample by S*
h1; h ¼ 1; 2; : : : ;H;S*

h2i; i [ S*
h1;

�
S*
h3ij; j [ S*

h2i

o
and let w*

hijk ¼ whijk.

Creating the candidate sets is necessary to make the procedure feasible for any nh, mhi,

lhij $ 2 (Funaoka et al. 2006).

Obviously, the BBE retains the original sample sizes and the original sample

weights. This is desirable in dealing with randomly imputed survey data (Saigo, Shao,

and Sitter 2001).

3.2. Mirror-Match Bootstrap

The BMM proposed by Sitter (1992a) can be extended to ST–SI3 as follows.

The procedure is performed independently for h ¼ 1; 2; : : : ;H.

Step 0. Choose n 0h;m
0
h; and l0hij such that 1 # n 0h # n 0h=ð2 2 f 1hÞ,

1 # m 0
hi # mhi={1þ ð12 f h2iÞðnh 2 n 0hÞ=ðNh 2 nhÞ}, and 1 # l0hij # lhij={1 þ ð1 2 f h3ijÞ

ðmhi 2 m 0
hiÞ=ðMhi 2 mhiÞ}. Let f *

h1 ¼ n 0h=nh, f *
h2i ¼ m 0

hi=mhi, f *
h3ij ¼ l0hij=lhij,

kh1 ¼{nhð12 f *
h1Þ}={n 0hð12 f h1Þ}, kh2i¼{Nhð12 f h1Þ}={nhð12 f *

h1Þ}·{mhið12 f *
h2iÞ}=

Journal of Official Statistics196



{m 0
hð12 f h2iÞ}, and kh3ij¼{Mhið12f h2iÞ}={mhið12f *

h2iÞ}·{lhijð12f *
h3ijÞ}={l

0

hijð12f h3ijÞ}.

If desirable, we may randomize kh1, kh2i, and kh3ij to realize E*ðf
*
h1Þ¼f h1, E*ðf

*
h2iÞ ¼ f h2i,

and E*ðf
*
h3ijÞ ¼ f h3ij. See the comment made in the second paragraph below Step 3.

Step 1. If kh1 is an integer, ~kh1 ¼ kh1. If not, let ~kh1 ¼ bkh1c with probability

ph1 ¼
�
k21
h1 2 dkh1e

21�
=
�
bkh1c

21
2 dkh1e

21�
or ~kh1 ¼ dkh1e otherwise. Repeat indepen-

dently ~kh1 times simple random sampling without replacement of size n 0h from Sh1.

Denote the subsampled ~n*
h ¼ n 0h

~kh1 labels by S*
h1.

Step 2. For each i [ S*
h1: if Kh2i is an integer, ~kh2i ¼ kh2i; if not, let ~kh2i ¼ bkh2ic with

probability ph2i ¼
�
k21
h2i 2 dkh2ie

21�
=
�
bkh2ic

21
2 dkh2ie

21�
or ~kh2i ¼ dkh2ie otherwise.

Repeat independently ~kh2i times simple random sampling without replacement of size

m0
hi from Sh2i. Denote the subsampled ~m*

hi ¼ m 0
hi
~kh2i labels by S*

h2i.

Step 3. For each j [ S*
h2i: if kh3ij is an integer, ~kh3ij ¼ kh3ij; if not, let ~kh3ij ¼ bkh3ijc with

probability ph3ij ¼
�
k21
h3ij 2 dkh3ije

21�
=
�
bkh3ijc

21
2 dkh3ije

21�
or ~kh3ij ¼ dkh3ije otherwise.

Repeat independently ~kh3ij times simple random sampling without replacement of size

l0hij from Sh3ij. Denote the subsampled ~l
*
hij ¼ l 0hij

~kh3ij labels by S*
h3ij.

The bootstrap sample weight is given byw*
hijk ¼ Nh=~n

*
h

� �
Mhi= ~m

*
hi

� ��
Lhij=~l

*
hij

�
. To conduct a

Monte Carlo simulation, repeat Steps 1–3 a large number of times B. In the separate

appendix, it is shown that nh=ð2 2 f hÞ $ 1, mhi={1 þ ð1 2 f h2iÞðnh 2 n 0hÞ=ðNh 2 nhÞ} $ 1

and lhij={1 þ ð1 2 f h3ijÞðmhi 2 m 0
hiÞ=ðMhi 2 mhiÞ} $ 1 for 2 # nh , Nh; 2 # mhi , Mhi;

and 2 # lhij , Lhij. Thus, the method is always feasible. Note that by letting

n 0h ¼ m 0
hi ¼ l0hij ¼ 1, the with-replacement bootstrap (BWR) follows from the BMM.

If 1 # nh f h1; 1 # mhi f h2i; and 1 # lhij f h3ij; randomizing n 0h;m
0
hi; and l0hij may yield

E* f *
h1

� �
¼ f h1, E* f *

h2i

� �
¼ f h2i, and E*

�
f *
h3ij

�
¼ f h3ij. Specifically, replace the first sentence

in step 0 by “Let ~n 0h ¼ bnh f h1c with probability dnhf h1e2 nhf h1 or ~n 0h ¼ dnhf h1e otherwise;

let ~m
0

hi ¼ bmhi f h2ic with probability dmhi f h2ie2 mhi f h2i or ~m 0
hi ¼ dmhi f h2ie otherwise; and let

~l
0

h ¼ blhij f h3ijc with probability dlhij f h3ije2 lhij f h3ij or ~l
0

hij ¼ dlhij f h3ije otherwise.” Then

replace n 0h;m
0
hi; and l0hij with ~n

0

h; ~m
0

hi; and ~l
0

hij in the second sentence in Step 0.

Under ST–SI, the conditions E* f *
h1

� �
¼ f h1ðh ¼ 1; 2; : : : ;HÞ ensure third-order

moment matching (Sitter 1992a). Although no theoretical explanation is available for a

multistage design, we may pursue the conditions E* f *
h1

� �
¼ f h1; E* f *

h2i

� �
¼ f h2i, and

E*

�
f *
h3ij

�
¼ f h3ij that possibly improve the BMM’s performance.

To implement a Monte Carlo simulation, repeat Steps 0–3 a large number of times B.

3.3. Rescaling Bootstrap

Rao and Wu (1988) proposed a BRS method that rescales residuals to provide consistent

variance estimation for a parameter defined as a smooth function of the population means.

This approach, however, cannot handle variance estimation for sample quantiles. Rao,

Wu, and Yue (1992) studied a modified BRS method that rescales sample weights to

accommodate quantile estimation under stratified multistage sampling where the first

stage sampling fractions are negligible. Here, we present a weight-rescaling BRS for

ST–SI3 with any sampling fractions. The procedure is conducted independently for

h ¼ 1; 2; : : : ;H.
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Step 0. Choose positive integers n*
h;m

*
hi; and l*hij for i [ Sh1; j [ Sh2i. To avoid negative

weights, choose n*
h # ð1 2 f h1Þ

21ðnh 2 1Þ, m*
hi # nhðnh 2 1Þ21ð1 2 f h1Þ f

21
h1 ðmhi 2 1Þ

ð1 2 f h2iÞ
21, and l*hij # mhi ðmhi 2 1Þ21ð1 2 f h2iÞ f

21
h2i ðlhij 2 1Þ ð1 2 f h3ijÞ

21 if possible.

For example, if f h1 # 1=2 and f h2i # 1=2 for all h and i, we may choose

n*
h ¼ nh 2 1;m*

hi ¼ mhi 2 1; and l*hij ¼ lhij 2 1.

Step 1. Choose n*
h labels randomly with replacement from Sh1. Let ~n*

hi be the number of

times label i [ Sh1 is selected. We may equivalently carry out this step by letting

~n*
h1; ~m

*
h2; : : : ; ~n

*
hnh

� �
, MN n*

h; 1=nh; 1=nh; : : : ; 1=nh
� �

, where MN stands for the

multinomial distribution.

Step 2. If ~n*
hi $ 1 for i [ Sh1, choose ~n*

hm
*
hi labels randomly with replacement from

Sh2i. Let ~m*
hij be the number of times label j [ Sh2i is selected. Equivalently,

let
�
~m*
hi1; ~m

*
hi2; : : : ; ~m

*
himhi

�
, MN n*

him
*
hi; 1=mhi; 1=mhi; : : : ; 1=mhi

� �
, If ~n*

hi ¼ 0, let

~m*
hij ¼ 0 for j [ Sh2i.

Step 3. If ~m*
hij $ 1, choose ~m*

hij
~l
*
hij labels randomly with replacement from Sh3ij.

Let ~l
*
hijk be the number of times label k [ Sh3ij is selected. Equivalently,

let
�
~l
*
hij1;

~l
*
hij2; : : : ;

~l
*
hijlhij

�
, MN

�
~m*
hil

*
hij; 1=lhij; 1=lhij ; : : : ; 1=lhij

�
. If ~m*

hij ¼ 0, let
~l
*
hijk ¼ 0 for k [ Sh3ij:

The bootstrap sample is the same as the original sample, but the bootstrap sample

weights are given by

w*
hijk¼whijk 1þahi ~n*

hi2n*
h=nh

� �
þbhij ~m*

hij2 ~n*
him

*
hi=mhi

� �
þghijk ~l

*

hijk2 ~m*
hij
~l
*

hij=lhij

� �n o
;

where

ahi¼nh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 f h1

p . ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n*
hðnh21Þ

q
;

bhij¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nh f h1=n

*
h

q
mhi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 f h2i

p . ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m*

hiðmhi21Þ

q
;

ghijk¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nh f h1=n

*
h

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mhi f h2i=m

*
hi

q
lhij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 f h3ij

p . ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l*hijðlhij21Þ

q
:

Rao and Wu (1988) studied the choice of the resample sizes for ST–SI with replacement

when rescaling the study variable y to match the third order moments and to capture the

second term of Edgeworth expansions with known strata variances. Note, however, that no

theory has been developed for multistage designs.

For variance estimation, repeat Steps 1–3 for a large number of times B and perform a

Monte Carlo simulation.

3.4. Without-Replacement Bootstrap

An extended BWO method for a stratified two-stage design (Sitter 1992b) can be extended

further to ST–SI3 as follows. The procedure is conducted independently in

h ¼ 1; 2; : : : ;H.

Step 0. We need the following integer random variables to create a pseudo-population

by copying the original sampled units.
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For PSUs Compute the following constants:

vh ¼ nh 1 2 n21
h þ N21

h

� �
; �vh ¼ dvhe; and _vh ¼ bvhc;

kh1 ¼ Nhn
22
h vh; �kh1 ¼ dkh1e; and _kh1 ¼ bkh1c; and

�ah1 ¼ �kh1{1 2 _vh=ðnh �kh1Þ}={_vhðnh �kh1 2 1Þ}; and

_ah1 ¼ _kh1{1 2 �vh=ðnh_kh1Þ}={�vhðnh_kh1 2 1Þ}:

Define ð~n*
h;
~kh1Þ as :

Pr ~n*
h;
~kh1

� �
¼ _vh; �kh1

� �n o
¼ ph1 and Pr ~n*

h;
~kh1

� �
¼ �vh; _kh1

� �n o
¼ 1 2 ph1;

where ph1 ¼ ½ð1 2 f h1Þ={nhðnh 2 1Þ} 2 _ah1�={�ah1 2 _ah1Þ

For SSUs Compute the following constants:

E
*ð~n*

h
;~kh1Þ

~n*21
h

� �
¼ ph1_v

21

h
þ ð1 2 ph1Þ�v

21
h ;

mhi ¼ mhi NhE*ð~n*
h
;~kh1Þ

~n*21
h

� �
1 2 m21

hi

� �
þM21

hi

n o
; �mhi ¼ dm�hie; and _mhi ¼ bmhic;

kh2i ¼ Mhim
22
hi mhi; �kh2i ¼ dkh2ie; and _kh2i ¼ bkh2ic; and

�ah2i ¼ �kh2i 1 2 _mhi=ðmhi
�kh2iÞ

n o.
_mhiðmhi

�kh2i 2 1Þ
n o

; and

_ah2i ¼ _kh2i 1 2 �mhi=ðmhi_kh2iÞ
n o.

�mhiðmhi_kh2i 2 1Þ
n o

Define ~m*
hi;

~kh2i

� �� �
as:

Pr ~m*
hi;

~kh2i

� �
¼ ð _mhi; �kh2iÞ

n o
¼ ph2i and Pr ~m*

hi;
~kh2i

� �
¼ ð �mhi; _kh2iÞ

n o

¼ 1 2 ph2i; where

ph2i ¼ ð1 2 f h2iÞ=
n
NhE

* ~n
*

h ;
~khi

� ��~n*21
h

�
mhiðmhi 2 1Þ

o
2 _a

h2i

� 	
=ð�ah2i 2 _ah2iÞ

For USUs Compute the following constants:

E* ~m*
hi
;~kh2ið Þ ~m*21

h

� �
¼ ph2i _m

21

hi
þ ð1 2 ph2iÞ �m

21

hi
;
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lhij ¼ lhij NhE* ~n*
h
;~kh1ð Þ ~n*21

h

� �
MhE* ~m*

hi
;~kh2ijð Þ ~m*21

hi

� �
1 2 l21

hij

� �
þ L21

hij

� �
;

�lhij ¼ dlhije; and _lhij ¼ blhijc;

kh3ij ¼ Lhijl
22
hij lhij;

�kh3ij ¼ dkh3ije; and _kh3ij ¼ bkh3ijc; and

�ah3ij ¼ �kh3ij

�
1 2 _lhij=lhij �kh3ijÞ

�
=
�

_lhij lhij �kh3ij 2 1
� ��

; and

_ah3ij ¼ _kh3ij

�
1 2 �lhij=lhij_kh3ijÞ

�
= �lhij lhij_kh3ij 2 1

� �n o

Define ~l
*
hij; ~kh3ij

� �
as :

Pr ~l
*
hij;

�kh3ij

� �
¼ _lhij; �kh3ij

� �n o
¼ ph3ij and Pr ~l

*
hij;

~kh3ij

� �
¼ �lhij; _kh3ij

� �n o
¼ 1 2 ph3ij; where

ph3ij ¼ ð1 2 f h3ijÞ= NhE* ~n
*

h ;
~kh1

� � n
*21
h

� �
MhiE* ~m

*

hi;
~kh2i

� � ~m
*21
hi

� �
lhij lhij 2 1

� �
 ��

2 _ah3ij

	
=ð�ah3ij 2 _ah3ijÞ:

Step 1. Generate ~n*
h;
~kh1

� �
. Copy Sh1 ~kh1 times to create P*

h1 of size nh ~kh1.

Step 2. For each i [ P*
h1; generate ð ~m*

hi; ~kh2iÞ. Copy Sh2iði [ P*
h1Þ ~kh2i times to create

P*
h2i of size mhi

~kh2i.

Step 3. For each j [ P*
h2iði [ P*

h1Þ, generate ~l
*
hij;

~kh3ij

� �
. Copy Sh3ij j [ P*

h2i;
�

i [ P*
h1

�
�kh3ij times to create P*

h3ij of size lhij �kh3ij.

Step 4. Conduct ST–SI3 from the pseudo-population to obtain a bootstrap sample: first,

take an SI of size ~n*
h from P*

h1 to get S*
h1; then for i [ S*

h1, take an SI of size ~m*
hi

from P*
h2i to get S*

h2i and finally for j [ S*
h2i i [ S*

h1

� �
, take an SI of size ~l

*
hij from P*

h2ij to

get S*
h3ij.

The bootstrap sampling weights are given by w*
hijk ¼ Nh=~n

*
h

� �
Mhi= ~m

*
hi

� �
Lhij=~l

*
hij

� �
.

It is shown in the separate appendix that ph1; ph2i; ph3ij [ ½0; 1� and that vh; kh1;m hi;

kh2i; lhij; and kh3ij are all positive integers for nh, mhi, lhij $ 2. For variance estimation,

repeat Steps 1–4 for a large number of times B.

For efficient computations, we may avoid unnecessary random number generation by

replacing Steps 1–4 with the following steps:

Step 10. Generate ~n*
h;
~k h1

� �
. Copy Sh1; ~k

*
h1 times to create P*

h1 of size nh ~k h1. Sample S*
h1

of size ~n*
h from P*

h1 without replacement.

Step 20. For each i [ S*
h1, generate ~m*

hi;
�kh2i

� �
. Copy S*

h2i i [ P*
h1

� �
~kh2i times to create

P*
h2i of mhi

~kh2i. Sample S*
h2i of size ~m*

hi from P*
h2i without replacement.

Step 30. For each j [ S*
h2i i [ S*

h1

� �
, generate ~l

*
hij;

�kh3ij

� �
. Copy S*

h3ij j [ S*
h2i;

�
i [ S*

h1

�
~kh3ij times to create P*

h3ij of size lhij �kh3ij. Sample S*
h3ij of size ~l

*
hij from P*

h3ij.

This procedure is similar to the BMM.
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3.5. Numerical Illustration

To illustrate, let us consider a single-stratum ðH ¼ 1Þ population which has N ¼ 10

PSUs each composed of Mi ¼ 20 SSUs each with Lij ¼ 30 USUs in it. The sample sizes

used are n ¼ 4;mi ¼ 8; and lij ¼ 3. Since H ¼ 1, we suppress subscript h in what follows.

Creation of a bootstrap sample in the four methods is carried out as follows.

In the BBE:

Step 1. Choose 3 PSUs as a candidate set through simple random sampling with

replacement from the 4 PSUs in the sample. For each of the 4 PSUs, keep it

with probability 0.60 or replace it with one randomly selected from the 3 PSUs in the

candidate set. For the PSUs kept in this step, go to the next step.

Step 2. Choose 7 SSUs as a candidate set through simple random sampling with

replacement from the 8 SSUs in the sample. For each of the 8 SSUs, keep it

with probability 0.771 or replace it with one randomly selected from the 7 PSUs in

the candidate set. For the SSUs kept in this step, go to the next step.

Step 3. Choose 2 USUs as a candidate set through simple random sampling with

replacement from the 3 USUs in the sample. For each of the 3 USUs, keep it

with probability 0.767 or replace it with one randomly selected from the 2 USUs in

the candidate set.

In the BMM:

Step 0. Let n 0 ¼ 2;m 0
i ¼ 3; and l0ij ¼ 1, say.

Step 1. Let ~k1 ¼ 1 with probability 0.20 or ¼ 2 otherwise. Generate ~k1 and repeat ~k1

times simple random sampling without replacement of size 2 from the 4 PSUs.

Step 2. Let ~k2i ¼ 8 with probability 0.64 or ¼ 9 otherwise. For each of the PSUs taken

in Step 1, generate ~k2i and repeat ~k2i times simple random sampling without replacement

of size 3 from the 8 SSUs.

Step 3. Let ~k3ij ¼ 5 with probability 0.63 or ¼ 6 otherwise. For each of the SSUs taken

in Step 2, generate ~k3ij and repeat ~k3ij times simple random sampling without

replacement of size 1 from the 3 USUs (This is equivalent to simple random sampling

with replacement of size ~k3ij).

In the BRS:

Step 0. Let n* ¼ 3, m*
i ¼ 7; and l*ij ¼ 2, say.

Step 1. Choose 3 PSUs from 4 PSUs via simple random sampling with replacement. Let

~n*
i be the number of times that PSU i is selected.

Step 2. For i such that ~n*
i $ 1, choose 7~n*

i SSUs from 8 SSUs in PSU i via simple

random sampling with replacement. Let ~m*
ij be the number of times that SSU j in PSU i

is selected. For i such that ~n*
i ¼ 0, let ~m*

ij ¼ 0;

Step 3. For ij such that ~m*
ij $ 1, choose 2 ~m*

ij USUs from 2 USUs in SSU j in PSU i via

simple random sampling with replacement. Let ~l
*
ijk be the number of times that USU k in

SSU j in PSU i is selected. For ij such that ~m*
ij ¼ 0, let ~l

*
ijk ¼ 0. Use ai ¼ 1:03;

bij ¼ 0:65; and gijk ¼ 0:70 for weight rescaling.
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In the BWO:

Step 0. Define the following integer random variables: ð~n*; ~k1Þ ¼ ð3; 3Þ with probability

0.44 or ¼ (4,2) otherwise; ð ~m*
i ;
~k2iÞ ¼ ð20; 7Þ with probability 0.47 or ¼ (21, 6)

otherwise; and ð~l
*
ij;
~k3ijÞ ¼ ð5; 19Þ with probability 0.29 or ¼ (6, 18) otherwise.

Step 1. Generate ð~n*; ~k1Þ and copy 4 PSUs ~k1 times.

Step 2. For each i in the copied PSUs in Step 1, generate ~m*
i ;
~k2i

� �
and copy 6 SUSs ~k2i

times.

Step 3. For each j in the copied SSUs in PSU i in Step 2, generate ~l
*
ij;
~k3ij

� �
and copy 2

USUs ~k3ij times.

Step 4. Mimic the original sampling under the created pseudo-population with realized

sample sizes ~n*; ~m*
i ; and ~l

*
ij.

4. Simulation Study

We compared the four bootstrap methods through a limited simulation study. To focus

on design-based properties, we generated a population and fixed it under repeated

sampling. We created two populations. In Population I, stratification was less effective

and the intra-cluster correlation was low. On the other hand, in Population II, stratification

was more effective and the intra-cluster correlation was high. Both had H ¼ 4 strata.

Each stratum had Nh ¼ 10 primary sampling units, each of which had Mhi ¼ 20 secondary

sampling units, each having Lhij ¼ 30 ultimate sampling units. We chose the small

number of strata to obtain a clear picture of the pseudo-populations under study. The

study variables yhijk were generated as follows. First, we generated mhi ¼ mh þ shuhi,

where mh and sh are listed in Table 1 and uhi , iidNð0; 1Þ. Second, we generated

mhij ¼ mhi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 2 r2Þ=r2

p
shuhij, where uhij , iidNð0; 1Þ. Finally, we generated

yhijk ¼ mhij þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 2 r3Þ=r3

p
shuhijk, where uhijk , iidNð0; 1Þ. We set ðr2; r3Þ ¼ ð0:2; 0:3Þ

for Population I (low intra-cluster correlation) and ðr2; r3Þ ¼ ð0:5; 0:5Þ for Population II

(high intra-cluster correlation).

Figure 1 shows the histograms of yhijk in Stratum h ðh ¼ 1; 2; 3; 4Þ in Population I, with

five vertical lines showing the population quantiles for p ¼ 0:10; 0:25; 0:50; 0:75; 0:90.

Since stratification is weak in Population I, the characteristic yhijk in a stratum overlaps

those in the other strata.

On the other hand, stratification in Population II is effective. In particular, the first

quartile F21ð0:25Þ, the median F21ð0:5Þ, and the third quartile F21ð0:75Þ are located at

the stratum boundary between h ¼ 1 and h ¼ 2; h ¼ 2 and h ¼ 3; and h ¼ 3 and h ¼ 4,

respectively (see Figure 2).

Table 1. Parameter Values to Create a Population

Population I Population II

h mh sh mh sh

1 200 20.0 200 10.0
2 150 15.0 150 7.5
3 120 12.0 120 6.0
4 100 10.0 100 5.0
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Since high sampling fractions were the concern, all the first stage sampling fractions

were nonnegligible. Table 2 shows the first- and second-stage sampling fractions in the

simulation. The third-stage sampling fractions were set to be f h3ij ¼ 0:1.

In the BMM, n 0h;m
0
h; and l 0hij were randomized to get E* f *

h1

� �
¼ f h1; E* f *

h2i

� �
¼ f h2i,

and E* f *
h3ij

� �
¼ f h3ij when possible (see Section 3.2) or n0h ¼ 1;m 0

hi ¼ 1 and l0hij ¼ 1

Fig. 1. Histograms of yhijk in Strata h ðh ¼ 1; 2; 3; 4Þ in Population I. Note: The five vertical lines show

F21ðpÞ with p ¼ 0:1; 0:25; 0:50; 0:75; 0:9

Fig. 2. Histograms of yhijk in Strata h ðh ¼ 1; 2; 3; 4Þ in Population II. Note: The five vertical lines show

F21ðpÞ with p ¼ 0:1; 0:25; 0:50; 0:75; 0:9
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otherwise. In the BRS, n*
h ¼ nh 2 1;m*

hi ¼ mhi 2 1; and l*hij ¼ lhij 2 1, which assures that

w*
hijk . 0.

The parameters of interest u were the population total Y:::: and quantiles

F21ð pÞ ð p ¼ 0:1; 0:25; 0:5; 0:75; 0:9Þ, and their point estimators were given by Ŷ.... and

F̂21ð pÞ in Section 2. In each simulation run, we generated B ¼ 1; 000 bootstrap samples to

estimate variance and made a bootstrap histogram. Variance was estimated by vbootðûÞ in

Section 3. To evaluate the empirical coverage, the 0.1 and 0.9 points of the bootstrap

histogram were employed to calculate the lower- and upper-tail errors defined below (see

Shao and Tu 1995, pp. 132–133, for using the bootstrap histogram to construct a

confidence interval). The relative bias (%Bias) and the instability (the coefficient of

variation, %Instb) in variance estimation, and the lower- and upper-tail errors (%L and

%U) were evaluated through S ¼ 1; 000 simulation runs while the variance VðûÞ was

estimated by 10,000 iterations:

%Bias ¼ S21
XS
s¼1

vðsÞbootðûÞ2 VðûÞ

( )�
VðûÞ £ 100;

%Instb ¼ S21
XS
s¼1

vðsÞbootðûÞ2 VðûÞ
� �2

( )1=2�
VðûÞ £ 100;

%L ¼ S21#{0 , the 0:1 point of bootstrap histgram of û
*

b} £ 100;

%U ¼ S21#{0 . the 0:9 point of bootstrap histgram of û
*

b} £ 100;

The empirical coverage rate was computed as (100 2 %L 2 %U) percent.

Tables 3 and 4 show the results for the four bootstrap methods for Populations I and II,

respectively. We observe from Tables 3 and 4 the following points.

1. In estimating variances for the estimated population total in both Populations I

and II, the performance measures for the four methods are almost identical.

This was expected because the four methods satisfy E*

�
Ŷ*::::

�
¼ Ŷ:::

andV* Ŷ*::::
� �

¼ v Ŷ:::
� �

, so the differences in %Bias reflect only Monte Carlo errors.

2. In estimating variances for the five estimated quantiles in Population I, the four

methods perform similarly although the BWO is the least biased and the most stable.

3. In estimation for Population II, the four methods show remarkable differences: the

bias in variance estimation by the BRS can be serious; the instability of the BBE

tends to be greater than that of the BMM and the BWO; and the BMM and the BWO

perform similarly, although the latter is marginally less biased and more stable.

Table 2. The sampling Fractions in the Simulation Study

h fh1 fh2i fh3ij

1 0.5 0.4 0.1
2 0.4 0.4 0.1
3 0.2 0.2 0.1
4 0.2 0.2 0.1
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Table 4. Variance Estimation and Tail Errors for Population II

%Bias %Instb %L %U %Bias %Instb %L %U

Ŷ: : : F̂21ð0:10Þ
BBE 22.0 58.6 12.0 13.5 5.1 109.5 20.7 18.1
BMM 22.1 58.7 11.5 13.4 5.2 106.6 20.8 15.5
BRS 22.0 58.8 11.8 13.2 11.0 118.0 20.7 16.1
BWO 23.6 57.4 12.2 13.5 2.8 104.3 20.9 15.5

F̂21ð0:25Þ F̂21ð0:50Þ
BBE 25.8 88.7 10.6 21.2 1.4 119.4 3.0 52.9
BMM 9.7 99.5 12.5 14.6 22.4 83.1 3.5 31.3
BRS 220.3 77.6 16.3 18.9 262.4 74.7 7.3 50.6
BWO 9.5 105.6 13.4 15.3 4.6 100.9 3.1 48.2

F̂21ð0:75Þ F̂21ð0:90Þ
BBE 22.6 85.2 10.0 17.9 3.6 49.5 10.8 12.6
BMM 21.5 83.4 11.3 13.4 2.1 51.0 11.3 10.8
BRS 222.2 58.4 14.7 18.4 6.8 52.9 10.6 10.3
BWO 25.3 85.4 11.2 13.6 1.7 48.6 11.5 12.1

%Bias ¼ S21
PS

s¼1 v
ðsÞ
bootðûÞ2 VðûÞ

n o.
VðûÞ £ 100;

%Instb ¼ S21
PS

s¼1 vðsÞbootðûÞ2 VðûÞ
� �2

n o1=2.
VðûÞ £ 100;

%L ¼ S21#{u , the 0:10 lower trail of û
*

b} £ 100;

%U ¼ S21#{u . the 0:10 upper trail of û
*

b} £ 100.

Table 3. Variance Estimation and Tail Errors for Population I

%Bias %Instb %L %U %Bias %Instb %L %U

Ŷ: : : F̂21ð0:10Þ
BBE 21.7 60.4 12.2 13.0 9.4 101.6 21.4 9.4
BMM 21.7 60.4 11.9 13.1 9.3 98.2 19.6 8.7
BRS 21.7 60.5 12.2 13.2 10.0 101.9 20.1 8.6
BWO 23.1 59.1 12.1 13.4 6.7 95.5 20.1 8.8

F̂21ð0:25Þ F̂21ð0:50Þ
BBE 4.9 91.4 15.4 17.2 9.1 96.6 8.0 19.0
BMM 4.2 89.6 15.2 17.2 9.1 95.7 8.5 18.3
BRS 4.3 91.1 15.4 16.8 9.0 97.7 9.1 18.3
BWO 2.1 84.4 16.0 17.0 6.8 93.4 9.2 18.4

F̂21ð0:75Þ F̂21ð0:90Þ
BBE 4.6 47.6 12.2 10.1 6.4 54.7 10.7 13.2
BMM 3.9 47.8 12.4 9.8 7.1 56.3 10.7 12.5
BRS 3.6 47.8 12.1 9.6 9.4 58.2 10.1 12.1
BWO 4.2 47.5 13.0 9.7 6.7 54.8 10.8 12.6

%Bias ¼ S21
PS

s¼1 v
ðsÞ
bootðûÞ2 VðûÞ

n o.
VðûÞ £ 100;

%Instb ¼ S21
PS

s¼1 vðsÞbootðûÞ2 VðûÞ
� �2

n o1=2

=VðûÞ £ 100;

%L ¼ S21#{u , the 0:10 lower trail of û
*

b} £ 100;

%U ¼ S21#{u , the 0:10 upper trail of û
*

b} £ 100.
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4. Variance of sample quantiles is usually overestimated by the bootstrap

methods. However, the BRS seriously underestimates variance of F̂21ð0:25Þ;

F̂21ð0:50Þ; and F̂21ð0:75Þ in Population II. A possible explanation for this is as

follows. To fix the idea, define ~W
*
hijk such that Ŷ

*
:::: ¼

PH
h¼1

P
i[Sh1

P
j[Sh2iP

k[Sh3ij

~W
*
hijkyhijk. That is, ~W

*
hijk are the sum of bootstrap weights associated

with USU k in SSU j in PSU i in Stratum h in the original sample. In the BRS,

Ŵ
*

hijk ¼ w*
hijk . 0 for all the units in the original sample. Namely, the order statistics

in bootstrap samples do not change at all. By contrast, in the BBE, the BMM,

and the BWO, ~Whijk can be zero. In Population II, yhijk around F21ð pÞ; where

p ¼ 0:25; 0:5; and 0:75, are scarce, and so are the sampled yhijk around the points.

Possibly, the bootstrap pseudo-estimates, F̂21*ð pÞ; where p ¼ 0:25; 0:5, and 0.75,

in the BRS vary too smoothly because of the fixed order statistics while those in

the BBE, the BMM, and the BWO fluctuate largely since some ~Whijk are zero.

5. Overall poor performances of interval estimation are probably due to a small

population size with a small sample size. This is particularly true for the median in

Population II, where y values around the quantile are scarce. To test this point, we

conducted a simulation using the parameter values for Population II with doubled

Nh ¼ 20 and Mhi ¼ 40 to find the actual tail error rates closer to the nominal rates.

The result showed that the lower and the upper-tail error rates were, respectively,

about 8% and 24%. We can, perhaps, improve the coverage rates through a more

sophisticated bootstrap confidence interval. But that is beyond the scope of this

article and we do not intend to pursue it here.

5. Conclusion

In this article, we first extended the three bootstrap methods to a stratified three-stage

design with simple random sampling without replacement at each stage: the mirror-match

bootstrap (BMM), the rescaling bootstrap (BRS), and the without-replacement bootstrap

(BWO). Then, we conducted a simulation study to examine the three methods as well as

the Bernoulli bootstrap (BBE). The simulation showed that (1) the four methods perform

similarly for estimating the variance of the estimated population total; (2) the four methods

perform differently for quantile estimation when stratification is effective; and (3) overall,

the BWO was the least biased while bias in variance estimation by the BRS was sometimes

remarkably large. The last observation supports the intuition that methods which better

mimic the original sampling will perform better as the estimators and the sampling design

become more complex (Sitter 1992b, p. 153). Theoretical research is beyond the scope of

this article and will be a future topic.
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