
Discussion
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1. Introduction

Bjørnstad’s article is a welcome contribution to the discussion on multiple imputation

(MI) in survey estimation that is rarely used by national statistical institutes (NSI), as

observed from for instance my own small-scale survey (Laaksonen, 2005). This survey,

however, shows that MI methodology has been under discussion and investigation at some

NSIs and, consequently, may actually be exploited some day. However, the big question is

how to use it. I think that technical aspects are no longer its main obstacle in the sense that

standard sample survey data files can be handled without problems with new computers,

and even be reproduced several times by imputing. This obstacle was often mentioned in a

discussion in the Journal of the American Statistical Association in 1996 (see Rubin, 1996

and its discussion). This will continue to be a problem with very large files.

However, MI is not a general tool for handling missing data as Rubin would hope. I have

understood especially from discussions on the web that MI is most popular among

biometricists, but they focus on multivariate data analysis, not on estimating means, totals

and other statistics. Are NSIs more conservative, or are there some other reasons behind

this nonuse of MI? I argue that the main reasons lie in the difficulties of using MI well.

This is not only due to MI itself but also, and more importantly, to the fact that NSI data

files are complex and not well suited as current tools for MI. I am not here saying that MI is

to blame, but the main reason is that, on the whole, it is difficult to find any good

imputation method for many practical situations.

It should be noted that MI is not (as it is often understood to be) a specific imputation

method, but just an option for variance estimation, as Bjørnstad also points out. This, thus,

means that before repeating imputations and creating several datasets, one has to

concentrate on single imputation (SI) and hope to succeed in the best way at this stage.

This fact, unfortunately, has often been forgotten by MI contributors. At the next stage, a

good strategy should be found for repeating SIs so that variance estimates could be

estimated as correctly as possible. At this stage, SI needs to be extended with a stochastic

solution. This MI strategy does not work with many NSI data at all. In many practical

situations it is best to only use a deterministic method and, hence, exclude MI (but still try

to estimate the variances correctly). It is also difficult for me to encourage the application
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of MI in cases where sampling weights are equal to one, or small, as often occurs in

business surveys, in particular.

As Bjørnstad points out, the core question in imputations is, to use Rubin’s term,

requiring the method to be “proper.” This term is nice and illustrative, and in his book from

1987 and later on in several articles Rubin (1987) explains what it means. However, the

“properness” requirements have been presented at quite a general level and it is not easy to

see how they should be interpreted in practice. To me, imputation is proper if the

missingness due to nonresponse and other things is traced back as well as possible from the

point of view of each estimation task. This requirement also naturally concerns variation.

Bjørnstad gives a more general interpretation, saying that imputations should be random

draws from a posterior distribution when exploiting a Bayesian framework. Next, he

concludes that the methods NSIs use for imputing for nonresponse very seldom, if ever,

satisfy the requirement of being “proper.” This is not explicitly proven in his article, but in

my opinion this argument is correct also outside NSI data files (see e.g., the discussion

relating to Rubin 1996, Fay 1996, and Rao 1996).

Thus, imputation results will obviously be improving as imputation strategies approach

“properness,” whatever this term means. At the same time, the quality of point estimates

will improve, too. As already mentioned, the first key requirement for good point estimates

is success in SI. If several SIs have been performed, the main advantage of MI will be in

the robustness of these point estimates, since some uncertainty will be reduced. However,

this advantage is not expected to be substantial for simple point estimates such as averages

and totals. Instead, certain quantile estimates for continuous variables could be more

robust and reliable when using MI. (This comment is based on my experiment for

estimating the poverty rate of Finland in the early 1990s (Laaksonen 1992). Poor

households responded worse in this particular survey but I was able to use register data to

impute disposable incomes for unit nonrespondents. My MI corresponds to Fay’s (1996)

“fractionally weighted imputation.” This technique was considered the best for estimating

the number of poor households, but this was not the case in general.

Properness is even more important for interval estimation. Rubin’s well-known formula

includes the two terms, which I here call the within-imputation-variance and the between-

imputation-variance. Both of these should naturally be based on best possible estimates

using m completed datasets. Bjørnstad’s basic point is to present an alternative approach to

the calculation of the second term. He says that this result does not require any Bayesian

framework and his formula is also in his opinion more applicable for NSIs. Bjørnstad

develops formulas for different imputation strategies but the basic feature of each formula

is essentially the same as that of the next. His coefficient for the between-imputation-

variance is of type (k þ 1=m) in which k is the inverse of the response rate, whereas in

Rubin’s formula, k is fixed to be equal to one.

Unless the between-imputation-variance is equal to zero, the new formula increases the

variance estimate while the missingness rate increases. Respectively, the standard error

and the confidence interval will be larger. Moreover, the imputations do not need to follow

any Bayesian rule as would be the case if k ¼ 1. It is not easy to act as an adjudicator

between these two parties, since both results are conditional on many things. As already

discussed, the big question is how to make imputations properly concerning both SI and

MI. Further I suppose that Bjørnstad’s approach also requires strict rules for performing
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his imputations so that the requirements of his approach will be met ideally. He does not

discuss this question much, although his examples shed some light on it. I, thus, suggest

that he should determine how to make imputations “correctly” (if not “properly”) when

using his non-Bayesian framework. I will come back to these substantial questions in

Section 3 after presenting some empirical tests in the next section.

2. Proper or Improper Imputations for Two NSI Datasets

The title of this section stems from my problem in ascertaining whether a certain

imputation strategy is “proper” or not. I hope that having seen the results from the

following two patterns of examples the reader will be able to answer this question. The

variable being imputed is simple and binary in the first pattern, whereas it is quite complex

and continuous in the second. However, both examples are complex from the point of view

of their missingness mechanisms. Awkwardly, the auxiliary variables are by no means

ideal, as unfortunately is usually the case with the data of NSIs and other survey institutes.

This means that it is difficult to develop “proper” adjustment strategies. In the first

example this succeeds slightly better. I show results from several imputation approaches

and from some weighting adjustments in order to illustrate the results in a broader

perspective. The methods and results of these experiments are presented in the following

two subsections.

2.1. Binary Variable

Laaksonen and Chambers (2006) performed survey estimates based on several methods in

a fairly simple follow-up situation. In the first phase of the survey, the response rate was

about 67 per cent. Hence the follow-up of the nonrespondents was carried out based on a

40 per cent simple random sample. Due to the great efforts made in this survey, full

responses were received to the simple question irrespective of whether the particular units

(businesses) were innovative or not. The same question was, of course, included in the

actual survey.

The dataset gave several options for both point and interval estimation. In all cases, the

responses of the second phase of the survey were exploited as auxiliary information. In the

original article, two main strategies were used, weighting adjustments and the prediction

approach. The weighting adjustments were performed in two ways, both with respondents

of the first phase, but with different auxiliary data. This covered the first and second phase

respondents in the first approach, but the whole initial sample in the second. The latter

approach required imputation of missing values for 60 per cent of the first phase

nonrespondents. These same imputed values were also exploited in the prediction

approach. For this article, I performed these imputations eight times, and on each occasion

the data for MI-based estimations were available.

Our imputation strategy was simply to borrow each imputed value from a respondent of

the second phase sample. This was done using a random draw with replacement (often

called random hot-decking, but I do not like this term). The method corresponds to the

strategy of the first example of Bjørnstad. Since all the draws in MIs are conducted

independently of each other, I assume that the strategy is “proper” from both the Bayesian

and the non-Bayesian point of view.
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Our weighting strategy was based on two steps: response probabilities were calculated

first and rescaling was performed next so that the margins were correct. The variance

estimation formula of this approach includes two additive terms. The first term is

analogous to the relevant sampling variance but is based on adjusted weights. The second

term shows specifically the impact of missingness and this thus increases with the

missingness rate. It is analogous to the second term of the Bjørnstad formula and also

resembles the variance formula of mean imputation. For details of all these formulas and

the data see Laaksonen and Chambers (2006).

This experiment was not real although efforts were made to make it as close to real life

as possible. Consequently, we used simulations in our analysis. Hence, we were able to

compare the results from different aspects but I will here only take a close look at the

variance estimates. It should be noted, however, that the point estimates were fairly correct

with all these strategies although not complete. The variance estimates varied more,

although not dramatically. The largest variances (around 6,000) were obtained using the

prediction approach and the imputation-based weighting approach. The first weighting

approach gave a slightly lower value (5,700) than might have been considered logical

since uncertainty due to imputations was absent. Both Bjørnstad’s formula (5,800) and

Rubin’s formula (5,400) generate logically lower values than the corresponding SI

methods. How much lower should these variances be? The value from the Rubin formula

could be considered too low but I am not sure about this conclusion. The 95 per cent

confidence interval coverage of this method is just below 95, whereas for Bjørnstad it is

just above 95. All other methods give somewhat conservative estimates, the coverage

varying from 95.2 to 96.3.

2.2. Continuous Variable

Wages and incomes and their many components are typical NSI variables. Missing values

often very awkwardly violate estimates based on these variables. I was here able to use the

income data of the Euredit project (Charlton 2003). Some missingness was found within

the data set, but afterwards we had the opportunity to compare these estimates against

those computed from the cleaned, “true” data.

The dataset of this experiment is very large; almost 200,000 persons after omitting

persons with zero incomes. The relevant missingness rate was about 27 per cent. It was

known that the missingness mechanism could not be ignored but the file contained a

number of potential auxiliary variables for adjustment attempts. The problem was that,

except for age, all these variables were categorical (such as gender, level of education,

marital status, region, and employment status) and not well-related to incomes at the

individual level (but much better at aggregate levels). This did not allow the construction

of a well-fitting adjustment model. In terms of R-square, the maximum values were around

40 per cent. The fitting difficulty is a good thing here since it will encourage the

development of a strategy for “proper” imputation or for another good adjustment (see also

the results from the Euredit project in which a number of SI methods were tested without

any magnificent success).

I performed three different imputations using this dataset. One was based on the

SAS procedure for MI (lately referred to as “Proc MI Method” and also as “SAS”). In this
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approach I used the same imputation model as with my second method. So, the variable

being imputed was the dependent variable of the general linear model. The auxiliary

variables were used maximally (as e.g., Rubin 1996 proposes) and exactly identically in all

of the three imputation models, thus including the third model as well. However, the

dependent variable of the third model was the binary missingness indicator. Consequently,

this model was estimated using logistic regression.

The “Proc MI Method” is fairly automatic and finds the imputed values when certain

rules have been inserted into the procedure. I did not concern myself with how the SAS

really produces the results. I was more like an ordinary user. However, I calculated the

variance estimations myself from the multiply imputed datasets so that both Rubin’s

formula and Bjørnstad’s formula were used and results calculated for both.

In the second method, having first estimated the multivariate general linear model

(GLM) I then calculated the predicted values plus the noise terms first and then used these

metrics when searching for the nearest neighbour for each person with missing income

data. The noise term was calculated using truncated, normally distributed random numbers

with the zero as mean and with residual variance (see details of this approach in Laaksonen

2003, Euredit 2004 and Laaksonen 2005, also known as IMAI, which is short for

Integrated Modelling Approach to Imputation). This IMAI strategy gives an easy

opportunity to perform MIs, hoping that each SI also gives quite good point estimates.

I suppose the method is fairly “proper” in all senses but further research is still needed.

The third example is analogous to the second one (belongs to the IMAI framework as

well, and is referred to as “Logit”) so that each imputed value has been taken from a

nearest donor without missingness and the metrics are based on the predicted values plus

the noise term of the imputation model. Since these values are now probabilities, it is not

automatically clear how the random noise should be performed. I deduced that it would be

good to find each donor at random from the neighbourhood of a unit with missingness.

This was made possible by adding to each deterministic probability a random number that

was drawn from a uniform distribution of the interval (25%, þ 5%). I know that this is a

slightly heuristic method like some other methods in the MI literature (see e.g., the

strategy of the Solas software where estimated response probabilities are used to form a

certain number of imputation cells and the donor is drawn randomly within each such cell).

Apart from the above selections for SIs and MIs it is not automatically clear how each

model should be specified. An advantage of the third approach is that the response variable

is simple and needs no transformation. By contrast, the income variable is not as simple as

this due to its skew distribution. The usual way in subject-matter research is to use its

logarithm. This was attempted here, too, and it worked quite well with the second method.

For a reason I do not know, this did not work with the first method when the average was

estimated. Instead, it worked better for estimating the coefficient of variation (CV) that

measures income differences. In the case of the second method, both models, linear and

logarithmic, worked quite well for the average and the CV. The third method also gave

reasonable point estimates (although, as usual in my experience, the general tendency was

that the bias would not be reduced completely, and only a value approaching the true one

would be obtained).

Nevertheless, I did not use logarithms in any of the imputation models, since this

strategy was not working well in the case of the CVs of the first method. Thus, although
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I am not happy with all point estimates derived with the “Proc MI method,” I considered it

fair to concentrate on the results in which all point estimates (concerning e.g., average

income) are reasonable and compare the variance estimates with each other.

For empirical tests I wanted to have different sizes of datasets. This could be easily

achieved by trimming an initial dataset randomly. Likewise, I wanted to see what effects

larger missingness would have. For this test, the trimming was performed to the 50 per

cent response rate.

As far as repeated SIs are concerned, the MI literature often states that a reasonable

number could be in the range from five to seven. I first chose eight imputations for

each experiment, but since some of the results were not at all logical, I extended this

number to 16. The results in Table 1 are based on this number although I am still not

completely satisfied with them. Altogether the table includes 3 £ 2 £ 2 £ 7 ¼ 84

experiments presented as standard errors, since these are smaller and more illustrative

than variances.

Table 1 allows a number of interpretations. We observe, for example, that the

standard error is not always larger when the missingness is larger, as it logically should

be (these discrepancies are in italics). This problem is especially present in small

sample sizes with the “Proc MI method” (more imputations than 16 might have

helped). The obvious reason for this too small variation in the remaining sample is that

the method does not work properly. A more detailed look shows that the between-

imputation-variance is particularly small when the nonmissingness is 73 per cent of

these samples and, consequently, the difference between Rubin’s method and

Bjørnstad’s method is not significant. In general, these two alternatives give a different

picture of the imputation uncertainty.

In most cases, the “Proc MI method” gives the lowest standard errors, except for the full

sample of 200,000 units, where all standard errors of this sort are relatively large, and

those based on the Bjørnstad formula are naturally the largest. This is difficult to interpret

but again illustrates that the properness of this automated method is problematic. The

standard errors of my two methods, GLM and Logit, are fairly logical, the largest ones

resulting from the Logit-based nearest neighbour methods. For this method the standard

error between the two nonmissingness rates is also the largest. The same concerned

adjustments from Rubin’s formula to Bjørnstad’s formula.

The overall interpretation of Table 1 is that it is difficult to find an imputation method

that could be viewed as “proper,” especially when the sample size is small and the

missingess is large. The automated software does not give any guarantee for such a

success. In this exercise, I was not able to make simulations and, consequently, get any

ideal benchmark. Fortunately, the dataset gives the option to adopt an alternative

perspective, that is, to construct reweights for the data and perform corresponding

estimates using these.

I thus created adjusted weights following the same methodology as in the case of the

binary variable experiment (Laaksonen and Chambers 2006). The adjustment model was

in this case exactly the same as in the third imputation method of this subsection but,

naturally, the estimated response probabilities are now used without any noise term, and

only for the respondents. Table 2 presents the analogous results with the imputations of

Table 1. In addition to the overall standard errors, I include in the table its first component
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Table 1. Estimated standard errors for average income based on three different multiple imputations for seven different gross sample sizes and two nonmissingness rates. Notation:

SAS denotes the first method (Proc MI), GLM the second and Logit the third; R denotes Rubin’s, B denotes Bjørnstad’s formula

Sample size MI methods

R-SAS B-SAS R-GLM B-GLM R-Logit B-Logit

73% 50% 73% 50% 73% 50% 73% 50% 73% 50% 73% 50%

3,000 1,952 1,791 1,955 1,830 2,367 2,351 2,447 2,574 2,405 2,814 2,496 3,370
5,000 1,536 1,372 1,539 1,398 1,840 2,034 1,899 2,363 2,140 2,724 2,280 3,472
10,000 1,105 1,045 1,113 1,069 1,233 1,355 1,252 1,479 1,426 1,951 1,497 2,434
20,000 801 769 813 826 937 1,011 973 1,155 900 1,255 924 1,546
50,000 537 516 552 568 570 750 612 916 614 651 687 759
100,000 403 458 417 509 401 443 429 501 459 518 499 628
200,000 390 375 424 455 287 336 308 394 287 327 299 381
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and the simple random-based standard errors in order to gain a wider perspective for

comparing the results with those presented in Table 1.

First, it is important to note that the point estimates using these reweights were very

accurate, both in respect of averages and of CVs. This method can thus be considered to be

very reliable. Interestingly, the standard errors of the full formula (Columns 2 and 3 of the

table) are always much larger than those from any comparable MI experiment.

Furthermore, even if the incomplete formula (the second column) has been used, which is

often the case in practice, the standard errors are still large, compared to MI-based ones.

Finally, the SRS-based sampling errors are also quite large. Thus, this would appear to

provide some evidence of the superiority of a good MI method if the only criterion was the

estimated standard error, but I do not draw this conclusion. Instead, this is another new

drawback of the SAS MI method, especially in the case of small sample sizes. On the other

hand, these results are more favourable for Bjørnstad than for Rubin.

3. Further Comments

What have we learned thus far from my experiments and Bjørnstad’s article? The experiments

lend some support to the argument that Bjørnstad’s formula is safer, since it generates a larger

standard error (and confidence interval). In some cases, when the between-imputation-

variance is small, this formula does not help much, although the imputation model was badly

fitting. This illogical result could be interpreted as a clear indication of the improperness of

such an imputation method. Fortunately, the between-imputation-variance is more significant

in most MI experiments and, consequently, the effect of the Bjørnstad formula is more

essential. In these cases, the imputation method could be considered as the more proper one

but I cannot, nevertheless, be convinced about the properness of these methods either. This

annoyance is usual when handling NSI data.

In my view, Bjørnstad is right in his key conclusions but, as he says, this topic requires

further research. I would like to see imputation research concentrate on the properness of

imputation, and more practically than what has been the case up to now. This remains a big

problem both for Bayesians and for non-Bayesians.

Table 2. Estimated standard errors for average income based on the weighting of seven different gross sample

sizes and two nonmissingness rates

Sample size Based on both
variance terms

Based on the
first term only

Assuming simple
random sampling
(SRS)

73% 50% 73% 50% 73% 50%

3,000 4,480 5,627 3,964 4,536 2,500 3,012
5,000 3,296 4,086 2,894 3,196 1,945 2,301
10,000 2,310 2,960 2,033 2,318 1,380 1,727
20,000 1,594 2,047 1,389 1,580 976 1,194
50,000 992 1,298 862 1,005 616 744
100,000 698 925 606 716 435 520
200,000 496 651 430 506 308 367
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