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Confidence Interval Coverage Properties for Regression
Estimators in Uni-Phase and Two-Phase Sampling

J.N.K. Rao, W. Jocelyn, and M.A. Hidiroglou'

Confidence intervals based on the normal approximation are widely used in the design-based
approach. Hansen, Madow and Tepping (1983) noted that design-based intervals are inferen-
tially satisfactory despite failures of assumed models. Dorfman (1994) studied confidence
interval coverage associated with the sample linear regression estimator under two-phase ran-
dom sampling using standard and new variance estimators, and concluded that the contention
of Hansen et al. is not tenable. In this article we provide reasons for the poor performance
under model failures and practical solutions to improve the coverage probability.

1. Introduction

Validity of normal approximation based confidence intervals on the population mean, Y,
has been studied, both theoretically and through simulations, for simple random sampling
(SRS). Madow (1948) and Hajek (1960) gave conditions under which the design-based
distribution of the sample mean, y, tends to normality. Cochran (1977, p.42) gave a
working rule for the minimum sample size, n, necessary for the normal approximation
to hold for the standardized variable Z = (y — Y)/a(¥), where az(y) =1/n— l/N)S2 is
the variance of y, N is the population size, $? = No?/(N — 1) and 0% = Y(y; — Y)?/IN is
the population variance. For populations positively skewed, Cochran’s rule is given by
n>25 72, where y = X(y; — Y)’/(No?) is the skewness coefficient (y = 0 for normal
populations). Dalén (1986) used the rule n >K1,a'ylz, where K,_, depends on the
nominal coverage probability 1 —« and v, = Z|y; — Y|*/(No>). His empirical results
supported the use of Student’s -approximation over the normal approximation for smaller
n. For nominal a = 0.95, he recommended K, _, = 20 provided vy; < 3. Sugden, Smith,
and Jones (2000) extended Cochran’s rule to the studentized variable t = (y — Y)/s(y),
where sz(y) ={1/n—1/N )sy2 is the estimated variance of y, and sy2 is the sample variance.
Smith’s rule is given by n > 28 + 2572. Note that ¢ is used in practice because Z depends
on the unknown population variance S 2, Sugden et al. (2000) also noted that design-based
inference strongly depends on the validity of the normal approximation.

Hansen, Madow, and Tepping (1983) demonstrated that model-dependent confidence
intervals can perform poorly under moderate departures from the assumed model. For
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this purpose, they constructed a synthetic population, resembling business populations
with positive skewness, using a model misspecification that may not be detectable
through tests of significance for sample sizes as large as 400. By simulating stratified
random samples from this population using equal allocation, they demonstrated that in
accordance with design-based normal theory, two-sided confidence intervals on Y
perform well in terms of coverage as the sample size increases. On the other hand,
the design-based coverage probability of confidence intervals based on the misspecified
model is substantially smaller than the nominal level o = 0.95 and it becomes worse as
the sample size increases. Based on these results, Hansen, Madow, and Tepping (1983,
p-791) concluded that (i) ‘‘probability-sampling methods when carefully applied with
reasonably large samples, provide protection against failures of assumed models . . .”’
and (ii) ‘. . . with reasonably large samples the inferences should not depend on the
model.”” Brewer and Sdrndal (1983) made a comment similar to (i) and (ii), but some-
what stronger than (i): ‘‘probability sampling methods are robust by definition; since
they do not appeal to a model, there is no need to discuss what happens under model
breakdown.”” We refer the reader to Valliant, Dorfman, and Royall (2000, pp.87-90)
for a critical discussion of Hansen, Madow, and Tepping’s (1983) approach to detecting
model misspecification.

Dorfman (1994) compared several variance estimators of the simple linear regres-
sion estimator of Y for two-phase simple random sampling. His simulation study indi-
cated that the resulting normal theory two-sided confidence intervals have poor
coverage properties when the underlying model generating the population is grossly
misspecified. Dorfman (1994, p.139) concluded that the contention of Hansen,
Madow, and Tepping (1983) is not tenable: ‘“The results on coverage of the regres-
sion estimator under a quadratic model . . . dramatically call this contention into
question.”’

In this article, we study two-phase sampling and provide reasons for the poor perfor-
mance of design-based normal theory intervals, even for moderately large second-phase
samples, when the underlying model is grossly misspecified. We also propose practical
solutions to improve the coverage probability. The case of simple random sampling is
also studied, both theoretically and through simulation.

Remaining sections of this article are organized as follows. Section 2 provides some
theoretical insights based on Edgeworth expansions under simple random sampling
(SRS). Section 3 presents simulation results for simple random sampling. Section 4
studies the case of general uni-phase sampling, using design weights. Two-phase
random sampling is studied in Section 5. Some simulation results for two-phase random
sampling are presented in Section 6. Finally, some summary remarks are given in
Section 7.

2. Simple Random Sampling

In sample surveys, we are often interested in two-sided confidence intervals. Moreover,
both Hansen et al. (1983) and Dorfman (1994) considered two-sided intervals. We
therefore focus on two-sided intervals. In this section, we study the coverage probability
of normal theory two-sided intervals under simple random sampling.
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2.1. Edgeworth expansions

Edgeworth expansions provide theoretical insights into the performance of normal theory
intervals based on the t-variable, t = (3 — Y)/s(¥). For simplicity, we assume that the
sampling fraction, n/N, is negligible. Under some regularity conditions, we have the
following Edgeworth expansion for the coverage error of the (1 — a)-level normal theory
intervalon Y, I) _, = [V — 2o25(), ¥ + 2425(¥)], where z,, is the upper o/2-point of a
N(O, 1) variable:

CE=PrYeI,_o)—(1-a)

224
~ 2o [,l—zk(Zi/z -3)— 1 Y (@an + 2200 —3) = Yon + 3)] $(zan) 2.1
n

where ¢(-) is the probability density function of a N(0, 1) variable and
k = E(y; — Y)*/(No*) — 3 is the kurtosis coefficient; see Hall (1992, Chapter 2).

Suppose o = 0.95 so that z,, = 2. In this case, it follows from (2.1) that the actual
coverage probability will be smaller than the nominal level if

k<12v* +3) (2.2)

That is, a large skewness coefficient (not necessarily positive) can lead to coverage
probability substantially smaller than 1 — o« = 0.95. Note that the coverage error CE is
of the order n~'. If k < 21, then (2.2) is satisfied for any 7.

In this article, we have focused on two-sided normal theory intervals, following
Dorfman (1994), but it is also of interest to study one-sided normal theory intervals. In
the latter case, we show that the effect of positive skewness is more pronounced relative
to two-sided intervals.

For the one-sided lower interval I , =[y —z,5(¥), ) on Y, the Edgeworth
expansion will contain terms of order n Y 2, unlike (2.1):

—127Y

6
It follows from (2.3) that the coverage error CE; is of order n~ " and that the coverage
probability of the one-sided lower interval I;", will be larger than the nominal level
1 — « if the skewness coefficient, v, is positive. On the other hand, for the one-sided upper
interval I;* , = (—oe, ¥ + z,5(¥)] on Y, the Edgeworth expansion for the coverage error is
given by

CE,=P(YE*)—(1—a)=~ —n_m% Q22+ 1)o(zy) (2.4)

CE,=PrY €l )—(1—-a)=n 222+ Do(z4) (2.3)

1

It follows from (2.4) that the coverage probability of the upper interval will be smaller than
the nominal level 1 — « if the skewness coefficient, v, is positive. The above results are in
agreement with the remarks in Cochran (1977, p.41).

The above results are also valid under the model-based approach, assuming that
¥i,...,yy are independent and identically distributed (iid) variables generated from an
infinite superpopulation with mean p and variance o’ The coverage error (CE), given
by (2.1), now refers to the model-based distribution of the sample mean y, and v and «
are the skewness and kurtosis coefficients of the superpopulation. Note that for the case
of normal superpopulation, we have y = k = 0, and (2.2) is satisfied. Here the 7-variable
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has a student-t distribution and we are approximating this distribution by a normal
distribution. It is well-known that the normal approximation to student-¢ leads to coverage
probability smaller than the nominal level 1 — «, and that the coverage error (CE) is close
to zero for n larger than 30.

2.2. Linear regression estimator

We now study the performance of coverage probabilities associated with the linear
regression estimator of Y. Suppose x is an auxiliary variable with known population
mean X and correlated with y. A simple linear regression estimator of Y is given by
y, =y + b(X —X), where b is the sample regression coefficient and X is the sample
mean of x. A normal theory interval on Y, using ¥,, is based on the pivotal quantity

t =, — Vs, 2.5)

where sz(yr)z(l/n— 1/N)sg2 and se2 is the sample variance of the residuals
e, =y; —y—blx; —X).

Suppose that the underlying model generating the finite population is given by
yvi=a+pBx;+¢,i=1,...,N, where the &;’s are iid errors with mean O and variance
o°. The errors g; will have a small value of skewness if the skewness of y;’s
depends solely on that of x;’s. If the assumed model holds, then noting that

y,—Y=(y—Y)+ B(X —X) =€ — &y, we have
t, =~ (& —By)ls(3) (2.6)

where € is the sample mean of g;’s, €y = 0 is the population mean of ¢;’s and s2(2) is the
estimate of the variance of €. The approximation (2.6) shows that the design-based
coverage error associated with ¢, will be small if the assumed model is (approximately)
valid, regardless of the skewness in y;’s (and x;’s).

On the other hand, suppose the true model is a quadratic regression model
y; = Bo + B1x; + B2z; + € with z; = x7 and iid errors &;". In this case, the sample regres-
sion coefficient b = L(x; — X)Y;/Z(x; — X)* converges in probability to 8} = 8, + af,.
where a = X(x; — X)z;/Z(x; — %)*. Also, the numerator of 7, is approximately equal to
—aB,(x —X)+ B,(z—Z) + (g* — €y) while the denominator is approximately equal
to the estimated variance of the mean e = Le//n, where e = —af,(x; — %)+
Ba(z; —Z) + (ef — €"). The negative term, —a3,(x — X), in the numerator reduces the
skewness effect of the middle term, 8,(Z — Z), but the middle term is likely to dominate
the numerator since the z;’s are typically far larger than the x;’s. As a result, large
skewness in z;’s leads to a coverage probability substantially smaller than the nominal
(1 — a)-level if the 3,-coefficient is significantly large.

Royall and Cumberland (1985, Section 3) conducted an empirical study on real popula-
tions. Their results show that poor coverage is due to high correlation between numerator
and denominator induced by large skewness. In their study, the latter correlation was as
high as 0.80. Our theoretical result above is in agreement with the empirical finding of
Royall and Cumberland.

The above observations suggest that a proper ‘‘model-assisted’” approach is needed for
reducing the coverage errors of design-based confidence intervals. Suppose the population
x;-values are all known so that both X and Z are known. We can first perform suitable
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model diagnostics (e.g., residual analysis) on the sample data {(y;, x;),i=1,...,n} to
identify the underlying model as approximately a quadratic regression model, pro-
vided the model misspecification is significant enough to be detectable, as in
Dorfman’s (1994) simulation study. Then we use the multiple regression estimator
Vmr =Y + b1 (X —X) + by(Z — 7), where b; and b, are the sample regression coefficients
when y is regressed on 1, x and z. It follows that

L = (ymr - 7)/s(ymr) = (E* - E1>\k/)/s(§*) 2.7

so that the coverage error associated with the pivotal quantity #,,, will be small regardless
of the skewness in y;’s (and x;’s). Note, however, that y,,, cannot be implemented if only
the population mean X is known.

Under simple random sampling, both model-based and model-assisted approaches lead
to the same pivotal quantity. But for general uniphase sampling this is not necessarily
true because the model-assisted approach employs generalized regression estimators
depending on design weights, unlike the model-based approach; see Section 4.

3. Simulation Results: SRS

We present some simulation results on the coverage probabilities associated with ¢, by
generating synthetic populations that obey the linear regression model or the quadratic
regression model.

3.1. Generation of populations

Positively skewed synthetic populations, each of size N = 500, were generated using the
same algorithms given by Dorfman (1994), using two of the models of that paper for
generating the variable of interest y given the auxiliary variable x:

(i) Linear regression model given by y; = x; + g;, where the ¢g; are iid N(0, 02 =0.04
or 0.16).

(ii) Quadratic regression model y; = 8x? + &}, where the &/ are iid N(0, o> = 0.04
or 0.16).

In both cases (i) and (ii), we generated the x;’s from a standard lognormal distribution
with first and second moments given by p; = \/E/Z and p, = (e? — e)/4, where ¢ is the
exponential constant. Model 1 represents the ideal case for the simple linear regression
estimator y,, whereas Model 2 represents an unfavourable case.

3.2.  Sampling of the populations

We used two different approaches to sampling from the populations: (i) Generate a popu-
lation, then draw a simple random sample of specified size n, and repeat the whole process
1,000 times. (ii) Draw a single population and then draw 1,000 simple random samples.
We repeated process (ii) 100 times to make it more comparable to (i). Dorfman (1994)
used process (i) for his simulation study except that a two-phase random sample is drawn.
Note that process (ii) is the standard repeated sampling framework employed in the
design-based theory. It may be of interest to compare the two processes with respect to
coverage probabilities.
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Table 1. Skewness and kurtosis of population residuals E;

Model Method Skewness Kurtosis

Vi =X; + € Variable 0.023 —0.056
Fixed 0.022 —0.057

y; = 8x7 + &} Variable 6.57 96.79
Fixed 6.44 96.14

We refer to the first process as the variable population method because a different
population is generated after each sample selection. The second method is referred to as
the fixed population method because a single population is generated and repeated samples
are drawn from this population. The variable population method is a ‘‘hybrid’’ design-
based approach because it also uses repeated sampling, unlike the model-based approach
based on the model distribution conditional on the sample. For example, Cochran (1977,
p- 12) says: ‘‘Similarly, when a single sample is taken from each of a series of different
populations, about 95% of the 95% confidence statements are correct.”

3.3.  Coverage probabilities

Table 1 reports the skewness and kurtosis coefficients of the population residuals
E;,=(y;—7Y)— B(x; — X) where B is the population regression coefficient. Values
reported in Table 1 are averages over the generated populations in the two cases. As
expected, both skewness and kurtosis of E;’s are close to 0 under the linear regression
model, whereas both are large under the quadratic regression model.

Table 2 reports the correlation between y, and s(y,) calculated from the simulated
samples, each of size n = 40. Simulated coverage probabilities of the two-sided normal
confidence interval I, 95 = [y, — 25(¥,), , + 25(¥,)] corresponding to nominal level
1 — o = 0.95 are also reported.

For the populations generated by the linear regression model, Table 2 shows that
corr(y,, s(y,)) is close to O and that the coverage probability is larger than or equal to
0.95. On the other hand, for the population generated by the quadratic regression model,
corr(y,, s(y,)) = 0.5 and the coverage probability is significantly smaller than the nominal
0.95: ranging from 0.85 to 0.89. Performance of the two methods (fixed and variable) is

Table 2. Corr(¥y,, s(3,)) and coverage probabilities (%) of the confidence interval [y, — 25(¥,), ¥, + 2s(3,)];
nominal level =0.95

Method Model o’ Correlation Coverage
probability (%)
Variable Linear 0.04 —0.01 95.2
Variable Linear 0.16 0.05 98.7
Variable Quadratic 0.04 0.55 85.0
Variable Quadratic 0.16 0.50 87.2
Fixed Linear 0.04 —-0.10 95.0
Fixed Linear 0.16 —0.08 98.5
Fixed Quadratic 0.04 0.54 88.1

Fixed Quadratic 0.16 0.53 89.3




Rao, Jocelyn, Hidiroglou: Confidence Interval Coverage Properties for Regression Estimators 23

similar, but the coverage probability is slightly larger in the fixed population case
(quadratic model): 0.88 vs 0.85 (a2 = 0.04) and 0.89 vs 0.87 (02 = 0.16).

4. General Uni-phase sampling

For general uni-phase sampling, the model-assisted approach uses design-weighted linear
regression estimators motivated by working linear regression models (see e.g., Sdrndal
et al. 1992). Suppose that the working model is given by y; = o + Bx; + &;, where
the ¢;’s are iid errors with mean 0 and variance o”. Then, the design-weighted (or
“‘generalized’’) linear regression estimator of Y is given by ¥y,, =79, + b, (X —X,,),
where y, =X w;y;/Z w;, X, = L w;x;/Z;w;, w; is the design weight taken as the
inverse of the inclusion probability =; attached to unit i, and I, denotes summation
over units i in the sample s. Further, b,, is the design-weighted estimator of the population
regression coefficient B: b, = (u,, — y,,X,)/(Z,, — Xﬁ,), where u,, = X w;u;/X,w; and
Zy = L w; 2,/ w; with u; = y;x; and z; = x,-z.

The generalized regression estimator y,,, is design-consistent for Y as well as model-
unbiased under the working model, i.e., E,(y,, —Y) = 0, where E,, denotes model
expectation. Further,

t :yrw_yggw_gN
™os(ey) s(Ey)

“.1

where ¢, is the weighted mean of the sample residuals ¢; = y; — y,, — b,,(x; — X,,), and
s(e,,) is a design-consistent estimator of the design variance of y,,,.

Under repeated sampling, €,, — €y is asymptotically normal with mean zero and design
variance V(g,,), and s2(§w)/V(§w) converges in design probability to 1. As a result, the
design-based coverage error associated with the pivotal quantity ¢,,, will be small if the
assumed model is (approximately) valid, regardless of the skewness in y;’s (and x;’s),
provided the skewness of y;’s solely depends on that of x;’s.

If the true model is a quadratic regression model, then we get results similar to those in
Section 2.2 with the unweighted means replaced by the weighted means and b by b,,. It
then follows that large skewness in z;’s leads to a coverage probability smaller than the
nominal (1 — «)-level if the pivotal quantity ¢,,, is used and the 3,-coefficient is signifi-
cantly large. Performing suitable model diagnostics, we may be able to identify the
underlying model as approximately a quadratic regression model, provided the model
misspecification is significant enough to be detectable. We can then use a design-weighted
multiple regression estimator, ¥,,,,, =y, + by,,X —X,,) + b,,(Z —Z,). The pivotal
quantity #,,,.,, based on y,,,,, will lead to a result similar to (2.7), so that the coverage error
associated with 7,,, will be small regardless of the skewness in y;’s (and x;’s).

A model-based approach, based on the linear regression model, uses the pivotal quantity
t, instead of ¢,,,, regardless of the design weights. The estimator y,, however, is asympto-
tically design-based for Y. As a result, the asymptotic mean of € — &y is not necessarily
zero under repeated sampling. This affects the coverage error unlike (4.1), although the
asymptotic mean of € — gy is likely to be small if the model holds.

As noted by Hansen, Madow, and Tepping (1983), moderate departures from the
assumed model can lead to poor coverage of model-based confidence intervals under
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repeated sampling, unlike the design-weighted intervals. In their study, the working model
was the ratio model y; = x; + &; with unequal error variances azxi, while the synthetic
population was generated from y; = 0.4 + 0.25x; + &} with error variances 0.0625x,3/ 2,
The model-based estimator under the working model is the ratio estimator y, = (y/%)X.

The numerator of #, is given by

y,—Yza()_(—1>+<s}_(—sN> 4.2)
X X

Hansen et al. (1983) employed stratified random sampling with disproportionate sample
allocation. As a result, X is heavily design-based for X unlike the weighted mean X,,
used in the numerator of

- X X
X Xy

where V,,, is the design-weighted ratio estimator (¥,,/X,,)X; for a stratified sample of
n = 200 units they obtained X = 14.644 and X,, = 9.935 compared to X = 9.965. The
heavy bias in X induced poor coverage for the model-based intervals under repeated
sampling, despite the small intercept term, o = 0.4, for the true model. On the other
hand, the design-weighted intervals performed extremely well in terms of coverage since
the asymptotic mean of y,,, — Y is zero and « is small.

5. Two-Phase Random Sampling

In two-phase random sampling, a large simple random sample of size n; is first drawn and
auxiliary information {x;, i € s;} is collected. From the first-phase sample, s;, a simple
random subsample, s,, of size n, is drawn and the variable of interest, y, is observed.
The second-phase data {y;,i € s,} is more expensive to collect than the first-phase
information {x;,i € s;}.

A simple linear regression estimator of Y is given by y,, = y, + b,(¥; — X,), where b,
is the sample regression coefficient based on the second-phase sample data
{(y;,x)), i € 5,5}, (¥,,%,) are the second-phase sample means and X; is the first-phase
sample mean of x. A number of variance estimators of y,, have been proposed in the
literature. Cochran (1977, p. 343) used the variance estimator

vyg = (1/ny — 1/N)s3, + (1/n; — 1/N)b3s3, (5.1)

where s%e is the sample variance of the residuals e; = y; —y, — b,(x; — X»), i € s, and
53, is the sample variance of x;’s for i € s,. Cochran also proposed a hybrid version of
(5.1) based on the sample linear regression model y; = o + 8x; + ¢;,i = 1,..., N, where
the &s are iid errors with mean 0 and variance o°. It is given by

Vpya = Vgra + [(F1 — ¥2) /53,153, (5.2)

The variance estimators (5.1) and (5.2) use only the second-phase sample data. Dorfman
(1994) proposed alternatives to vy, and v, that make full use of the first-phase sample
data by replacing s%x by slzx, the sample variance of x;’s in the first-phase sample s;:

Vgra.p = (Iny — 1UN)s3, + (1/n; — 1IN)b3 st (5.3)
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and
Vpyd.f = Vgra. g + [(F1 — X2)°/s3,153, (5.4)

Sitter (1997) obtained a variance estimator similar to vy, s using jackknife linearization.
A normal approximation interval on Y using ¥,, is based on the pivotal quantity

1y, = (Y2, — V)s(¥2,) (5.5)

where sz(yZ,) denotes a variance estimator of y,,. We now examine the accuracy of the
normal approximation along the lines of Section 2.2. Suppose that the underlying model
generating the population is given by the simple linear regression model.

If the assumed model holds and sz(er) = Ugq, 5, then

_ (8, —8y) +BE, — X) (5.6)

oy 12
1 1\ , 1 1 2 2
G+ ()t

where g, and s3, are respectively the sample mean and the sample variance of g;’s for
i € 5,. It follows from (5.6) that the coverage error associated with the pivotal quantity
t,, will be affected by the skewness in x;’s in contrast to the case of (single-phase) simple
random sample (compare (5.6) to (2.6)). As a result, the numerator of (5.6) will be
positively correlated with the denominator, which in turn leads to a coverage probability
smaller than the nominal (1 — «)-level if the x;’s are positively skewed. However, the
skewness effect is dampened because X; and s{, are based on the first-phase sample of
size n; which is large relative to the second-phase sample of size n,.

Suppose now that the underlying true model is a quadratic model y; = B¢ + B x; +
B,z; + ¢ with z; =x? and iid errors &. Following the argument in Section 2.2,
the numerator of ¢,, is approximately equal to —aB,(X, —X)+ B,(Z, —Z)+
(8; + aB,)(* — X) while the denominator is approximately equal to the formula obtained
by replacing s3, by s3,- and B%s?, by (8, + aB,)’si., where ef = —aB,(x; — X2) +
Bo(z; — Z2) + (gf — €5). Therefore, positive skewness in the z;’s induces significant
positive correlation between the numerator and the denominator through the positive cor-
relation between 7, and s%z. Note that the latter correlation is based on the smaller second-
phase sample, unlike the case of (5.6). As a result, the effect of a quadratic model on the
coverage error associated with ¢,, will be more pronounced.

The above observations suggest that a model-assisted approach is needed for reducing
the coverage error in two-phase sampling. Such an approach is feasible for two-phase
sampling because the first-phase sample x-values are all known. (Note that for single-
phase sampling only X may be known.) Following Section 2.2, we can first perform
suitable model diagnostics (e.g., residual analysis) to identify the working model as a
quadratic regression model, provided the model misspecification is significant enough
to be detectable, as in Dorfman’s (1994) simulation study. Then we use the multiple linear
regression estimator y,,,. =y, + b5(X; — X,) + b2,(Z; — Z,), where by, and b,, are the
sample regression coefficients obtained from the second-phase sample when y is regressed
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on 1, x and z. It now follows that
tymr = (y2mr - ?)/S(yZmr)

- (83 —&5) +131(31 —X)+B12z —2) .7

— —— 855+ (51 Ste+BIsT. + 2818251
ny N l’l]

where s, is the first-phase sample covariance between x and z. In (5.7) we used the
analogue of v, ; (Equation (5.3)) for the multiple linear regression estimator y,,.. Noting
that the z,;’s will be more skewed than the x;’s, the coverage error associated with (5.7) for
the quadratic model will be larger than the coverage error associated with #,, given by
(5.6) for the linear model y; = o + Bx; + ¢;. However, the skewness effect is dampened
because (x;, Z;) and (slzx, xlzz, S1,,) are based on the larger first-phase sample.

For general two-phase sampling, the model-assisted approach uses design-weighted
linear regression estimators motivated by working linear models. Results of Section 5
can be extended to general two-phase sampling and the conclusions will be similar to those
for t,, and t,,,. under two-phase random sampling. We omit details for simplicity.

6. Simulation Results: Two-Phase Sampling

6.1. Sampling of the populations

Section 3.1 described the generation of synthetrc populations based on a linear regression
model y, =x;+¢; with errors g~ N (0,0%) and a quadratic regression model
V= 8x + &} with errors & ~ YN (0, 0%). The x;’s were generated from a standard
lognormal distribution.

We used (i) the variable population method and (ii) the fixed population method to draw
two-phase random samples from the simulated populations, following Section 3.2. We
report the results for n; = 80 and n, = 40.

6.2. Coverage probabilities

Table 3 reports corr(y,,, s(¥,,)), calculated from the simulated samples, for each of the
four variance estimators (5.1)—(5.4). Table 4 presents the simulated coverage probabilities

Table 3. Corr(y,,, s(¥,,)) for two-phase sampling

Method Model o’ Variance estimator
Ustd Ohyd Usid, f Uhyd, f

Variable Linear 0.04 0.56 0.56 0.74 0.74
Variable Linear 0.16 0.56 0.56 0.74 0.74
Variable Quadratic 0.04 0.80 0.80 0.86 0.86
Variable Quadratic 0.16 0.78 0.78 0.83 0.83
Fixed Linear 0.04 0.54 0.54 0.79 0.79
Fixed Linear 0.16 0.53 0.53 0.77 0.77
Fixed Quadratic 0.04 0.80 0.80 0.84 0.84

Fixed Quadratic 0.16 0.78 0.78 0.83 0.83
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of the two-sided normal confidence interval I, go5 = [V, — 25(¥2,), Y2, + 25(¥2,)]
corresponding to the nominal level 1 —a =0.95. Four coverage probabilities,
corresponding to the four variance estimators, are reported for each setting.

For the populations generated by the linear regression model, Table 3 shows that the
correlation between y,, and s(y,,) is around 0.5 when we use vy, Or v;,,, and increases
to 0.75 when we use v ¢ O v)y4 ¢. This result is in contrast to simple random sampling
where corr(y,, s(y,)) is close to zero. The representation of 7,, given by (5.6) explains the
reason for a significant corr(y,,, s(¥,,)) when the x;’s are positively skewed. For the
populations generated by the quadratic regression model, the values of corr(y,,, s(7,,))
are significantly larger than those generated by the linear regression model. The corre-
lation increases to about 0.8 when we use 2,4 or vy, and increases to about 0.85 when
WE USE Ugyq ¢ OF U4 ¢ As noted in Section 5, positive correlation between 7, and s%
contributes to the inflation of correlation.

As seen from Table 4, the normal intervals perform very poorly under the quadratic
model, with coverage probability ranging from 0.56 to 0.67. On the other hand, the
coverage probability is much better under the linear model, ranging from 0.88 to 0.94.
Also, the coverage error associated with the hybrid variance estimator vj,,4(Vpyq, ) is
smaller than the coverage error associated with the standard variance estimator
V514 (Vg1q, ). Further, a slightly better coverage rate is achieved by using a full variance
estimator v,y (vpyq, r). We also observed that the difference in coverage rates between
the full and the standard variance estimators becomes more pronounced (better coverage
for the full estimator) as the second-phase sample size, n,, decreases; supporting tables are
not reported here. Our results for the variable population method closely parallel those
reported by Dorfman (1994). Also, coverage performance is generally better for the fixed
population method.

Results in Tables 3 and 4 are obtained by averaging over the generated populations. But
the skewness of the residuals varies significantly across the generated populations. To
account for this variation, we generated quartile ranges 0 to 25%, 25% to 50%, 50% to
75% and 75% to 100% based on the skewness values of the residuals. In the fixed popula-
tion case, the ranges were based on the 100 skewness values, whereas in the variable
population case the ranges were based on the 1000 skewness values. Tables 5 and 6 respec-
tively provide average coverage rates within the quartile ranges for the variable and the

Table 4. Coverage probabilities (%) of the confidence intervals [(V,, —25(Y2,), V2, + 25(7,,)]: nominal
level =0.95

Method Model o’ Variable estimator
Ustd Ohyd Usid, f Uhyd, f

Variable Linear 0.04 88.9 90.5 92.9 93.1
Variable Linear 0.16 88.8 89.1 93.8 93.8
Variable Quadratic 0.04 64.1 64.1 65.9 65.9
Variable Quadratic 0.16 56.5 56.8 59.5 59.8
Fixed Linear 0.04 92.9 92.9 94.1 94.1
Fixed Linear 0.16 87.7 88.1 92.4 92.5
Fixed Quadratic 0.04 69.7 69.9 66.7 66.7

Fixed Quadratic 0.16 60.2 60.4 61.1 61.3
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Table 5. Coverage probabilities (%) of the variable population method based on quartile ranges: nominal

level = 0.95

Model o2 Quartile Variance estimator
range (%)

Ustd Ohyd Ustd, f Ohyd, f

Linear 0.04 0-25 90.8 90.8 94.2 94.3
25-50 89.7 89.8 93.8 93.8
50-75 88.9 88.9 92.4 92.4
75-100 87.8 87.8 90.8 90.9

Linear 0.16 0-25 90.1 90.1 93.8 93.9
25-50 88.6 88.7 934 93.6
50-75 88.4 88.4 93.0 93.1
75-100 87.4 87.5 92.2 92.4

Quadratic 0.04 0-25 91.9 91.9 92.1 92.1
25-50 88.7 88.7 88.9 88.9
50-75 79.8 79.8 80.3 80.3
75-100 59.9 60.0 61.1 61.7

Quadratic 0.16 0-25 91.1 91.2 91.3 914
25-50 87.9 87.9 88.8 88.8
50-75 79.1 79.1 79.7 79.7
75-100 58.8 58.9 61.8 61.9

fixed population cases. For the linear model case, the coverage probability decreases
slowly as the range increases from 0-25% to 75-100%: 0.94 to 0.91 for v, ;. On the
other hand, for the quadratic model case the coverage probability decreases rapidly:
0.92 t0 0.61 for v, . The above results suggest that the skewness size of the residuals

E; has substantial impact on the coverage performance of normal intervals.

We now turn to the performance of the normal interval associated with the

Table 6. Coverage probabilities (%) of the fixed population method based on quartile ranges: nominal

level =0.95

Model o2 Quartile Variance estimator
range (%)

Ustd Ohyd Ysid, f Ohyd, f

Linear 0.04 0-25 93.6 93.7 94 .4 94.4
25-50 91.9 91.9 93.7 93.7
50-75 89.5 89.5 92.6 92.8
75-100 88.3 88.4 91.2 91.6

Linear 0.16 0-25 91.6 91.7 94.1 94.1
25-50 91.5 91.5 934 93.4
50-75 89.2 89.2 934 934
75-100 88.0 88.1 91.2 91.2

Quadratic 0.04 0-25 92.2 92.2 92.5 92.6
25-50 88.5 88.5 88.8 88.9
50-75 79.6 79.6 80.5 80.5
75-100 59.9 59.9 60.8 61.5

Quadratic 0.16 0-25 90.9 90.9 91.5 91.5
25-50 87.8 87.8 88.8 88.8
50-75 79.1 79.1 79.9 79.9
75-100 59.1 59.1 61.6 61.9
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Table 7. Coverage probabilities (%) of confidence intervals under quad-
ratic model: multiple linear (t,,,,) vs. simple linear (t,,) vs. simple linear
(t,,) (nominal level = 0.95)

Method o’ Multiple linear Simple linear
Variable 0.04 91.2 62.9

0.16 90.7 61.9
Fixed 0.04 91.5 63.1

0.16 90.9 62.7

model-assisted estimator y,,, .. We found that the skewness values of the population resi-
duals for the quadratic model are 0.072 and 0.076 respectively for the fixed and the vari-
able population cases, as compared to 6.44 and 6.57 for the linear residuals reported in
Table 1. As a result, the confidence interval associated with ¢,,,, leads to much better cov-
erage relative to the interval associated with ¢,, for the quadratic model, as seen from
Table 7: 0.91 for ¢,,,, compared to 0.63 for 7,,.

As noted before, a model-assisted approach is implementable for two-phase sampling
because all the first-phase x-values are known. Gross violations of the underlying model
associated with the simple linear regression estimator should be accounted for through
a model-assisted approach. Then the design-based intervals associated with the
model-assisted estimator will be inferentially satisfactory despite minor violations of
the working model, especially as the sample size increases.

7. Summary Results

Our study highlights the fact that a large skewness in the linear residuals, E;, affects the
design-based performance of normal approximation confidence intervals associated with
the simple linear regression estimator in two-phase sampling. If the true underlying model
that generated the population deviated significantly from the linear model, then the
coverage performance of the intervals can be poor even for moderately large second-phase
samples. A proper model-assisted approach can lead to residuals with small skewness and
hence better coverage rates. We also observed that the traditional fixed population
approach yields consistently better coverage rates than the variable population approach,
although both approaches are asymptotically correct in the design-based framework.

For single-phase sampling, a model-assisted approach cannot be implemented if only
the population mean X is known, say, from external sources, because the regression
estimator under the quadratic model depends on the population total of x?-values. It
may be possible to use some other auxiliary variable (say from a recent census) related
to x to construct a take all stratum and a take some stratum. Such a stratification of the
population will reduce the skewness of the x’s (and hence of the residuals E;) in the
take some stratum under model failure and lead to better coverage performance of normal
approximation intervals when only X is known.
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