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Determining Sample Sizes for Surveys with Data
Analyzed by Hierarchical Linear Models

Michael P. Cohen1

1. Introduction and Example

There has been an upsurge in interest among behavioral and social scientists and education

researchers in analyzing data in a way that accounts for the naturally occurring nested

structure, for instance, in analyzing students nested within schools. Linear models appro-

priate for such data are called hierarchical or multilevel. In part, the increased interest has

been sparked by the availability of new software that properly handles the nested structure

and facilitates the analyses. There has also been a realization that one can take advantage

of the nested structure to explore relationships not amenable to other approaches.

Bryk and Raudenbush (1992), Goldstein (1987, 1995), and Longford (1993) are recom-

mended for book-length discussions related to hierarchical linear models.

To illustrate these models, an example of Bryk and Raudenbush (1992, Chapter 4) will

be summarized. This example is based on data from a subsample of the 1982 High School

and Beyond Survey, a survey of high school students in the United States by the U.S.

National Center for Education Statistics. The socioeconomic status (SES) of the student

is a variable computed from the income, education, and occupation of the student's par-

ents. The MEAN SES is the average over the students in the school of the SES values

for the students. The following questions, quoted from Bryk and Raudenbush (1992,

p. 61), were being explored:

1. How much do U.S. high schools vary in their mean mathematics (math) achievement?

Behavioral and social data commonly have a nested structure (for example, students nested
within schools). Recently techniques and computer programs have become available for deal-
ing with such data, permitting the formulation of explicit hierarchical linear models with
hypotheses about effects occurring at each level and across levels. An example is given where
such models could be used. If data users are planning to analyze survey data using hierarchical
linear models rather than concentrating on means, totals, and proportions, this needs to be
accounted for in the survey design. The implications for determining sample sizes (for exam-
ple, the number of schools in the sample and the number of students sampled within each
school) are explored.
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2. Do schools with high MEAN SES also have high math achievement?

3. Is the strength of association between student SES and math achievement similar

across schools? Or is SES a more important predictor of achievement in some

schools than others?

4. How do public and Catholic schools compare in terms of mean math achievement

and in terms of the strength of the SES-math achievement relationship, after we

control for MEAN SES?

These are the kinds of questions that hierarchical linear models (HLMs) can handle.

One student-level model for this example is

yij � b�
0j � rij �1:1�

with the school-level model

b�
0j � g0 � u0j �1:2�

where the asterisk on b�
0j indicates that the parameter is random, not ®xed. The random

parameter b�
0j might be, for instance, the mean mathematics achievement of school j.

The rij are mean zero, independent, normally distributed random variables, each with vari-

ance j2, for the i � 1;¼; nj students in school j. The u0j are independent of each other and

of the rij. They are normally distributed, each with mean zero and variance t2. The t2 are

called the student-level variances, and the t2 are called the school-level variances.

We shall consider models a bit more general. The student-level model will be

yij � b�
0j �

Xp

h�1

ghxhij � rij �1:3�

with the school-level model still given by (1.2) and with the same distributional assump-

tions as above on the rij and u0j. These are called random intercept models. The xhij are

independent variables, and the gh are ®xed unknown parameters. For instance, x1ij might

be student SES in the example with p � 1. We consider (1.1) to be a special case of (1.3)

with p � 0.

There are HLMs not ®tting the above setup. In (1.3), if we replace g1 by b�
1j, where the

b�
1j satisfy an equation like (1.2), we would have a particular case of what is called a ran-

dom slope model. One can consider, moreover, school-level models more complicated

than (1.2). These, and other more general models, are of practical interest, but they are

beyond the scope of this article. We shall also restrict attention to the balanced case

nj � n; that is, we shall assume the same number n of students are selected per school.

By substituting (1.2) into (1.3), we get the models considered in this article in their

combined form:

yij � g0 �
Xp

h�1

ghxhij � u0j � rij for i � 1;¼; n: �1:4�

Having the full model in one equation is technically convenient, although the separate

equations (1.3) and (1.2) are often easier to interpret.

In the next section we discuss some recent research related to ours. In Section 3,

the sample design and cost function are described. We review traditional sample size
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determination from the viewpoint of the survey sampler in Section 4. In Section 5, the

analytical results on sample sizes are developed. A ®nal comment is provided in the

last section.

2. Some Recent Related Work

There is a large and growing literature on hierarchical linear models. The bulk of this

literature emphasizes estimation and interpretation rather than sample design questions.

There are three recent papers, though, that are particularly pertinent so they will be sum-

marized in this section.

The work of Snijders and Bosker (1993) is the most similar to this article, especially to

our Subsection 5.2. They used asymptotic approximations, supported by simulations, to

get formulas for the covariance matrix of the estimators of the regression coef®cients.

They showed how to use these formulas to derive approximately optimal sample sizes

by searching among possible within-school sample sizes, holding costs constant. Their

cost function is equivalent to the one used in this article.

Afshartous (1995) performed an interesting empirical study based on subsampling

schools (and hence, indirectly, students) from the base year data of the National Educa-

tional Longitudinal Study of 1988, a survey of U.S. eighth graders by the National Center

for Education Statistics. He was interested in determining the minimum number of schools

one can have in the sample and still get ``good'' (according to various criteria, e.g.,

unbiasedness, stability) estimates. He found that for estimates of variance components,

320 schools are needed whereas to estimate regression coef®cients as few as 40 schools

may suf®ce.

Mok (1995), in a very thorough study, investigated samples of students of a ®xed size as

the number of schools and number of students per school vary. Like Afshartous, Mok

derived her samples from a real educational dataset, using data on a population of students

at 50 New South Wales Catholic schools collected by M. Flynn. She considered a wide

variety of estimators, including regression coef®cients, variances, and covariances. She

found that designs using more schools and fewer students per school are generally less

biased and more ef®cient than ones with fewer schools and more students per school,

holding the total sample size constant.

The constraint considered by Mok, a ®xed number of students, is equivalent to the spe-

cial case Cs � 0 and, say, Ck � 1 in the cost function that will be introduced in the next

section and employed thereafter to evaluate sample designs.

The empirical evaluations of Afshartous and Mok are complementary to the analytical

approach adopted in this article.

3. Simple Two-Stage Design with a Simple Cost Function

In order to gain insight into the problem, we restrict our attention to a simple two-stage

sampling design with a simple cost function. We select m schools, and from each of the

m schools, we select n students (a balanced sample design). It costs Cs to include a school

in the sample and an additional Ck for each student (``kid'') sampled at the school. We

wish to hold total sampling costs to our budgeted amount C where

C � Csm � Ckmn
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We refer to the ®rst stage units as schools and the second stage units as students

throughout this article in order to avoid cumbersome terminology. Of course, the results

apply much more broadly (for example, to beds within hospitals or to books within

libraries).

In reality we would almost certainly select the schools by a strati®ed design. Additional

levels (e.g., school districts, classrooms) are possible. Unequal probability sampling might

be used at any level. Our assumption of a balanced sample design (same number of stu-

dents from each school) would almost certainly not hold exactly, but we do not expect

that our results are very sensitive to this assumption, provided that the design is not too

unbalanced.

4. Traditional Sample Size Determination

Hansen, Hurwitz, and Madow (1953, pp. 172±173) have developed the formula for the

optimal size n for the number of students to sample from each school. It applies to estimat-

ing means, totals, and ratios and minimizes the sampling variance of the estimator for a

®xed total cost. A simple approximate version of the formula is as follows:

nopt 8

���������������������
Cs

Ck

´
1 ÿ r

r

s
�4:1�

where r is the measure of homogeneity, also called the intraclass (intra-school in our

example) correlation coef®cient. The number of schools sampled is then

mopt �
C

Cs � Cknopt

Under the HLM model, we have

r �
t2

j2 � t2

where j2 is the student-level variance and t2 is the school-level variance. It will also

be convenient to work with the variance ratio q de®ned by q � t2=j2. In terms of the

variance ratio, (4.1) becomes

nopt 8

�������������
Cs

Ck

´
1

q

s
�4:2�

so that the optimal number of students to sample from each school in the traditional setting

varies inversely with the square root of the variance ratio q.

It is perhaps worth mentioning that we are interested in ®nding the optimal values of n

and m, not with the notion that they should be adhered to exactly, but rather with the idea

that they can serve as a guide in survey planning.

5. Sample Size Determination for Hierarchical Linear Modelling

In analyzing HLM models, it is important to be able to estimate not only the regression

coef®cients but also the school-level and student-level variances (t2 and j2) because these
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quantities are of substantive interest. In this section, we ®rst explore the sample size impli-

cations of needing to estimate t2 and j2. We then study, for a simple special case, the

corresponding problem for the regression coef®cients.

5.1. The student-level and school-level variances

Longford (1993, p. 58) shows that the maximum likelihood estimates of t2 and j2 have

asymptotic variances

var�Ãj2
� �

2j4

mn ÿ m
�5:1�

and

var�Ãt2
� �

2j4

mn

1

n ÿ 1
� 2q � nq2

� �
�5:2�

as the number of schools m grows large. As before, q � t2=j2 denotes the variance ratio.

We aim to minimize these variances subject to the cost constraint of Section 3:

C � Csm � Ckmn where C is the total allowable cost, Cs is the cost of sampling each

school, and Ck is the additional cost of sampling each student. But then m �

C=�Cs � Ckn� so that m can be eliminated from the Equations (5.1) and (5.2).

For ®xed values of C, Cs, Ck, j2, and q (the latter two would have to be estimated from

previous data), it is relatively easy to ®nd the values of n and m that minimize var�Ãj2
�

or var�Ãt2
� with m � C=�Cs � Ckn�. We merely evaluate the variance equations for all

reasonable values of n. This can be done very quickly on a computer. But the result

does not convey an understanding of how the sample should be apportioned as the differ-

ent parameters vary. We therefore seek analytical solutions.

Let us consider var�Ãj2
� ®rst. Although (5.1) is minimized subject to the cost constraint

by taking n (students per school) as large as possible, in fact, var�Ãj2
� is relatively ¯at

even for moderate n. It is (5.2), again subject to the cost constraint, that is the critical

one to minimize.

The expression for minimizing var�Ãt2
� with m � C=�Cs � Ckn� reduces to solving a

fourth degree polynomial in n. We have obtained the solution, but the expression is

too cumbersome to be of any practical use. We can, however, study the closely related

expression

var�Ãt2
� 8

2j4

mn

1

n
� 2q � nq2

� �
�5:3�

where we have replaced n ÿ 1 by n in the denominator of the ®rst term. We have made

informal numerical comparisons of (5.2) and (5.3) and found, in our experience, that

the best values of n are usually the same and, if not, almost always within one for the

two equations. Figure 1 graphs both curves for the example in which j2
� 1, q � :2,

C � 10; 000, Cs � 30, and Ck � 1. Figure 2 treats the same example except that q varies

from .04 to 2 in increments of .04. This ®gure shows the percentage increase in (5.2) if the

value of n that minimizes (5.3) is used instead of the one that minimizes (5.2). The per-

centage increases for this example are frequently 0 and always small. The only examples

of large percentage increases that the author has observed occur when the n that minimizes
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(5.3) is 4 or less. When n is large, (5.2) and (5.3) must be close. It turns out, by the way,

that (5.3) is the correct asymptotic expression for var�Ãt2
� when j2 is known (cf. Longford

1993, p. 59).

The solution to (5.3), subject to C � Csm � Ckmn, is

nopt �

������������������������������
Ck�Ck � 8Csq�

p
� Ck

2Ckq

�
1

2q
�

������������������������������
2

Cs

Ck

´
1

q
�

1

4q2

s
�5:4�

In particular, comparing (5.4) with the traditional case of (4.2), we see from the ®rst term

under the square root sign in (5.4) that nopt will be at least
���
2

p
times as large as it is for

(4.2). If 1=q is large relative to Cs=Ck, the difference is even more marked. Suppose,

say, Cs=Ck � 30. Then for q � 1, nopt � 5 in (4.2) and nopt � 8 in (5.4). For q � 0:05,

nopt � 24 in (4.2) and nopt � 46 in (5.4). So estimation of t2 requires a larger sample of

students within each school (and hence fewer schools) for a ®xed cost than does estimation

of traditional quantities (means, totals, ratios).

5.2. The regression coef®cients

It is also, of course, important to be able to estimate the regression coef®cients themselves.

We denote the vector of regression coef®cients by g, the design matrix by X, and the vec-

tor of outcomes by y. To illustrate the notation, consider the case where we have two

students selected from each of a sample of two schools. If p � 2 in (1.4), that is, if there

are two independent variables, then g � �g0;g1;g2�
Á where Á denotes transpose. In this
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case, moreover,

X �

1 x111 x211

1 x121 x221

1 x112 x212

1 x122 x222

0BB@
1CCA

and y � �y11; y21; y12; y22�
Á.

The maximum likelihood estimator of g as in (1.4) and its covariance matrix are given

by

Ãg � �XÁVÿ1X�
ÿ1XÁVÿ1y and

cov� Ãg� � �XÁVÿ1X�
ÿ1

(Longford 1993, p. 54), where V is a matrix of the form

V �

t2Jn

t2Jn 0

. .
.

0 t2Jn

t2Jn

0BBBBB@

1CCCCCA� j2Imn

We are using Id to denote the d ´ d identity matrix and Jd to denote the d ´ d matrix of all

1's. So V is a block diagonal matrix with entries of t2
� j2 on the main diagonal, entries of

t2 in the blocks but off the main diagonal, and 0's elsewhere. Note, in particular, that

for t2
� 0, V reduces to j2Imn, and the maximum likelihood estimator Ãg reduces to the

familiar ordinary least squares estimator Äg � �XÁX�
ÿ1XÁy.

Investigating the properties of the estimators of the regression coef®cients is made
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dif®cult by the dependence on the design matrix X. We will only consider here a very sim-

ple design for a very balanced situation. We will let the ®rst column of X be all 1's; this

corresponds to estimating an intercept term in g. The second column of X will be a

student-level indicator (``dummy'') variable, and the third column will be a school-level

indicator variable. We assume the student-level indicator variable is balanced within a

school and that the school-level indicator is balanced overall. This design is illustrated

in (5.5) for the case of n � 6 students sampled per school and m � 2 schools sampled

(but we are really interested in large m).

X �

1 0 0

1 1 0

1 0 0

1 1 0

1 0 0

1 1 0

1 0 1

1 1 1

1 0 1

1 1 1

1 0 1

1 1 1

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

9>>>>>>=>>>>>>;
school 1

9>>>>>>=>>>>>>;
school 2

�5:5�

When m and n are both even, an explicit expression can be derived for the matrix

cov� Ãg� � �XÁVX�
ÿ1 in terms of j2, q, m, and n:

j2
�2nq�3�

mn
ÿ 2j2

mn
ÿ 2j2

�nq�1�
mn

ÿ 2j2

mn
4j2

mn
0

ÿ 2j2
�nq�1�
mn

0 4j2
�nq�1�
mn

0BBBB@
1CCCCA

Let us minimize var�g0� �
j2
�2nq�3�

mn
, var�g1� �

4j2

mn
, and var�g2� �

4j2
�nq�1�
mn

subject to the

simple cost constraint C � Csm � Ckmn. The results are

nopt;0 �

����������������
3

2

Cs

Ck

´
1

q

s

nopt;1 �
C ÿ Cs

Ck

and

nopt;2 �

�������������
Cs

Ck

´
1

q

s
respectively:

The nopt;2 value is the same and the nopt;0 value is similar to that obtained in the traditional

case (4.2). The nopt;1 value is equivalent to mopt;1 � 1; we should only sample one school

(were this practical) if we only want to estimate g1. The variance of g1, though, will be

small in comparison to the variance of g0 or g2 for any reasonable design (no n in the

numerator of the variance expression) so other considerations are more important. It is

noteworthy that nopt;0 �
�������
3=2

p
nopt;2 regardless of the costs. To settle on a single value

for nopt, one might consider minimizing avar�g0� � bvar�g2� for some a $ 0, b $ 0,
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a � b > 0, subject to C � Csm � Ckmn. The solution is

nopt;a;b �

���������������������������������
3a � 4b

2a � 4b
´

Cs

Ck

´
1

q

s
In particular, if the two variances are weighted equally so that a � b, we have

nopt;1;1 �

����������������
7

6

Cs

Ck

´
1

q

s
The author has informally explored some more complicated and less balanced cases,

and the results were qualitatively like those given above. The variance of g1 may depend

on q (hence t2) but, in the cases looked at, does so in a bounded way.

It should be mentioned that the mathematical software DeriveÒ, which does symbolic

calculations, was employed heavily in doing these computations.

It seems that traditional sample designs may do very well in enabling us to estimate the

regression coef®cients. In analyses where it is important to estimate also the variance com-

ponents, t2 in particular, one must instead sample more students per school (and fewer

schools) as we saw in the previous subsection.

6. Final Comment

As hierarchical models become more widely used by researchers analyzing survey data,

the need grows for survey design statisticians to understand the implications of such

use for good survey design. This article, along with Snijders and Bosker (1993),

Afshartous (1995), and Mok (1995), marks the beginning of an effort to develop such

an understanding. But we have scarcely scratched the surface. Opportunities abound for

further research on this topic.
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