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Classical rules for optimal one-way stratification, such as the Dalenius and Hodges rule, are
applied under the assumption that a single stratification variable is to be used. In this article,
we consider an information setting in which a set of candidate stratification variables is
available and a proxy of the target variable (or the target variable itself) is known for a random
sample of units from the population. Under these assumptions, we propose various extensions
of the Dalenius and Hodges rule based either on linear prediction or on nonparametric
regression methods. The resulting stratification rules are compared by means of a Monte Carlo
exercise based on a set of pseudo-populations covering a wide range of possible forms of
relationship between the target and the stratification variables. The application of regression
trees as stratification rules, an option that may be intuitively appealing in the considered
information setting, is also discussed.
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1. Introduction

There are several reasons to divide a population U into H strata: practical or administrative

constraints, the need to obtain estimates of known precision for some subpopulations or

because sampling problems are markedly different in different parts of the population.

Stratification may also be used to improve the efficiency of estimators of population

descriptive quantities. In fact, if we assume simple random sampling within each stratum,

we have that for the estimation of, say, the population total ty of a target variable y, the

Horwitz-Thompson estimator associated with stratified sampling ðt̂y;sÞ is much more

efficient than the expansion estimator, whenever variance within strata is small as

compared with variance between strata.

In the simplest case, a univariate auxiliary stratification variable x (known for each unit

in the population) is used, and stratification consists in the definition of an ordered
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sequence of H 2 1 boundary points,

xINF , x1 , x2 , : : : , xH21 , xSUP

which partition the domain of x and hence the N observations of population U into H

groups. General stratification can be based on several auxiliary variables.

Whenever there is some latitude in the definition of strata, that is when stratification is

not driven solely by practical and administrative considerations, and we have a single

target variable y, it is sensible to look for an efficient stratification in terms of Vðt̂y;sÞ: This

problem is known as one-way optimal stratification and has been widely debated in the

literature. In passing, we note that in many situations optimal methods are applied within

subpopulations identified by other stratification criteria such as geographical areas.

A classical theoretical result in the field of optimal one-way stratification, under Neyman

allocation and the assumption of stratification based on the target variable (x ; y), was

worked out by Dalenius (1957; also in Cochran 1977, pp. 128–131). An approximated

method based on the Dalenius result was then introduced by Dalenius and Hodges (1959),

widely known as the cum
ffiffiffi
f

p
rule. An alternative to the Dalenius and Hodges

approximation is given by the Ekman rule (Ekman 1959; Hedlin 2000). The merits of the

two approximations are compared in Cochran (1961), Hess, Sethi, and Balakrishnan

(1966) and Murthy (1967).

Later contributions introduced model-based or model-assisted stratification methods;

they are discussed for instance in Singh (1971), Wright (1983), and Sweet and Sigman

(1995). We note that many works consider the special topic of stratifying highly skewed

populations (Lavallée and Hidiroglou 1988; Sigman and Monsour 1995). Rivest (2002)

proposes stratification algorithms in which the discrepancy between the stratification and

the study variable is accounted for. He proposes different models for the relationship

between y and x but he does not deal with the problem of estimating model parameters and

considers only the case of a single stratification variable. We note that most of these

contributions rely on the assumption (up to an error term with known distribution) that

either (x ; y) or the relationship linking x and y is known.

In practice, none of these assumptions hold, and the optimal stratification will be only

approximated, the quality of the approximation depending on how strongly the selected

stratification variable is correlated with the target variable y or on the adequacy of the

assumption of the relationship between y and x.

We consider the following information setting. Suppose that a matrix XU ¼ {xij; i [ U,

j ¼ 1; : : : ; p} of potential stratification variables is known. Of course the realized values

of the target variable yU ¼ ð y1; : : : ; yNÞ are unknown before the survey is conducted, but

we assume that a proxy y* of the target variable y is observed for a random sample S , U:

that is, y*
s ¼ {y*

i : i [ S} is observed.

This situation may arise for instance in repeated surveys or when data from some pilot

survey on a similar subject are available. In particular, in the case of pilot surveys we have

that yi ¼ y*
i ; i [ S:

In this setting, it is reasonable to use sample data ds ¼ {ðy*
i ; x1i; : : : ; xpiÞ; i [ S} to

select the best stratification variable x or to estimate the relationship between y and the set

of auxiliary variables x ¼ {x1; : : : ; xp}. This latter option is what we deal with in this

article.
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Our basic idea is to predict the values of yi for each unit i in the population using

the information contained in ds and then use this approximated target variable to stratify

the population in an efficient way. Note that “efficient” is used in its informal meaning and

that the stratification methods we propose are not optimal in a strict mathematical sense.

In particular, we will illustrate extensions of the cum
ffiffiffi
f

p
rule, but similar arguments can be

put forward for the Ekman’s or any other rule based on a single stratification variable.

To obtain the predicted values, ŷi i [ U, we consider general regression models and

nonparametric fitting methods that provide flexible tools for obtaining good predictions for

the yis regardless of whether the relationship between y and the auxiliary variables is linear

or nonlinear.

The stratification method we propose is best suited to stratifying populations where

a single variable is assumed as target and a set of auxiliaries with good predictive power

is available despite a possible complex nonlinear relationship between y and x. Moreover,

as far as it is based on the Dalenius and Hodges rule, our method may be not suitable for

the stratification of highly skewed populations such as those arising in business surveys.

More in detail, the article is organized as follows.

In Section 2, we sketch the basic ideas behind the classical Dalenius and Hodges

rule and introduce a simple extension of it, in the information setting just introduced, based

on the linearly predicted values of yi; i [ U; using a linear model fitted on ds. This

stratification method will then be kept as a benchmark against which all other methods

based on nonparametric regression techniques will be tested.

Section 3 is devoted to the discussion of regression trees as a stratification method. In

the discussed information scenario they may in fact be seen as an intuitive and appealing

stratification method, since the output obtained by this nonparametric regression method is

a partition of the predictors’ space into multivariate rectangles which actually represents a

stratification of the population. In Section 4 modifications of the Dalenius and Hodges rule

based on different nonparametric regression methods (Additive Models, Multivariate

Adaptive Regression Splines and Boosting Regression) are introduced, and compared with

the one based on linear prediction.

In Section 5, a simulation exercise that we use for comparisons is outlined. In this

simulation, the relationship between y and x, although nonlinear, is characterized by

homoskedastic residuals. The case of heteroskedastic residuals, considered for instance in

Bethel (1989), may be relevant in many practical situations but is not considered here.

In Section 6, some complementary topics, such as the choice of the number of strata and

sensitivity analysis of boundary determination to the adopted regression methods, are

discussed. A final Section 7 contains some concluding remarks and outlines some

direction for future research.

2. The Dalenius-Hodges Rule and the Proposed Modifications

To solve the one-way optimal stratification problem we have to answer three basic

questions: i) which variable (or set of variables) is the best for defining strata?; ii) how to

define boundaries between strata?; iii) how many strata should there be?

The answer to the first question is clearly the target variable y itself. Since y is not

known for all units in the population before the survey is conducted, a common practical
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alternative is to use an arbitrarily chosen “highly correlated” auxiliary variable x known

for all units in the population.

Many classical theoretical results assume that a single x on which to base the actual

stratification is available. We note that, in most practical situations no single highly

correlated variable can be easily identified, but we have a vector x of candidate

stratification variables, none of which is clearly better than the others in terms of

correlation with y.

As far as the determination of boundaries between strata is concerned, we focus on a

classical method, still widely used: the Dalenius and Hodges rule, known also as the

cum
ffiffiffi
f

p
rule. A description of this method may be found, for instance, in Särndal,

Swensson, and Wretman (1992, pp. 462–464).

As regards the choice of the optimal number of strata, Cochran (1977) points out that in

principle, if the stratification is based on y, the multiplication of strata is beneficial but, if

an auxiliary variable x is used instead, the variance reduction induced by the cum
ffiffiffi
f

p
rule

has a global maximum for a moderate number of strata. We will discuss this topic more in

detail in Sections 5.2 and 6.

The Dalenius and Hodges rule is based on two basic elements: i) an auxiliary variable

x highly correlated with y, that is, a linear approximation of y; ii) the cum
ffiffiffi
f

p
rule.

A useful extension of the rule is as follows. Use the sample information ds to fit the

linear model:

y*
i ¼ aþ xTi bþ ei; i [ U

with EðeijxiÞ ¼ 0; VðeijxiÞ ¼ s2 and use the estimated parameters to predict yi with

ŷi ¼ âþ xTi b̂;i [ U: If necessary apply the ordinary cum
ffiffiffi
f

p
rule to ŷU ¼ ðŷ1; : : : ; ŷNÞ:

We will refer to this stratification method as the Linear Prediction Dalenius-Hodges rule

(LPDH). The idea is used also in Hidiroglou and Laniel (2001), who generalize the

Lavallée and Hidiroglou (1988) algorithm in a similar way.

The assumption of a linear relationship between the stratification and the target variable

is realistic in many cases, but may fail in others. Thus, a natural generalization of the

LPDH rule consists in assuming the more general model

y*
i ¼ gðxiÞ þ ei EðeijxiÞ ¼ 0 VðeijxiÞ ¼ s2 ð2:1Þ

where g is an unknown regression function. This model is to be fitted by some

nonparametric algorithm. Once the predicted values ŷi are obtained by means of ;i [ U;

they can be used for stratification with the cum
ffiffiffi
f

p
rule.

3. Regression Trees as Stratification Tools

Before discussing direct generalizations of the LPDH rule along the lines of Section 2, we

now illustrate the use of regression trees for stratification since they can be a natural and

appealing method for stratifying a population in the informative setting considered in this

article. Moreover, they do not require the application of the cum
ffiffiffi
f

p
rule since their output

is a partition of the predictors’ space that can be straightforwardly used for stratification.

In principle, the use of regression trees has several advantages over the LPDH rule: the

problems of determining the number of strata and the boundaries between them are solved

Journal of Official Statistics38



by the same algorithm; no assumptions are introduced on the type of relation between

y and x, and the definition of boundaries is independent of allocation of the sample units to

the strata. Moreover, strata are given by multidimensional rectangles and are therefore

easy to interpret.

Regression trees are based on the assumption of a general regression model as in (2.1) in

which the regression function g is estimated by means of a multivariate step function:

ĝiðdsÞ ¼
XH
l¼1

�y*
l 1ðxi [ rlÞ i ¼ 1; : : : ; n ð3:1Þ

where the H sets rl are the multivariate regions (i.e., strata) into which the predictors’

space is partitioned by the tree algorithm, �y*
l ¼ jrlj

21

j[rl

P
y*
j and jrlj is the number of

elements in rl.

The estimator ĝ is obtained by a recursive partitioning algorithm introduced by Breiman

et al. (1984, pp. 228–237) in which at each step a group of observations is bi-partitioned in

order to maximise the “between” deviance of the newly created subgroups.

The correct size of the tree is usually determined by bi-partitioning the observations

until a stopping criterion is met (e.g., a lower threshold for the number of observations

in the group to be partitioned). Then the tree is pruned in order to find the optimal tree

in terms of prediction error in the following way. The conditional prediction error for

observation i in fitting model (2.1) can be decomposed as:

Eðy*
i 2 ĝiðxiÞÞ

2 ¼ {gðxiÞ2 E½ĝðxiÞ�}
2 þ E{ĝðxiÞ2 E½ĝðxiÞ�}

2

(see Hastie et al. 2003, par. 7.3), where i [ U; and ĝðxiÞ is the prediction of y*
i based on

(3.1). The first term, the squared bias, measures the average distance between the

approximating and the true regression function and is therefore a measure of accuracy. The

second term is the sampling variance of ĝ: Regression trees are usually characterized by a

sampling variance much larger than the bias (Breiman 1998).

The right-sized tree is identified by means of a pruning rule which can be described as a

tool to balance the trade-off between bias and variance. As a consequence the number of

strata determined by the regression tree is sample dependent.

4. Generalizations of the LPDH Based on Nonparametric Regression Methods

We consider three further methods of fitting (2.1) to sample data ds. These are very popular

in the applied nonparametric literature: Additive regression Models (AM), Multivariate

Adaptive Regression Splines (MARS) and BOOSTed regression trees (BOOST).

We selected these three methods among the many proposed in the literature because they

can be interpreted as generalizations of either the linear model, on which the LPDH rule is

based, or the regression trees discussed in Section 3. The AM generalize the linear additive

models, while MARS and BOOST can both be viewed as methods intended to robustify

and stabilize regression trees.

The predicted values of yi; for all i [ U; will then be used to construct stratification

rules based on the cum
ffiffiffi
f

p
rule. The stratification methods consisting of fitting (2.1)
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followed by application of the cum
ffiffiffi
f

p
rule will be denoted LPDH (defined in Section 2),

AMDH, MARSDH and BOOSTDH.

A detailed description of the nonparametric regression methods AM, MARS and

BOOST is beyond the scope of this article; for an excellent and comprehensive

introduction to them see Hastie et al. (2003, Chapters 9, 10). Let us sketch the basic ideas

underlying the various methods and the chosen options for their implementation.

The AM algorithm approximates a nonlinear relationship by means of a sum of arbitrary

smooth univariate functions. It estimates the regression function g by means of the

following functions:

ĝiðdsÞ ¼ âþ
Xp
j¼1

ĝ*
j ðxijÞ

where i [ S and p is, as before, the number of auxiliary variables. We set the ĝ*
j s to be

estimated cubic splines.

MARS can be viewed as a generalization of stepwise linear regression or a modification

of Regression Trees to improve the performances of these methods. It estimates g by

means of the following functions:

ĝiðdsÞ ¼ âþ
XM
m¼1

ĝmhmðxiÞ

where hmðxiÞ are functions or products of k functions in C, where C is the collection of

piecewise linear basis functions. For further details see Hastie et al. (2003, p. 283). We set

k ¼ 2 and M ¼ 21. The ĝm are estimated regression coefficients.

It is known that MARS automatically accommodates interactions between variables

and variable selection and is well suited to high-dimensional problems (Friedman 1991).

The technique of boosting is one of the most powerful tools introduced in the literature on

nonparametric regression in recent years and it is based on combining results of many

“weak” regression methods (in most cases trees) to create a more powerful predictor.

In particular, boosting M regression trees reduces their potentially large individual

variances. Among the many available boosting algorithms, we consider the gradient

boosting (Friedman 2001). It estimates g by means of the following set of functions:

ĝiðdsÞ ¼
XM
m¼1

b̂mĝimðdsÞ i ¼ 1; : : : ; n

where ĝi1 is a regression tree based prediction as in (3.1) while ĝim ðm $ 2Þ are regression

trees recursively defined in order to minimize the squared sum of the residuals obtained

from regression already calculated. The b̂m are estimated weights designed to optimize

the combination of the M trees in terms of squared prediction error. We set M ¼ 500 and

the number of terminal nodes for each tree to 6.

The settings we selected represent in most cases standard options of popular softwares

packages for the implementation of these methods.
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5. The Simulation Exercise

We compare the LPDH rule with both its generalizations based on regression models (2.1)

and the regression trees, by means of a simulation that can be described by means of the

following steps:

. we generate synthetic populations characterized by different assumptions on the form

of the relationship between y and x;

. we generate also the population values of y*, y*
U ¼ ðy*

1 ; : : : ; y
*
NÞ according to a

predetermined value of y* CorrUðyU ; y
*
UÞ ðCorrUðyU ; y

*
UÞ ¼

N 21

i[U

P
yiy

*
i 2�yU �y

*
Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VU ðyU ÞVU ðy
*
U
Þ

p and

VUð†Þ denotes the descriptive variance in population U);

. R simple random samples of fixed size n are drawn and ds is assumed to be observed

ðs ¼ 1; : : : ;RÞ. This emulates a situation where a sample of values of a proxy

variable y* is available to the survey analyst at the design stage.

The performance measure of each stratification method is the design effect,

Deff ð t̂y;s_M¼mÞ ¼
VDð t̂y;s_M¼mÞ

VDð t̂y;srsÞ
ð5:1Þ

where t̂y;s_M¼m is the stratification estimator of the ty based on stratification method m

and VD denotes the variance with respect to the randomization distribution. Neyman

allocation of the samples to strata (assuming known variances within strata) is

considered.

5.1. Setup

We consider the five synthetic populations discussed in Banks et al. (2003). All

populations are characterized by the general structure yi ¼ gðxiÞ þ ui; i [ U where g :

Rp ! R is a deterministic function and ui is a zero-mean disturbance term. The population

size is set to be moderately large: N ¼ 20; 000: In fact, in many situations efficient

methods are to be applied to the stratification of subpopulations.

More in detail the deterministic components are given by:

. LIN: gðxiÞ ¼ p21
Pp

j¼1 xij
. INDGAU: gðxiÞ ¼ ð2pÞ2p=2ðj:25IjÞ21=2 exp 2 1

2
xTi ð:25IÞ21xi

� �
where I is the p £ p identity matrix;

. CORGAU: gðxiÞ ¼ ð2pÞ2p=2ðj:25AjÞ21=2 exp 2 1
2
xTi ð:25AÞ21xi

� �
where A is a p £ p matrix and such that Aii ¼ 1 and Aij ¼ r1 ¼ 0:8;

. MIXT: gðxiÞ ¼ ð2pÞ2p=2ðj:16IjÞ21=2 exp 2 1
2
xTi ð:16IÞ21xi

� �
þ ð2pÞ2p=2ðj:16IjÞ21=2

exp 2 1
2
ðxi 2 1ÞT ð:16IÞ21ðxi 2 1Þ

� �
where 1 is a p-dimensional vector of ones;

. PROD: gðxiÞ ¼
Yp
j¼1

xij

( )1
p
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The number of auxiliary variables is set to p ¼ 6 and they are all assumed to be uniformly

distributed over the unit interval xUj , Unið0; 1Þ; with xUj being the N £ 1 column vector

with the values of the j-th auxiliary variable. These auxiliary variables are set to be equally

and mildly correlated: CorrUðxUj; xUj 0 Þ ø 0:3 ;j – j0.

They are generated using an algorithm proposed by Fackler (1999). As regards the error

term we set:

VUðuÞ ¼
1 2 r2

2

r2
2

VU{gðXUÞ}

where u ¼ ðu1; : : : ; uNÞ and the vector gðXUÞ ¼ {gðxiÞ; i [ U}

As a consequence, CorrU{yU ; gðXUÞ} ¼ r2. We set this parameter to 0.9.

A plot of ðXU ; gðXUÞÞ for a population generated in that manner is given in Figure 1 for

p ¼ 2. This plot provides an idea of the relationship between yU and XU in the five

populations.

The relationship between y and x in the five populations ranges from exact linearity to

nonlinearity. Marginally, the population densities of y range from the exact symmetry of

population LIN to moderately skewed situations.

To summarize, it is assumed that in each sample, a “proxy” variable y* such that

y* ¼ yþ w is observed, where w is a zero-mean disturbance. The values of w are

generated in order to satisfy the following conditions as almost exactly:

. wU ¼ 0

. VUðwÞ ¼ f22ð1 2 f2ÞVUðyÞ with f ¼ 0:9 so that CorrUðy
*
U ; yUÞ ¼ :9

We note that in the case of pilot surveys y ; y* and CorrUðy
*
U ; yUÞ ¼ 1:

R ¼ 2; 000 independent simple random samples were taken from each synthetic

population.

Fig. 1. Diagrams of ðXU ; gðXU ÞÞ for the simulated population in the case of p ¼ 2
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The simulation is intended to represent a situation where there is good information for

stratification even if no single auxiliary variable has a strong correlation with the target

variable.

5.2. Results

We first compare the LPDH rule and regression trees according to the simulation exercise

described in Section 5.1. In particular we consider two sample sizes: n ¼ 100 and

n ¼ 1; 000.

As regards the number of strata in which the population is to be partitioned, we consider

for both the LPDH rule and the regression tree the number of strata identified by the latter

as a result of the pruning rule.

Tree regressions are computed using the software package R and the library RPART

(Therneau and Atkinson 1997). For pruning, we consider a cost-complexity rule (Breiman

et al. 1984, pp. 66–86) in which bias and variance are estimated by means of a 10-fold

cross-validation algorithm. In particular we adopt the usual “1 standard error” rule

(Breiman et al. 1984, pp. 78–81).

The simulations results are shown in Table 1.

We note that with n ¼ 100; regression trees perform very poorly and are not reasonable

competitors to the LPDH rule. This is a consequence of the fact that in general most

nonparametric methods need large sample sizes to work properly and that regression trees,

in particular, are often characterized by large sampling variance, that is, a small change in

the data can result in a very different set of splits.

With n ¼ 1; 000; trees perform well when the relationship between y and x is

highly nonlinear (CORGAU and MIXT populations); but when this relationship is

linear or nearly so, the LPDH rule is dramatically better. This second fact highlights

one of the drawbacks of regression trees, that is, their difficulty in identifying additive

structures.

Table 1. Stratification based on Regression Trees vs LPDH rule: simulation results averaged over the

R ¼ 2; 000 MC replications (standard deviations within parenthesis). H is the average number of strata over the

replication space

Average Deff

Population Sample size H Regression trees LPDH

LIN 100 4.812 (2.666) 0.645 (0.106) 0.324 (0.141)
INDGAU 100 2.092 (1.547) 0.867 (0.152) 0.764 (0.262)
CORGAU 100 1.172 (0.715) 0.982 (0.053) 0.974 (0.072)
MIXT 100 1.256 (1.030) 0.986 (0.032) 0.987 (0.042)
PROD 100 1.798 (1.313) 0.892 (0.147) 0.831 (0.231)

LIN 1,000 18.572 (4.975) 0.395 (0.023) 0.185 (0.003)
INDGAU 1,000 16.526 (4.192) 0.404 (0.034) 0.227 (0.009)
CORGAU 1,000 10.110 (3.420) 0.486 (0.054) 0.515 (0.018)
MIXT 1,000 20.716 (7.694) 0.605 (0.081) 0.745 (0.167)
PROD 1,000 15.238 (4.585) 0.427 (0.043) 0.232 (0.029)
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Moreover, with few exceptions, the trees tend to identify “too many” strata and the

number of strata they identify is quite unstable. We say “too many” meaning that they are

far more than the number of strata widely recognized in the literature as optimal (see also

Section 6).

We also ran the simulation with sample sizes larger than 1,000 (up to n ¼ 5; 000).

The results in terms of (5.1) are not very different from the case of n ¼ 1; 000; moreover

the number of strata identified by regression trees grows to unacceptably large values.

To save space, the results are not reported here.

Our general aim is to find a stratification method that, at least for large samples, is as

effective as the LPDH rule in the linear case and better when the relationship between y

and x is nonlinear. In this sense the regression trees fail, even though they can still be used

and be effective in particular circumstances.

In the generalization of the LPDH rule we do not have any automatic method for

determining the optimal number of strata. In comparing the performances of the three

nonparametric regression methods we present results for different values of H

(H ¼ 3; 6; 12).

The reason for this choice can be indicated by considering that when Model (2.1) holds

and g is a known linear function, little reduction in variance is to be expected beyond

H ¼ 6 (Cochran 1977 p. 132). We also consider the case H ¼ 12 in order to verify whether

this holds when in Model (2.1) g is nonlinear (see also Section 6).

For the estimation we used the packages mgcv, mda and gbm which have been

implemented in R. They are freely available on http://cran.r-project.org

The results of the simulation exercise are shown in Tables 2 and 3.

Table 2. Stratification based on nonparametric regression methods vs LPDH rule: simulation results for

n ¼ 100 averaged over the R ¼ 2; 000 replications (standard deviations within parenthesis; results for the best

stratification method are bold)

Average Deff

H Population LPDH AMDH MARSDH BOOSTDH

3 LIN 0.334 (0.012) 0.375 (0.037) 0.469 (0.051) 0.401 (0.028)
3 INDGAU 0.467 (0.014) 0.513 (0.054) 0.501 (0.062) 0.508 (0.033)
3 CORGAU 0.719 (0.025) 0.819 (0.077) 0.721 (0.077) 0.731 (0.046)
3 MIXT 0.882 (0.085) 0.785 (0.067) 0.638 (0.071) 0.867 (0.054)
3 PROD 0.515 (0.013) 0.532 (0.049) 0.516 (0.063) 0.552 (0.039)

6 LIN 0.247 (0.014) 0.296 (0.045) 0.401 (0.052) 0.326 (0.031)
6 INDGAU 0.333 (0.028) 0.433 (0.061) 0.438 (0.063) 0.398 (0.046)
6 CORGAU 0.639 (0.052) 0.784 (0.095) 0.682 (0.083) 0.637 (0.065)
6 MIXT 0.802 (0.157) 0.747 (0.072) 0.587 (0.083) 0.754 (0.080)
6 PROD 0.363 (0.030) 0.449 (0.072) 0.454 (0.068) 0.436 (0.049)

12 LIN 0.221 (0.013) 0.271 (0.044) 0.382 (0.055) 0.298 (0.027)
12 INDGAU 0.290 (0.030) 0.407 (0.068) 0.414 (0.062) 0.354 (0.048)
12 CORGAU 0.606 (0.059) 0.771 (0.099) 0.657 (0.083) 0.586 (0.067)
12 MIXT 0.785 (0.166) 0.734 (0.083) 0.572 (0.085) 0.693 (0.078)
12 PROD 0.306 (0.041) 0.431 (0.072) 0.444 (0.066) 0.381 (0.045)
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With a “training” sample ds with n ¼ 100; a situation that is likely to occur when

stratifying primary sampling units in multistage surveys, the linear model is the more

efficient kernel for the Dalenius-Hodges method in most of the cases (LIN, INDGAU,

PROD populations), the rest being represented by situations in which the relationship

between y and x is highly nonlinear. For the MIXT population MARSDH is clearly better

than the other methods. For the CORGAU population LPDH is best for H ¼ 3 but for

larger values of H, BOOSTDH shows similar or better performances. AMDH never

emerges as the best method.

With n ¼ 1; 000 or larger (we conducted the simulation also for n ¼ 5; 000), the

methods based on nonparametric regression are almost as efficient as the one based on

parametric linear prediction when the relationship between y and x is linear or

approximately so, while they are much more efficient in the rest of the cases. The LPDH

rule remains the best performer for the LIN population. In almost all other cases,

BOOSTDH turns out to be the best method. Nonetheless for the PROD population as the

number of strata grows large, its advantage over LPDH dwindles (for H ¼ 12 we have that

LPDH is better). The performance of MARSDH is close to that of BOOSTDH for all

values of H and for all populations except CORGAU. As regards AMDH, as for the case

n ¼ 100; it never emerges as the best method.

As a general comment, we note that to work properly nonparametric regression methods

require large sample sizes. When this is the case, BOOSTDH seems to emerge as the best

stratification rule, since it is comparable to LPDH in linear or nearly linear cases and far

better in the nonlinear ones.

Table 3. Stratification based on nonparametric regression methods vs LPDH rule: simulation results for

n ¼ 1; 000 averaged over the R ¼ 2; 000 replications (standard deviations within parenthesis; results for the best

stratification method are bold)

Average Deff

H Population LPDH AMDH MARSDH BOOSTDH

3 LIN 0.304 (0.003) 0.306 (0.004) 0.315 (0.021) 0.327 (0.005)
3 INDGAU 0.422 (0.003) 0.402 (0.006) 0.366 (0.013) 0.339 (0.009)
3 CORGAU 0.655 (0.006) 0.654 (0.016) 0.557 (0.024) 0.461 (0.022)
3 MIXT 0.831 (0.084) 0.594 (0.009) 0.448 (0.020) 0.411 (0.015)
3 PROD 0.469 (0.003) 0.421 (0.006) 0.385 (0.013) 0.365 (0.011)

6 LIN 0.216 (0.002) 0.219 (0.003) 0.229 (0.007) 0.244 (0.006)
6 INDGAU 0.281 (0.003) 0.322 (0.011) 0.298 (0.014) 0.271 (0.011)
6 CORGAU 0.543 (0.008) 0.576 (0.032) 0.492 (0.030) 0.389 (0.026)
6 MIXT 0.767 (0.152) 0.529 (0.014) 0.382 (0.023) 0.347 (0.019)
6 PROD 0.305 (0.004) 0.337 (0.011) 0.319 (0.014) 0.294 (0.012)

12 LIN 0.191 (0.002) 0.194 (0.003) 0.204 (0.007) 0.221 (0.006)
12 INDGAU 0.247 (0.004) 0.297 (0.011) 0.278 (0.014) 0.234 (0.011)
12 CORGAU 0.496 (0.012) 0.551 (0.034) 0.475 (0.031) 0.370 (0.028)
12 MIXT 0.739 (0.167) 0.507 (0.014) 0.366 (0.025) 0.326 (0.020)
12 PROD 0.241 (0.004) 0.309 (0.014) 0.298 (0.015) 0.269 (0.013)
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6. Sensitivity and Consistency Checks

In this section we deal with two distinct issues that complement our discussion of the

generalizations of the LPDH rule based on nonparametric regression methods. The first

issue is the sensitivity of the methods described in Section 4 to the choice of the number of

strata, while the second regards the consistency of the boundaries identified by the various

methods, in cases where they show close performances.

As far as the sensitivity of the results to the selected number of strata is concerned,

we may note from Tables 2 and 3 that we have large gains in precision in passing

from simple random sampling to stratification with three strata; smaller, though

sometimes still relevant gains in passing from three to six strata; but then only minor

gains in efficiency in passing to twelve strata. This is so for all populations and all

methods. To assess this result in a clearer way, we plot the performances of the

various stratification rules against the number of strata, for R ¼ 2; 000 and n ¼ 100

and 1,000.

From Figures 2 and 3 it is apparent that, for all stratification rules, we have huge gains in

efficiency up to 5 or 6 strata regardless of the population and the kind of relationship

between y and x. After this threshold, the design effects stabilize quickly and increasing

the number of strata becomes immaterial for efficiency. On the other hand, the

multiplication of strata does not seem to worsen the efficiency of the stratified mean

estimator.

This result depends on the underlying assumption regarding the strength of the

relationship between y and x. We also ran a simulation exercise identical to the one

described, except for the fact that we set parameter r2 ¼ CorrU{yU ; gðXUÞ} ¼ 0:7:

Results from this second experiment, which are not reported here, are consistent with those

Fig. 2. Performances of different stratification rules against the number of strata (n ¼ 100), averaged over

R ¼ 2; 000 MC replicates
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we described as far as the ranking of regression methods is concerned. By the way, the

weaker correlation yields minor gains in efficiency after three strata.

Consistently with theory for the linear case, we have that gains in terms of (5.1) stabilize

rapidly as the number of strata grows. In the context of our simulation, for all populations,

the best choice for the number of strata seems to depend on the strength of the relationship

between y and x: the weaker it is, the lower is the recommendable number of strata.

We may expect that, when the performances of different methods are close in terms of

Deff, they are also consistent in the sense of producing close boundaries between the strata.

To check this we consider the distribution of boundaries in the R ¼ 2; 000 Monte Carlo

replicates. The results, not reported here, show that, for the LIN, PROD, and INDGAU

populations, all the methods are consistent with each other in terms of stratum boundaries.

In contrast, for the CORGAU and MIXT populations, the poor performances of the LPDH

rule displayed in Tables 2 and 3 translate into the shrinkage of strata boundaries towards

the sample mean of y. As a consequence the strata formed in this way are not consistent

with those based on the other methods.

7. Concluding Remarks

In this article, we investigate some extensions of the popular Dalenius and Hodges rule for

optimal one-way stratification in an information setting in which a proxy of the target

variable is known for a sample from the population and a possibly large set of potential

stratification variables is available. The discussed methods are capable of handling both

linear and a nonlinear relationship between y and x. Model-assisted methods

encompassing nonlinear relationship between y and x in the analysis of survey samples

have been studied by many authors in recent years (Breidt and Opsomer 2000; Wu and

Fig. 3. Performances of different stratification rules against the number of strata (n ¼ 1; 000), averaged over

R ¼ 2; 000 MC replicates
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Sitter 2001). Examples of nonlinear relationship may arise, for instance, in environmental

and agricultural surveys (see e.g., Opsomer et al. 2006). The basic idea behind practical

implementation of optimal stratification rules is that of having an auxiliary variable known

for each unit in the population which approximates as closely as possible the (single) target

variable y. Here, we propose to build this “ideal” auxiliary variable using predicted values

of y obtained by means of nonparametric regression methods.

We propose generalizations of the Dalenius and Hodges rule, which is designed to

approximately minimize the variance of the estimators of ty. All the methods (including

regression trees that are not based on generalizing the Dalenius and Hodges rule) are

compared in terms of Vð t̂y;sÞ; assuming optimal allocation of the sample to the strata. For

this reason we cannot say that the proposed methods are optimal in a strict sense.

A primary finding is that linear prediction is a good basis for the definition of a

stratification rule whenever the available sample is small (such as n ¼ 100) or the

relationship holding between y and x is not far from being linear (LIN, INDGAU, and

PROD populations).

When a large sample is available for “training” the prediction algorithm, nonparametric

regression methods perform in much the same way as the LPDH rule when the relationship

between y and x is linear or approximately linear and better in the other cases.

However, not all these methods perform equally well: boosted trees seem to offer the

best basis for a modified Dalenius and Hodges stratification rule.

We also considered regression trees that may be intuitively appealing for stratification

in the information setting assumed in the article. However, they perform poorly and

regression trees based stratification does not seem adequate in most cases.

It should be emphasized that our methods can be applied to the generalization of rules

other than the Dalenius and Hodges, such as the Ekman rule. When stratifying highly

skewed populations an analogous generalization of the Lavallée and Hidiroglou (1988)

rule can, in principle, be proposed.

Developments of this research in many directions are conceivable: the simulation

experiment we considered is fairly general but other and more general situations may be

considered, as for instance the inclusion of categorical stratification variables or the

stratification of extremely skewed populations. The problem of stratifying populations

characterized by a relationship between y and x affected by heteroskedastic errors may

also be of interest. Moreover, we did not deal with the problem of multiple-way optimal

stratification, which is a topic of relevance in many applied situations.
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