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Abstract: A description is given of a computer equivalent to an unbalanced tree. Extensions 
program which calculates estimates of the to post-stratification and variance estimation 
variance - covariance matrix for estimates of for complex statistics are also discussed. 
means, totals and proportions at any stage of a 
multistage sampling design. The computer 
program uses tree traversal algorithms in Key words: Multistage sampling; variance 
which the sampling design structure is made estimation; tree structures 

1. Introduction 

Several computer programs have been devel- 
oped to estimate standard errors of popula- 
tion estimates in sample surveys. Francis 
(1981) has given a summary of eleven of these 
programs, In some of the programs, for 
example CLUSTERS or SUPERCARP 
which are both described in Francis (1981), 
estimated standard errors or variances may be 
obtained for some specific sampling designs. 
In other programs, for example HE§ VAR X- 
TAB, described in Francis (1981), or sub- 
programs in OSIRIS IV, described in Vinter 
(19801, the estimated variances for complex 
surveys are obtained by balanced repeated 
replication techniques. Thus, a survey 
researcher, when designing a survey in 
conjunction with these programs, is faced with 
one of two choices: choose a design which fits 
into one of the programs to obtain exact 
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variance estimates, or choose a more general 
design and obtain approximate variance 
estimates. The computational technique 
described in this paper is a generalization of 
the researcher's first choice. It provides a 
method to compute exact variance estimates 
for general complex sampling designs based 
on the associated finite population sampling 
theory. 

The computer program which implements 
these computational techniques is currently 
under development. To use this program, it is 
necessary only to provide the following 
information: the name of the sampling design 
and estimation procedure to be used at each 
stage, the size variable if a probability 
proportional to size sampling design has been 
used, the sample and population sizes, and the 
sample data in the appropriate order. The 
original method was described by Bellhouse 
(1980). A summary of this method is provided 
as well as extensions to post-stratification, to 
estimation of regression and other complex 
statistics, and to collapsed strata. 



2.1. Sampling Theory Background 

Consider a single-stage cluster sample of size n 
with sampled cluster totals s,, ..., x,, and 
y , ,  ..., y,, for two variab!es x and y .  A linear 
estimator of the population total Y ,  of the 
variable y say, is Y = 7 w j !  where w,, 

I=  I 

i = 1. . . . , n ,  are weights either fixed in advance 
or  determined from population and sampled 
auxiliarv variables. The  estimated covariance 
between x and 9 may be described in general 

A A 

terms as cov(X, Y) = g k , ,  y,), a function - 
of the sampled ciuster totals, where 2, = 

(x i ,  .,., x , ) , ~ ,  = (y i ,  . . .  , y,,) and s denotes the 
sample. T h e  estimated variance, var(f i  = 

g(r, ,  y,), is usually a quadratic form  in^^. Wao 
and Vijayan (7977) have obtained the neces- 
sary form of the nonnegative quadratic unbi- 
ased estimate of the variance, var(Y), The  
covariance can be  obtained by the standard 
technique of finding the variance of 6 = X -  Y. 

Most of the standard unistage sampling 
estimators are linear in y .  Their variances and 
covariances can be  obtained from sampling 
tcxts such as Cochran (1977) o r  derived from 
the result of R a o  and Vijayan (1977). The  first 
step in the development of the computer 
program was to  write F O R T R A N  subroutines 
which obtained estimates of nleans or  totals 
and variance-covariance estimates for various 
unistage sampling designs and estimators. 
These subroutines include: simple random 
sampling using the sample mean or  ratio 
estimator; sampling with probability propor- 
tional to  size (pps) usihg the Horvitz-'Thomp- 
son estimator with Sampford's (1967) design 
or  the randomized pps systematic sampling 
design with joint inclusion probabilities &'  w e n  
by Hidiroglou and Gray (1975); and cluster 
sampling using simple random samp!ing of 
clusters with either thc unbiased estimator o r  
rhc ratio estimator, o r  using probability 
prclportional t o  the size o f  the c!uster, The  

subroutine for unistage ratio estimation may 
be used for caliiilating the separate ratio 
estimator and its variance estimate. Theoreri- 
cally, any pps sampling design could be used in 
this program in conjunction with the Horvitz- 
Thompson estimator. It is necessary only for 
the program user to  write a subroutine which 
calculates the joint inclusion probabilities for 
the given sampling design. 

Two-stage samp!ing variances and covari- 
ances may be obtained using the unistage sub- 
routines. Raj (1966) and R a o  (1976) have 
obtained general forn~ulations of the variancc 
of Y where the estimate Y is based on  a two- 

elihouse (1980) has given the 
associated covariances for each method,  
methods are  of the form 

based on estimates 

and 

where gE,, j,) is a co y of g&, j5)  with 5 - - 
replaced b y i ,  and y,  replaced by j s .  T h e  coef- - - 
ficients w, and v,. i = 1,  ..., n ,  are  known 
constants, and i,, is rhe estimated covariance 
between ,i, and j, within the sampled primary 
i, i = 1.  . . . .  n .  Stratified sampling is obtairied 
upon setting g&, is) = O in ( I j  and n = N in 
the remaining term of ( 9 )  where N is the p o p ~ i -  
lation size of primaries or  the total number of 
strata. 

This general formulation can be us& 
recursively to  obtain estimates and  variance- 
covariance estimates for any multistage 
design. Consider rhree-stage sampling; the 
extension to four or more stages is straight- 
forward. In this situation. a sarnpie of primary 
units  is obtained, then samples of secondary 
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units within each primary, and finally samples 
of tertiary units within each secondary, Begin 
at the final stage of sampling. Using the cluster 
sampling subroutines on the tertiary units, 
obtain estimares of the secondary totals or 
means and the associated variance-covariance 
estimates, Then go to the next stage up. Using 
formulae (1) and ( 2 )  with the estimatesi,, 2, 
and c*, calculated from the previous stage, 
obtain estimates of the primary totals or 
means and the associated within primary 
variance-covariance estimates, Again, go to 
the next stage and repeat the same procedure. 
In this instance in formulae (1) and (2) .& and 
j ,  are the estimated primary totals and 2,. - 
i = 1. ..., tz, are the estimated covariances 
within primaries. 

One way to computerize this general 
estimation procedure is to impose a tree 
structure on the sampling design, In the 
traversal of the tree, ail the appropriate 
calculations are n-iade. 

2.2. Tree Srructures and .Multistage Designs 

The terminology used here for tree s h c i u r e s  
is that of Krluth (1968). For a k-stage sarnpiing 
design a k-level free is constructed; and for a 
k-stage sampling design with stratification 
a(k- I)-level tree is constructed. The tree will 
be unbalanced if there art: unequal sample 
sizes at any stage of sampling other than the 
final. The nodes at the ith level in the tree 
contain the rele~vant inforri;a:io~r about the ith 
stage ofsampiing The number of nodes at the 
ith level of the tree corresponds to ?he nurnber 
of sampling units  at the (i--1)tt-I stage of 
sampling. Measuren~el~ts on the sampled m i t s  
at the final stage sf sampling arc stssed in .ii 
separate data file sppropriateiy ordered. 

The method is illustrated by a simple 
exampie, Consider Data Set 2 given by 
Kaplan et m i ,  (19779) to test the acmracy of the 
caldariorns performed hy a n~imber  of sample 
survey package programs. The design used 

strata. Within each stratum, a two-stage 
sample of three primaries =as chosen with f i ~ e  
units within each primary, The tree structure 
which corresponds to this sampling design is 

elow the tree in Fig. 1 is the 
iately ordered. The vertical 

lines below the data values indicate the 
boundaries of the subsamples at the final stage 
of sampiing, The tree in Fig. 1 is a balanced 
tree of three levels containing thirteen nodes 
labelled A ,  B, (i = 1, 2, 3) and C!, ( i  = 1 , 2 ,  3 ;  
j = 1 ,  2, 3). Node -4 is the root of the tree and 
nodes C,, are terminal nodes. 

The general tree consauction algorithm 
used here has the following pattern, At any 
level in the tree, work from left to right. For 
each node in the current level, specify the 
number of nodes emanating from it to the next 
level. New storage locations for these lower 
level nodes and pointers to ~hern  are con- 
structed. Then move to the next lower leilei. 
To construct the tree in Fig. I ,  the nurnher 3 is 
given to node A resulting in the creatior 
three storage locations for B, ,  B,, and 

ointers to these storage Locations are ser~red 
in A. The three branches from A to Bi9 B2, 
and B3 correspond to the three strata in the 
design. The next step in the iree construction 
is to assign the number 3 to node B, .  Three 
new storage locations C , ! ,  CI2 and C,, are 
created and pointers to these locations are 

The three branches in ehi6; sub- 
pond to the three primary units 

chosen in strarum 1. Next, the nurnher 3 is 
creating Cz!, CZL,  and CL3 w i k  the 

appropriate pointers in B,. Finally, the 
.-7 number 3 is given to 3, creating C?, , L,,. and 

,- 
L;~. At each step of the tree cons~rucikn,  
additional infvrmatisn concerning the 
sampling design and desired esrimsror are 
given. Ai tfjr root. node A, if is necessarj to 
specify ihat  the branch65 :re srrata. 11-1 each 

,(i = 1. 2 ,  3 )  the information giver\ is 
that the design is sirnpie random sanrpiing rrf 
three primary units from a rota! of fiftcen wiib 

the sample mean as the ssiiniaror, Finaiiy, a t  
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TREE REPRESENTATION OF KAPLAN et aI 119791 TEST D A T A  SET 2 

LEVEL 1 ROOT OF THE TREE / A  \ 

LEVEL 3 3 SUBSAMPLES 
PER 

STRATUM 

Fig. I 

the third level of the tree, the terminal nodes, 
C,, i = 1, 2, 3; j = I ,  2, 3 contain information 
about the "last stage of sampling," the sub- 
sampling of the primaries within the strata In 
particular, the information given in each node 
is that the design is simple random sampling of 
five out of ten secondaries with the sample 
mean as the estimator. Finally, the data file 
that appears in Fig. 1 is in a specific order, The 
first five items belong to node C,, , i.e, they are 
the measurements on the five secondaries 
within the first primary in the first stratum. 
The next five items belong to node C12, the 
following five to C,, and so on. Note that the 
data file is not part of the tree structure. 

The type of traversal used in the program is 
endorder: the left-most subtree is traversed, 
then the second to left-most, and so on until 
the right-most subtree is traversed, and then 
the root of the subtree is visited, The algorithm 
used is a variation of one in Knuth (1968, pp. 
317-319 and 560). At the time of construction 
of the tree, only the forward links exist. A pass 
could be made down the tree but not up. The 
backward links are created at the traversal 
stage. When a new node is reached in the 

traversal of the tree, a back pointer is given to 
its root. With endorder traversal, the nodes in 
Fig. 1 would be visited in the order C, ,CI2C,- 

B l C 2 1 ~ 2 2 ~ 2 1 ~ 2 ~ 3 ~ ~ 3 2 ~ 3 3 ~ 3 ~ ~  

Assume that the population total is the item 
of interest, The caiculations are performed as 
follows, Since the tree traversal is endorder, 
then the first node visited is C , , .  The sample 
size of five indicates that five data points must 
be read from the data file, in this case the 
measurements 1 , 2 , 3 , 4 , 5 .  Using the informa- 
tion about the design and the estimate, a sub- 
routine is called to calculate the estimate Y = 

30 and v(fi = 25. These values are stored in 
node B,. The next node visited is C12 and the 
next five data items 2, 3 , 4 ,  5, 6,  are obtained 
from the file. The estimate Y = 40 and v(fi = 

25 are calculated from these data and stored in 
B,. Then Ci3 is visited. data points 3 ,4 ,  5 , 6 , 7  
are read from the file and Y = 50 and v(fi = 

25 are stored in node B, .  Then node Bl is 
visited. From the lower level of the tree or the 
lower stage in the design all the necessary data 
has been obtained. The estimate of the total 
for this primary is ? = 15(30 + 40 + 50)/3 = 

600 and the variance estimate 
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v ( 3  = 15(15-3)[(3030)' + (4CWO)' + 
(5W0)']/[(3) (2)j + l5(E5 + 25 + 25)13 = 

6375, The values 1; = 600 and v(9 = 6375 are 
stored in node A. The next nodes visited are 
Cz,, C2, and C,,, in that order, from which 
values Y = 30,40 and 50 respectively and V ( Y )  

= 25,25 and 25 respectively are calculated and 
stored in B2. Then B, is visited and the calcula- 
tions 1; = 600 and vj7j)  = 6375 are made and 
stored in A. Then nodes C3,, C3, and C33, in 
that order, are visited and Y = 30, 40 and 50 
respectively and v ( Y )  = 25, 25 and 25 respec- 
tively are stored in node B,. Then B3 is visited 
and the calculation ? = 600 and v(fi = 6375 
are stored in A. Finally, node A is visited and 
Y = 600 + 600 + 600 = 1800 and v(fi = 6375 
+ 6375 + 6375 = 19125 are calculated. The 
standard error of the estimate of the mean 
(19125)'/V450 = .31 agrees with the Kaplan et 
al. (1979) value. 

The previous example is very simple and 
not indicative of typical survey data. Although 
the calculations for the preceeding example 
took only 3 seconds of CPU time on a PRIME 
400 minicomputer, it remains to be seen 
whether the computing time would be exces- 
sive for larger and more complex surveys. 
Therefore the author obtained a larger data 
set which used a complex design. The data are 
from a survey of North American Indian 
children carried out in Canada during 1981- 
82, Six hundred responses with five variables 
each were analyzed. The Indians were divided 
into six strata by region of dwelling within 
Canada. Within a stratum, two, three or four 
enumeration areas (a Statistics Canada 
Census geographical area) were chosen by 
probability proportional to the size of the 
enumeration area. Sampford's (1967) design 
was assumed in the calculation of the joint 
inclusion probabilities, Within a chosen 
enumeration area, a number of families were 
chosen by simpie random sampling and each 
child in a family was interviewed. The 
program produced both the estimates and 

estimated variance-covariance matrix. The 
calculations took 17 seconds of CPU time. 
The program also calculated and printed the 
estimates and variance-covariance estimates 
within each stratum so that interstratum 
comparisons could be made. 

3. Post-Stratification 

The method of calculating post-stratified 
variance estimates is based on the theory of 
Williams (1962). Suppose L post-strata are 
constructed. Let y denote the measurement 
on a sampling unit in the data file. Construct L 
new variables by setting y ,  = y if the sampling 
unit is in the hth post-stratum, O otherwise, 
h = 1, . . . , L.  Make one pass through the tree 
structure which defines the sampling design. 
During this pass, calculate an estimate of the 
population mean for each of the L data sets 
defined by the variables yh ,  h = 1, ... , L.  The 
resulting estimate 7, is the estimate of the 
mean in the post-stratum h,  h = I ,  , . , , L. The 

post-stratified estimate is = $ wh%,, 
where Wh, h = 1, ..., L are knowK'stratum 
weights provided in advance. Now transform 
the original data points y by setting x = y - Y ,  
if the sampling unit is the hth post-stratum, 
h = 1, . .  . , L. Then make a second pass 
through the tree structure. On this pass, calcu- 
late the estimated variance of X, the estimated 
total based on the data x.  The resulting esti- 
mate, v a r ( 3  will be var(~ , ] ) ,  the post- 
stratified variance estimate of the estimated 
total % = NP,, for the data y ,  where N is the 
total population size. The estimated variance 
of p,>, var(ql) = v a r ( ~ , ) / ~ ' .  

This method requires two passes through 
the data and the tree structure. However, only 
one set of operations by the program user is 
necessary: provide the stratum weights and 
the key words and numbers which describe the 
sampling design, the sample sizes, and other 
relevant information to perform the calcula- 
tion 
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The population regression coefficient may be 
expressed as 

where N is the population size and the sub- 
script j refers to an individual observation. 
This may be estimated by 

where s denotes the sample, unistage or multi- 
stage, wl are the weights fixed in advance 
depending on the +sign, and where z,, = 

y1(x, - X), z2/ = (xi - 3' and 
2 = ,$ wyi /  ,% w,. Let the transformed 
vanable 

Three passes through the data and tree 
structure are necessary to calculate the 
estimated variance of i, On the first pass, 
C %!xl and w,, respectively, the estimated 

i t s  
total for the x's and the estimated total for 
data which all have value I ,  are calculated. 
After the second pass, h is calculated from 
(3j. On this pass, both x and y are read from 
the data file and new variables z, and z2 are 
derived. A one-pass algorithm couId be 
derived to replace the first two passes. This 
would be analogous to the calculator and 
original formulae for sums of squares of 
deviations from a mean. As in this latter case, 
some numerical accuracy could be lost in the 
one-pass formulae, On the third pass through 
the tree structure and data file, calculate the 
estimated variance of T ,  the estimated total 

based on the variable r from (1). Then 

var(fi /(zs is the required variance erii- 
mate, where var(T) is the variance estimator 
based on the derived variable t. 

The program could also be adapted to 
compute variance estimates for other non- 
linear statistics provided that the estimates 
can be expressed as functions sf estimated 
totals. For example, both the separate and 
combined ratio estimators and their variance 
estimates can be obtained in one pass through 
the data and tree structure. For the combined 

A 

ratio estimator, say &, estimates X, y. 

var(k),  m r ( 6  and cov(2, fi can be obtained 
A A 

in one pass, Then fi, = TIX and var(k,) = 

(var(?) - 2fi, cov(2,@ + kz v a r ( 3 ) / ~ .  For 
the separate ratio estimator of the total, 
estimates of the subtotals and their estimated 
variances at the lase stage of sampling are 
obtained by ratio estimation using the 
appropriate unistage subroutine. The Tree 
traversal proceeds in the usual manner using 
these estimates of totals and variance 
estimates. Rao (1982) has given a review of 
variance estimation techniques for ratios, 
multiple regression and correlation coeffi- 
cients based on the Taylor linearization 
method. 

When stratification has been carried out to the 
extent that there is only one unit per stratum, 
the method given in Cochran (1977) or the 
method of Ilansen, Wurwitz and Madow 
(1953) utilizing an auxiliary variable may be 
used in the program to obtain variance 
estimates. Only one pass through the tree 
structure and data file is necessary. During 
this pass, only estimates of means or totals are 
obtained at each stage, The final node visited 
in the tree by endorder traversal is the root of 
the tree. When this node is reached, estimates 
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of the stratum totals will have been calculated 
anu stored in [his node. With the size of the 
groups and the auxiliary variable, if present, 
specified beforehand,  the variance estimates 
are obtained using formulae (5A.56) o r  
(5A.57) in Cochran (1977). 
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