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Korn and Graubard (1998) have suggested a method for producing confidence intervals for
proportions estimated from a sample based on a complex sample design where the proportions
are either very small or very large, or the sample size is small. Their method uses the exact
binomial confidence intervals but with the sample size modified by dividing by the estimated
design effect for the proportion in question. Statistics New Zealand wanted to use this method
for the 1999 Gaming Survey (which has a different design to that for which the Korn and
Graubard method was developed) and carried out a bootstrap analysis to see whether the
coverage properties of such intervals were similar to those from the Korn and Graubard
method. The article presents the results of this analysis.
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1. Introduction

In 1999 Statistics New Zealand carried out a survey on gaming for the New Zealand

Department of Interval Affairs (from now on referred to as the 1999 NZGS). The principal

statistics from this survey were the proportions of problem and pathological gamblers.

These proportions are small: at the national level estimates were 1.3% and 0.5%,

respectively. We were interested in using the method proposed by Korn and Graubard

(1998) for producing confidence intervals, but were concerned that the design for the 1999

NZGS was very different (small psu’s and large variation in weights) from the type of

survey Korn and Graubard had used in their simulation study.

Since we had neither previous census nor previous sample data, we knew little about the

subpopulation of interest, namely problem and pathological gamblers in New Zealand,

except for the information contained in the one sample. Because the characteristic of

interest in the survey was relatively rare, we had insufficient information to adequately

simulate this population.

Hence we decided to carry out a bootstrap analysis on the survey data. As a result of this

analysis we developed the theory of the exchangeable bootstrap. This new method

compare favourably with the Korn and Graubard approach.
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This is not a theory article with a single practical example but rather an exposition of a

theoretical development arising from a particular survey where certain technical

difficulties arose from sampling a comparatively rare characteristic. We have

consequently focused on sensitivity of the estimates to changes in the particular sample,

rather than wider specification of artificial populations. Indeed, we take the view that the

theory developed for the exchangeable bootstrap is more convincing than a simulation

using artificial populations could be. In essence (as the theory we developed shows), if the

simulation is set up with the appropriate exchangeable groups, the method will work very

well, and if these groups are poorly chosen this will be obvious and the method will

(as proven) give poor results. We see this as a useful diagnostic and not a failing, because

even if the groupings are unknown, good choice of exchangeable groups will lead to

“similarity” of sample mean and the average of the bootstrap means.

We believe our situation and solution best reflect actual requirements and constraints in

government statistical agencies when implementing new surveys and forming estimates,

as distinct from viewing the situation as an abstract research problem.

In Section 2 we discuss the New Zealand Gaming Survey sample design. In Section 3

we outline standard approaches for constructing confidence intervals for binomial data.

Section 4 briefly summarizes bootstrapping for sample surveys. In Section 5 the theory of

the exchangeable bootstrap is developed. We discuss producing bootstrap based

confidence intervals for survey data in Section 6. Section 7 provides the results of our

analysis and Section 8 comments in overview.

2. The 1999 Gaming Survey

The population for the 1999 NZGS was people aged 18 and over who were usually

resident in New Zealand and who lived in private dwellings. Because the interviews for

this survey were to be conducted over the telephone, for simplicity the frame for it was

taken to be the telephone numbers listed in the Telecom New Zealand directory. Pilot

testing suggested that a higher response rate could be achieved by sending a recruitment

letter to the address belonging to the sampled telephone number a few days before the

telephone interview was conducted.

The sample design was straightforward. The 18 Telecom New Zealand directories were

used as strata. The stratum sizes varied from Auckland with a population of about 1,000,000

to the West Coast of the South Island with a population of about 23,000. The sample was

allocated proportionally to the strata and selected by Telecom New Zealand using an

algorithm to implement a simple random sample which was approved by Statistics New

Zealand. The telephone number represented a cluster of people, typically one household.

Of course a number of households had more than one telephone number associated with

them: for example, for fax or internet traffic. Sampled households were asked for the

number of telephone lines they had so that the probability of selection of the household

could be correctly determined. One person per household (represented by the sampled

telephone number) was selected using a modified Kish selection grid. In short, the design

was a stratified single stage cluster design, where within each stratum a large number of

psu’s were selected and the psu’s sizes were small. (The average number of people aged 18

and over living in private dwellings is about 2, and the maximum number is around 9.)
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Sampling one unit in the ultimate cluster is mentioned by Kish (1965, p. 398) and is

reasonably common in surveys carried out by official statistical agencies. The decision to

sample one person per household was made when designing and implementing the 1999

NZGS, because there is greater benefit (from the point of view of accuracy for fixed cost)

in sampling another household rather than sampling another individual within the same

household. This does not allow unbiased estimation of variances, but only at a household

level, and the bias effect for variance estimates taken overall is very small. Estimates of

means or totals remain unbiased. In essence, the household in the 1999 NZGS may be

considered as a cluster in the context of a proportionally allocated stratified sample of

households. The variance within clusters is then necessarily an effect of considerably less

importance than variability between households, as Cochran (1977) for example shows.

What is much more important is knowing and using the number of eligible people per

household for weighting purposes, as was done in the estimation phase of this survey.

The estimator chosen to produce estimates of such statistics as the proportions of

problem and pathological gamblers was a calibration estimator using sex, age, and ethnic

groups for the calibration variables. Straight poststratification to three-way table formed

by these variables was not carried out because the population estimates of the cells of this

three-way table were unreliable. Even if reliable estimates of the cells were available, it is

likely such a fine breakdown would lead to more unstable estimates because the sample

sizes in some of the cells were very small. Hence the choice of a calibration estimator.

Apart from the sample design differences between the Korn and Graubard study

(explained below) and this study, a further difference is that we were using real data with

biases rather than simulated populations. There is some bias in the frame. Firstly, although

about 97% of New Zealand households have a telephone, this percentage drops to between

80% and 85% for lower socio-economic groups, in particular Māori and Pacific peoples.

Secondly, at the time the survey was conducted about 10% of numbers were unlisted.

Although some 9,300 telephone numbers were sampled only 6,452 interviews were

completed. This response rate of about 75% is not as high as Statistics New Zealand

usually achieves in its ongoing household surveys and may be attributable to the sensitive

nature of the information sought or the interview mode. Furthermore, the response rate

was not uniform across age groups or ethnic groups: for example, as is usual in household

surveys in New Zealand, young males have higher nonresponse rates than average.

Nevertheless, the 1999 NZGS achieved a response rate much larger than other gaming-

related surveys carried out previously in New Zealand or elsewhere.

3. Confidence Intervals for Binomial Data

Statisticians required to produce confidence intervals for proportions from large surveys

based on complex sample designs typically assume that the estimators are approximately

normally distributed and so use normal confidence intervals. For example, suppose p̂ is the

estimated proportion and v̂p̂ the estimated variance, then a 100(1–2a)% confidence

interval would be p̂ ^ za
ffiffiffiffiffi
v̂p̂

p
; where za is the 1 2 a quantile of the standard normal

distribution.

If the sample size was very small taking into account the number of strata and primary

sampling units (psu’s) (so that the degrees of freedom were small), then one might use
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instead of za in the above confidence interval the a critical value from a t-distribution with

n degrees of freedom, where n is the number of psu’s less the number of strata.

Of course, even in the simpler situation of simple random sampling, the symmetry of

such confidence intervals is misleading with very small or very large proportions. So a

common approach is to use a logit transformation of the proportion to produce the

confidence interval (see Rust and Rao 1996). Specifically, as before, suppose p̂ is the

estimated proportion and v̂p̂ the estimated variance. Carry out the following steps:

1. Calculate the logit, L̂; of p̂ : L̂ ¼ logð p̂=ð1 2 p̂ÞÞ

2. Calculate the variance, v̂L̂; either by linearization ðv̂L̂ < v̂p̂ £ ð1=ðp̂ð1 2 p̂ÞÞÞ2Þ or by

replicated methods such as half sample or jackknife

3. Calculate the normal confidence interval for L̂ : L̂ ^ za
ffiffiffiffiffi
v̂L̂

p
4. Transform this interval back into the domain of p̂ using the inverse transform

p̂ ¼ 1=ð1 þ expð2L̂ÞÞ

An advantage of this approach is that it avoids the possibility that the confidence interval

will lie outside the interval [0, 1]. Of course there is no guarantee that these confidence

intervals have or nearly have the correct coverage probabilities. Korn and Graubard (1998)

introduced another method based on exact binomial intervals which gave better coverage

properties than the logit intervals in a simulation experiment.

Suppose we had a binomial situation, which would almost be the case if we had simple

random sampling and a low sampling fraction. Then it is well-known that when there are

x successes from n trials the Clopper-Pearson (1 – 2a)% confidence interval

ð plðx; nÞ; puðx; nÞÞ can be expressed as (see Johnson et al. 1993, p. 130):

plðx; nÞ ¼
n1Fðn1; n2;aÞ

n2 þ n1Fðn1; n2;aÞ

puðx; nÞ ¼
n3Fðn3; n4;aÞ

n4 þ n3Fðn3; n4;aÞ

ð1Þ

where n1 ¼ 2x; n2 ¼ 2ðn 2 x þ 1Þ; n3 ¼ 2ðx þ 1Þ; n4 ¼ 2ðn 2 xÞ; and F(n1, n2, y) is the

F distribution with v1 and v2 degrees of freedom.

The modification that Korn and Graubard suggest is to replace the sample size n in

Equation (1) by the estimated effective sample size, i.e., the sample size divided by the

estimated design effect (deff) for the proportion.3 The number of successes, x, is then

given by the effective sample size times the estimated proportion p̂:4

Korn and Graubard examined the coverage probabilities of such intervals in a

simulation experiment where the sample design was typical of household survey designs

3 The design effect of an estimate is the ratio of the variance of the estimate under a complex design to the
variance under simple random sampling. The estimate of the variance of p̂ might use analytically derived
estimators. However, it is common now to produce such variance estimates using replicated methods such as the
balanced half sample method or the jackknife method, since these more easily accommodate nonlinear estimators
of p which arise from poststratification or more general regression estimators.
4 Having completed this work, we became aware of work which shows that the Clopper-Pearson confidence
intervals are conservative in estimating binomial conference intervals for small sample sizes. The appendix
discusses another method of estimating binomial confidence intervals and presents the results of applying the
Korn and Graubard modification.
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in the U.S.A. Such designs have a small number of clusters or psu’s which themselves

contain a large number of secondary sampling units (ssu’s). A reasonably large number of

ssu’s are selected from each psu. Within an ssu there may be further stages of selection

depending on what is the ultimate sampling unit (household or individual) and on cost.

Generally for the sample design Korn and Graubard considered, the ratio between the

smallest and largest sample design weights5 is bounded by 10.

The results of their study on these types of cluster designs showed that the coverage

properties of these exact deff-adjusted binomial confidence intervals had coverage

probabilities closer to the nominal value than logit transform confidence intervals, normal

based confidence intervals and intervals and intervals based on the Poisson approximation

to the binomial.

However, the 1999 NZGS design, as described in Section 2, has a large number of small

psus (households) with only one ssu selected (people), in marked contrast to the sort of

design which Korn and Graubard used for their simulation study. The other major

difference from the Korn and Graubard study is that the choice of estimator, and

differential nonresponse, produced estimation weights which had a factor of 40 in the ratio

of the largest to the smallest. Therefore we felt that before we used the Korn and Graubard

method on the 1999 NZGS some further analysis using bootstrapping was required.

4. Bootstrap for Sample Surveys

The more complex the design the more difficult it is to find a resampling method whose

bootstrap distribution is a good estimator of the real distribution. However, if one is

interested in variance or mean squared error estimation then the method can be applied to a

range of standard complex designs: see Rao and Wu (1998).

For a stratified simple random sample without replacement (SRSWOR) design Rao and

Wu suggest a rescaling procedure which matches the analytic formula for linear statistics.

If the stratum population sizes are large, and if the bootstrap sample is a simple random

sample with replacement (SRSWR) from each stratum of the same size as the stratum

sample then this procedure reduces to the naive bootstrap.

Davison and Hinkley (1997, p. 92) also discuss finite population sampling, outlining the

use of the bootstrap for SRSWOR and for SRSWR, and then extend these results to

stratified sampling with and without replacement. Sampling without replacement adds

some complexities which adjust for finite population corrections, but for SRSWR the

bootstrap method is not affected and for stratified random sampling with replacement, the

bootstrap for SRSWR sampling can be applied within strata (Haslett and Wear 1985).

Sitter (1992) outlines three bootstrap methods for survey data: the rescaling method, the

mirror-match method and the without replacement bootstrap. All of these methods, while

able to be used on without replacement sampling schemes, assume exchangeability over

the whole sample and population of some functions of {yi, pi}, where yi is the value of the

variable y for the ith unit in the population and pi is the inclusion probability for the ith unit

in the population. That is, distinct exchangeable groups within the sample and the

5 Given no nonresponse and assuming the Horwitz-Thompson estimator, these weights are just the inverse of the
probability of selection for the ultimate sampling unit.
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population are not permitted, and the inclusion probabilities, and hence weights, for a

given unit i in the bootstrap sample are fixed given i.

Below a more general alternative is proposed where, in general, sampling may be with

or without replacement for both the original sample and for the bootstrap, where there may

be more than one exchangeable group in the population where, in the formation of the

bootstrap estimate, a weight {p21
j }; for unit j – i may be applied to unit i when i and j both

belong to the same exchangeable group.

Properties of this extended bootstrap include unbiasedness and consistency under fairly

general conditions, as shown in Section 5 below.

5. Theory of the Exchangeable Bootstrap

The central idea behind the exchangeable bootstrap is to form the survey data into groups

within which the survey variable is in some sense equivalent (or more formally

exchangeable). The survey estimator is then used, but instead of using the survey response

for a particular respondent with its designated weight, a random choice of response is

made from its corresponding group and from the weights and bootstrap responses, a

bootstrap estimate is formed in the usual way (once a draw has been made in this way for

all sampled units). A simple exposition of how to implement this is given in Section 7.2.

More formally, let a design unbiased estimator Ŷ of a total Y based on the original

sample s be

Ŷ ¼
i[s

X Yi

pi

ð2Þ

Note that in this case the exchangeable bootstrap estimators are formed as

Ŷ* ¼
i[s

X Y*
i

pi

ð3Þ

where for a given unit i in the sample s, Y*
i is drawn from an SRSWR from the

exchangeable group to which unit i belongs. An extension to SRSWOR with exchangeable

groups following Davison and Hinkley (1997) is also possible. Equations (2) and (3) are

applicable for both with and without replacement sampling, as is discussed in detail by

Haslett (1985); this formulation includes SRSWR, SRSWOR, stratified random sampling

with and without replacement and the various forms of cluster sampling, for example, as

special cases.

Now the defining property of the exchangeable group g is that for all units i belonging to

g the superpopulation expectation E(Yi) is yg, the superpopulation mean for the gth group

which while it depends on g is independent of i. That is,

EðYiji [ gÞ ¼ yg; g ¼ 1; 2; : : :G

so that the superpopulation expectation of the bootstrap sample estimate is
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EðŶ* Þ ¼
i[s

XEðYiji [ gÞ

pi

¼
g

X
i[sg

X yg

pi

where s ¼
[G
g¼1

sg

and as usual i [ s and i [ sg indicate the sampled members of the total finite population

and the sampled members in group g of the finite population, respectively. Letting E

denote the design expectation,

EEðŶ* Þ ¼
g

X
E

i[sg

X yg

pi

0
@

1
A

¼
g

X
i[g

X y0g

pi

pi

where in general y 0
g ¼ Eð ygÞ ¼

P
i[gyi=Ng; where yi ¼ EðYiÞ and Ng is the population

size in the group g and is not a superpopulation quantity. As usual, i [ g refers to all Ng

members of the finite population in group g. Hence

EEðŶ* Þ ¼
g

X
i[g

X
y0g

¼ EðYÞ

Thus Ŷ* is joint design-superpopulation unbiased for the population total since Ŷ ¼P
i[sðYi=piÞ is design unbiased.

The extension from totals to means and proportions is straightforward. More generally

Ŷ* ¼
P

i[swiðsÞY
*
i ; where wiðsÞ; i ¼ 1; 2; : : : ;N are the sample survey weights (which

may depend on the sample s), is joint design-superpopulation unbiased for the population

mean, total or proportion if and only if Ŷ ¼
P

i[swiðsÞYi is design unbiased.

Note that for a given sample s, the average value (with respect to the superpopulation) of

the bootstrap estimate of Y is

EðŶ* Þ ¼
g

X
i[sg

X yg

pi

which can be unbiasedly estimated by

ÊðŶ* Þ ¼
g

X
i[sg

X ŷg

pi

where ŷg ¼ ð1=ngÞ
P

i[sg
Yi and Yi is interpreted as the realized value for each unit i [ s

and ng is the number of members of group g in the sample.
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That is, by

ÊðŶ* Þ ¼
g

X
i[sg

X ð1=ngÞ
P

i[sg
Yi

pi

¼
g

X 1

ng i[sg

X
Yi

0
@

1
A

i[sg

X 1

pi

0
@

1
A

¼
g

X
i[sg

X Yi

pg

wherepg ¼ ng

i[sg

X 1

pi

0
@

1
A

21

<
g

X
i[sg

X Yi

pi

since pg is the harmonic mean

¼
i[s

X Yi

pi

¼ Ŷ

So that, given the correct exchangeable groups, for all i [ s;

ÊðŶ* Þ < Ŷ

for a given sample s.

The design-superpopulation unbiasedness for Ŷ* thus has an important practical

consequence, if Ŷ is known to be design unbiased.

Since

EðŶ* Þ ¼
i[s

X yg

pi

and yg can be estimated by ŷg; then if the {yg} are distinct and the exchangeable groups are

wrongly chosen, there will be sample units misassigned to their correct group g, and the

difference between the usual sample survey estimate and the average estimated from the

bootstrap Ŷ 2 ÊðŶ* Þ will often be appreciable.

There is consequently a simple check on whether exchangeable groups have been

suitably chosen. If yg < yg0 for two groups g and g0, then assignment of unit i [ s to g or g0

is of no particular consequence. However, if the two groups g and g0 are clearly not a single

exchangeable group because they have different means, and some sample units are

misassigned, then the bias term Ŷ 2 ÊðŶ* Þ will usually be appreciable relative to the

confidence intervals for ÊðŶ* Þ from the bootstrap.

Further the bootstrap estimator Ŷ* is not only design-superpopulation unbiased if Ŷ is

design unbiased, but also is consistent for Y if and only if Ŷ is consistent for Y. That is,

PðjŶ
*

n 2 Yj , eÞ! 1 as n ! N ðWORÞ or as n !1 ðWRÞ

if and only if

PðjŶn 2 Yj , eÞ! 1 as n ! N ðWORÞ or as n !1 ðWRÞ
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where Ŷ
*

n ¼ Ŷ* for sample size n, and Ŷn ¼ Ŷ for sample size n. ( The result follows

directly because ŷg is consistent for y 0
g for each g, for both with and without replacement

sampling.)

The extension of these results to linearizable nonlinear statistics is straightforward, with

approximate linearization via Taylor series expansion also being a possibility.

6. Confidence Intervals

Two methods of producing confidence intervals for the exchangeable bootstrap were

considered. First we considered the percentile method. That produced unsatisfactory

results so we then considered the accelerated bias corrected percentile method.

6.1. Percentile method

Suppose we have some parameter of interest u and an estimator û for it. Bending the usual

notation slightly, let û also be the estimate of u from the full sample. For each bootstrap

sample s we calculate an estimate ûs: From the N bootstrap samples, form the empirical

cumulative distribution function

ECDFðtÞ ¼ #{ûs # t}=N

of the estimator û: For some a between 0 and .5, define

ûLðaÞ ¼ ECDF21ðaÞ; ûUðaÞ ¼ ECDF21ð1 2 aÞ

where ECDF 21 is the inverse of the empirical cumulative distribution function.

The percentile method uses

½ûLðaÞ; ûUðaÞ�

as an approximate 1 2 2a confidence interval for û:

6.2. Bias correction and acceleration methods

A check on the adequacy of the percentile method is whether the median of the empirical

distribution function is the value of the estimate obtained from the full sample, i.e., does

#{ûs # û}=N ¼ :5: If it does not, Efron (see e.g., Efron and Tibshirani 1993) suggests

making a bias correction to the percentile method.

Let F be the cumulative distribution function for the standard normal random variable.

Define

z0 ¼ F21ðECDFðûÞÞ

The bias corrected percentile method (BC method) uses

½EDCF21ðFð2z0 2 zaÞÞ;EDCF21ðFð2z0 þ zaÞÞ�

as an approximate 1 2 2a confidence interval for û; where za is, as before, the 1 2 a

quantile of the standard normal distribution, i.e., FðzaÞ ¼ 1 2 a: Clearly if

#{ûs # û}=N ¼ :5 then the BC method reduces to the percentile method.
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Essentially the BC method makes an adjustment for potential asymmetry in the

percentile method interval. But it assumes that the standard error of the estimator is the

same for all values of the true parameter. Efron (see e.g., Efron and Tibshirani 1993)

suggests this variance stabilizing assumption can be checked and adjusted for through the

acceleration constant which measures the rate of change of the standard error of the

estimator with respect to the true parameter. This leads to what he calls the BCa method.

Specifically, define

z½a� ¼ z0 þ
z0 þ za

1 2 aðz0 þ zaÞ

where a is the acceleration constant. Similarly define z½1 2 a�: The bias corrected

percentile acceleration method (BCa method) uses

½EDCF21ðFðz½a�ÞÞ; EDCF21ðFðz½1 2 a�ÞÞ�

as an approximate 1 2 2a confidence interval for û: Here z0 is the same as in the BC

method. The acceleration constant needs to be estimated. Since a and z0 are functions of

the bias, variance and skewness of ûs; Shao and Tu (1995) and Efron and Tibshirani (1993)

suggest an approximation can be obtained using

â ¼
1

6

PN
i¼1ðûð:Þ 2 ûðiÞÞ

3

PN
i¼1ðûð:Þ 2 ûðiÞÞ

2

 �3=2

where ûðiÞ is the estimate of the parameter with the ith unit of the sample deleted, and

ûð:Þ ¼
PN

i¼1ûðiÞ=N: Intuitively, â is the (jackknife estimate of skewness)/6.

This estimator of a required no great extra computation on our part as we already had

produced jackknife weights to produce the sample errors of the major estimates of the 1999

NZGS. A point to note is that in the case of a complex survey design, modifications to the

jackknife have to be made to adjust for the design, e.g., in a cluster design the unit which is

deleted is not the ultimate sampling unit but the primary sampling unit. Use of psu’s

removes much of the complexity from the implementation of the jackknife, so that â is

largely unaffected by the design.

6.2.1. Coverage properties for the exchangeable bootstrap

Because we are using the BCa method on the exchangeable bootstrap, the theory of

Davison and Hinkley (1997, pp. 211–220) applies. That is, the coverage properties of the

exchangeable bootstrap are the same as the coverage properties of the BCa. Strictly

speaking this theory ignores the finite population corrections usually necessary but not so

in this study because of the specific sample design. If finite population corrections were

required, then modifying the bootstrap samples within strata, as in Davison and Hinkley

(1997 p. 93) suffices.

7. Results

In the case of the 1999 NZGS variance estimates obtained from treating the sampling as

with replacement increased the estimated variance from that for treating the sampling

as without replacement by less than 2% over a wide range of variables when using
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conventional estimators. Since this effect is negligible, especially when translated into

confidence intervals, bootstrap samples for the 1999 NZGS were drawn with replacement.

Results from two different methods of producing the bootstrap samples and two

different methods of producing confidence intervals are presented here.

7.1. Naive bootstrap

The first method tried was the naive bootstrap. As mentioned in Section 4, given the

sample design of the 1999 NZGS, this method is essentially the rescaling method (see Rao

and Wu 1988 and Sitter 1992).

The method consists of selecting a bootstrap SRSWR sample within each stratum.

The response factors to account for nonresponse were calculated for groups defined by

stratum and week of interview. The bootstrap selection weights were adjusted by these

response factors to produce the response weights for a household. The response weights

were adjusted by the number of eligible people in the household and the number of

telephone lines to get the person weight. Finally the person weight was calibrated by the

raking ratio method using age by sex and ethnic group benchmarks. For this study

5,000 bootstrap samples were taken.

An example of the results obtained is given in Table 1. Here the variable is lifetime

problem gambling prevalence based on a modified South Oaks Gambling screen.

Estimates are given for the New Zealand population and broken down by sex, age, and

ethnicity. The survey estimates are typically small to very small. Note that half the time the

mean of the naive bootstrap estimates (called bootstrap estimate in the table) are more than

10% different from the survey estimate, and can be over 100% different. Note that the

percentile confidence interval for the Māori estimate does not cover the survey estimate.

Table 1. Results from the naive bootstrap for the variable Lifetime problem gambling for selected

subpopulation estimates. The values are expressed in percentages

(Sub) population Survey
estimate

Bootstrap
estimate

Percentile
confidence
interval

BCa

confidence
interval

low high low high

New Zealand 1.9 2.1 1.7 2.5 1.4 2.1
Male 2.8 3.1 2.4 3.8 1.9 3.3
Female 1.1 1.1 0.8 1.5 0.7 1.3
18–24 2.1 2.2 1.1 3.4 1.0 3.2
25–34 3.2 3.7 2.5 5.0 1.7 3.8
35–44 2.5 2.1 1.3 3.0 1.9 3.5
45–54 1.2 1.2 0.8 1.8 0.6 1.6
55–64 1.5 2.2 1.3 3.3 0.7 1.7
65 þ 0.5 0.6 0.3 1.0 0.1 0.8
European 1.3 1.4 1.1 1.8 0.9 1.5
Māori 3.6 2.0 0.9 3.2 4.0 4.4
Pacific Island 7.8 11.1 6.1 16.5 3.6 9.6
Asian 2.9 5.9 2.4 9.8 1.4 3.3
Other 0.8 0.4 0.0 1.9 0.0 2.1
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The BCa confidence intervals are different from the percentile ones, even when the

bootstrap mean and survey estimate agree. The BCa confidence interval for the Māori

estimate still does not cover the survey estimate.

Similar results were observed with other variables such as current problem gambling,

current and lifetime pathological gambling. Clearly, the naive bootstrap is unsatisfactory.

7.2. Exchangeable bootstrap

Since the naive bootstrap produced unsatisfactory results we next considered the

exchangeable bootstrap. This method requires determining a set of exchangeable groups

within the sample population. The obvious choice is to use some of the groups which from

the design perspective are thought exchangeable. So one might first choose the sample

strata. The standard household survey designs used by Statistics New Zealand usually

have between 100 and 200 strata, so one could expect them to provide groups which are

exchangeable. However, in the 1999 NZGS the stratification was very broad, with only 18

strata, so one would not expect much success using them as exchangeable groups. This

lack of success ought to be obvious from examining the bias term Ŷ 2 EðŶ* Þ as discussed

in Section 5.

We chose to ignore these strata and used ethnic group, since for the variables of interest

in this study, proportions of problem and pathological gamblers, previous studies have

shown that ethnicity is a strong determiner of gambling behaviour.

Finally we chose to ignore the geographical stratification and used all of the groups (sex,

age, and ethnic group) used in the calibration estimator, since for the purposes of

nonresponse adjustment these were considered exchangeable groups.

Having chosen a set of exchangeable groups, one sorts the sample by exchangeable

group. Within an exchangeable group the weights are retained in the order they appear in

the original sample. The data to attach to these weights are chosen by an SRSWR within

the exchangeable group, as illustrated below.

So the ith sample weight in the exchangeable group is always applied to the ith unit

selected in the bootstrap via Y*
i ; but that Y*

i could be the sample value for any unit in the

same exchangeable group as unit i belongs to. The unusual feature here is that if a unit in

the original sample is drawn (one or more times) in the bootstrap sample it will only

exceptionally retain its original final weight. This is a consequence of the superpopulation

Original sample data Final weight Exchangeable group Index Bootstrap
sample data

Y1 w1 1 1 Y*
1

Y2 w2 1 2 Y*
2

Y3 w3 1 3 Y*
3

: : : : : : : : : : : : : : :

Yj wj k 1 Y*
1

Yjþ1 wjþ1 k 2 Y*
2

: : : : : : : : : : : : : : :
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exchangeability requirement. It is also possible to draw from {Y*
i } in group g with unequal

weights corresponding to the design, but if the members of the a group are truly

exchangeable, this is unnecessary.

An example of the results obtained is given in Table 2. Again the variable is lifetime

problem gambling prevalence, and estimates are given for the New Zealand population

broken down by sex, age and ethnicity. Now, only about one third of the time the mean of

the bootstrap estimates are more than 10% different from the survey estimate, and the

maximum difference is less than 50%. Also, now the percentile confidence interval for

the Māori estimate covers the survey estimate. The BCa confidence intervals are generally

close to the percentile ones, the more so when the bootstrap mean and survey estimate agree.

Similar results were observed with variables such as current problem gambling, current

and lifetime pathological gambling. The exchangeable bootstrap appears to give

satisfactory confidence intervals.

7.2.1. Comparison of confidence intervals

Table 3 compares the confidence intervals for the variable lifetime problem gambling for

selected subpopulation estimates and for different methods. Clearly if the sample size is

large, as for the New Zealand population, the normal confidence interval and the Korn and

Graubard interval are almost the same. But as the sample sizes decrease the differences

become marked.

The results for must subpopulations are very similar when the Korn and Graubard and

the exchangeable bootstrap, when appropriately bias corrected and variance stabilized, are

compared. A possible exception is the Pacific Island group, for which the exchangeable

bootstrap is more conservative. However, because this subpopulation is small, and the

Table 2. Results from the exchangeable bootstrap for the variable Lifetime problem gambling for selected

subpopulation estimates. The values are expressed in percentages

(Sub) population Survey
estimate

Bootstrap
estimate

Percentile
confidence
interval

BCa

confidence
interval

low high low high

New Zealand 1.9 1.8 1.4 2.2 1.6 2.4
Male 2.8 2.6 1.9 3.3 2.3 3.7
Female 1.1 1.1 0.7 1.6 0.6 1.4
18–24 2.1 2.3 1.0 4.0 0.7 3.5
25–34 3.2 2.7 1.6 4.0 2.4 4.7
35–44 2.5 2.3 1.3 3.3 1.6 3.5
45–54 1.2 1.2 0.5 1.9 0.5 1.9
55–64 1.5 1.5 0.4 2.6 0.2 2.4
65 þ 0.5 0.6 0.2 1.1 0.1 0.9
European 1.3 1.3 0.9 1.6 1.0 1.7
Māori 3.6 3.6 1.8 5.7 1.7 5.6
Pacific Island 7.8 6.6 2.4 11.5 3.9 13.1
Asian 2.9 2.5 0.4 9.8 0.8 6.2
Other 0.8 1.3 0.0 4.0 0.0 2.8
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proportion of problem and pathological gamblers is low, the number of Pacific Island

problem and pathological gamblers in the sample is fewer than 10, despite the total sample

size over all subpopulations being 6,452. This difference between the methods is

consequently not definitive and may be due to the large design effects for the Pacific Island

subpopulation in part due to nonresponse. Similar results were observed with variables

such as current problem gambling, current and lifetime pathological gambling.

Small proportions usually imply small numbers of sample respondents having that

characteristic. If the method of confidence interval formation for the estimated proportion

is stable and reliable, then a change in the survey response data of (say) one individual

should have little effect on the location and range of the estimated CI. Data “perturbation”

was used in this way to check the stability of the exchangeable bootstrap using calibration

cells as exchangeable groups by increasing (or decreasing) the number of problem and

pathological gamblers in the sample by one.

Confidence intervals for proportion estimates for the variables current problem, current

pathological, lifetime problem, and lifetime pathological were reproduced nationally for

the national population and age group, sex and ethnic group subpopulation using two

perturbation methods:

1. add one problem/pathological gambler: one randomly selected individual in the target

population found not to be a problem or pathological gambler is now deemed to be one;

2. remove one problem/pathological gambler: one randomly selected individual in the

target population found to be a problem or pathological now deemed not to be one.

Table 3. Comparison of confidence intervals for the variable Lifetime problem gambling for selected

subpopulation estimates. Normal refers to the confidence intervals based on the normal approximation. K & G

refers to those proposed by Korn and Graudbard using exact binomial confidence intervals where the sample size

is divided by the design effect of the estimate. Percentile refers to the percentile confidence interval from an

exchangeable bootstrap using all the calibration groups as exchangeable groups. BCa refers to the percentile

confidence interval which has been bias corrected and variance stabilized. The values are expressed in

percentages

(Sub) population Normal K & G Percentile BCa

low high low high low high low high

New Zealand 1.4 2.5 1.4 2.5 1.4 2.2 1.6 2.4
Male 1.9 3.8 2.0 3.9 1.9 3.3 2.3 3.7
Female 0.6 1.5 0.7 1.6 0.7 1.6 0.6 1.4
18–24 0.9 3.4 1.1 3.8 1.0 4.0 0.7 3.5
25–34 1.7 4.6 1.9 5.0 1.6 4.0 2.4 4.7
35–44 1.4 3.5 1.5 3.8 1.3 3.3 1.6 3.5
45–54 0.5 1.8 0.6 2.0 0.5 1.9 0.5 1.9
55–64 0.2 2.7 0.5 3.3 0.4 2.6 0.2 2.4
65 þ 0.1 1.0 0.2 1.2 0.2 1.1 0.1 0.9
European 1.0 1.7 1.0 1.7 0.9 1.6 1.0 1.7
Māori 1.5 5.7 1.8 6.4 1.8 5.7 1.7 5.6
Pacific Island 0.1 15.5 2.0 19.5 2.4 11.5 3.9 13.1
Asian 0.0 5.7 0.7 7.4 0.4 5.5 0.8 6.2
Other 20.8 2.5 0.0 4.7 0.0 4.0 0.0 2.8
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Figure 1 displays the empirical distributions of lifetime problem gambling for the Māori

subpopulation for the bootstrap distribution on the original sample and the two perturbed

samples. The bootstrap distribution on the original sample is fairly symmetric in the

middle but has a long right tail. There is little difference in the ranges of the perturbed

distributions and the shapes are broadly similar.

Figure 2 displays the empirical distributions of lifetime problem gambling for the

Pacific Island subpopulation for the bootstrap distribution on the original sample and the

two perturbed samples. The bootstrap distribution on the original sample is not so

Fig. 1. Lifetime problem gambling for the Māori subpopulation. The top graph is the bootstrap distribution on

the original sample. The middle graph is the bootstrap distribution for the original sample with one problem

gambler added. The bottom graph is the bootstrap distribution for the original sample with one problem gambler

removed. In all graphs the x-axis is the proportion expressed in percentages and the y-axis is frequency
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symmetric in the middle and has a longer right tail. But as with the Māori case the ranges

of the perturbed distributions and the shapes are broadly similar.

Similar results were obtained for the other subpopulations and the other gambling

variables. This is encouraging, suggesting that the exchangeable bootstrap is somewhat

robust to small changes in the sample estimates.

Fig. 2. Lifetime problem gambling for the Pacific Island subpopulation. The top graph is the bootstrap

distribution on the original sample. The middle graph is the bootstrap distribution for the original sample with

one problem gambler added. The bottom graph is the bootstrap distribution for the original sample with one

problem gambler removed. In all graphs the x-axis is the proportion expressed in percentages and the y-axis is

frequency
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8. Discussion and Conclusions

The Korn and Graubard method of creating confidence intervals has been applied to a real

survey. The situation we were faced with in this survey was the need to provide a check on

the Korn and Graubard method in a situation for which it was not developed, namely small

proportions, small psu’s and large variations in weights.

In the process of undertaking a bootstrap analysis, we have developed a new approach to

bootstrap sampling for complex sample designs which looks promising when applied to

real data. We have shown that it has desirable theoretical properties and for the gaming

data provides estimates and coverage properties that are not highly sensitive to data

changes.

The choice of exchangeable groups is not subjective. If an acceptable choice is

made, the mean of the bootstrap estimates and the overall sample mean will match,

otherwise not: thus the method provides a strong and useful diagnostic for the choice

of groups.

We have found that the confidence intervals from the Korn and Graubard method and

our exchangeable bootstrap for this data are similar. We are not arguing or able to argue

for the primacy of either method, and like our analysis, even a simulation study would only

have given a partial answer to this question. That said, this new approach is promising in

itself and also suggests that the Korn and Graubard method is a reliable way of calculating

confidence intervals for small proportions from a wider range of complex sample designs

than that for which it was developed.

A. Appendix

A.1. Less Conservative Confidence Intervals

It is known that the Clopper-Pearson confidence intervals are conservative and a recent

article by Brown, Cai and DasGupta (2001) suggests that the equal-tailed Jeffreys prior

interval is a better alternative. This appendix compares the Clopper-Pearson and Jeffreys

intervals for the gaming data using the exchangeable bootstrap as the benchmark.

Suppose as before we have a binomial situation and there are x successes from n trials,

then the Jeffreys ð1 2 2aÞ% confidence interval ( pl(x, n), pu(x, n)) can be expressed as:

plð0; nÞ ¼ 0

puð1; nÞ ¼ 1

and otherwise

plðx; nÞ ¼ Bðx þ 1=2; n 2 x þ 1=2;aÞ

puðx; nÞ ¼ Bðx þ 1=2; n 2 x þ 1=2; 1 2 aÞ ð4Þ

where B(n1, n2, y) is the Beta distribution with shape parameters n1 and n2.

To account for a complex sample design one would follow Korn and Graubard and

replace the sample size n in Equation (4) by the estimated effective sample size. As before,

the number of successes, x, is given by the effective sample size times the estimated

proportion p̂:
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Table 4 shows the Clopper-Pearson and Jeffreys intervals both modified in the manner

suggested by Korn and Graubard along with the intervals from the exchangeable bootstrap

for the variable lifetime problem gambling. As expected, the Jeffreys intervals are

typically shorter; more so on the right. For that reason they are closer to the intervals from

the exchangeable bootstrap.

In practical terms, given nonresponse bias and measurement errors, use of the

conservative Clopper-Pearson intervals with the Korn and Graubard modification is

sensible in guarding against a Type I error. However, when nonresponse bias and

measurement error is small, and control of Type II error is important, consideration should

be given to using the Jeffreys interval.
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