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Estimating Totals and Distribution
Functions Using Auxiliary Information at the
Estimation Stage

J.N.K. Rao’

Abstract: A general set-up for inference
from survey data that covers the estimation
of totals and distribution functions is
provided, using auxiliary information at
the estimation stage. Both probability
sampling and model-assisted approaches
are studied. A conditional probability
sampling approach that provides condition-
ally valid repeated sampling inferences,

1. Introduction

In sample surveys, supplementary population
information is often used at the estimation
stage to increase the precision of estimators
of a population total. In particular, custom-
ary ratio and regression estimators make
use of known population totals of auxiliary
variables. Recently, several estimators of a
population distribution function have also
been proposed, using auxiliary information
at the estimation stage. The main purpose
of this article is to provide a general set-up
that covers the estimation of totals and
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under model misspecifications, is also con-
sidered. Finally, asymptotically efficient
calibration estimators that sati<fy certain
consistency constraints are proposed.
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distribution functions, utilizing auxiliary
information at the estimation stage.

It is often desirable to revise the basic
survey weights to satisfy certain consis-
tency constraints. In particular, the sample
sum of a weighted auxiliary variable should
equal the known population total for that
auxiliary variable. Deville and Sidrndal
(1992) named such revised weights as
calibration weights and the resulting
estimators of a total as calibration estima-
tors. They proposed a general method of
deriving calibration estimators by choosing
a distance measure between the calibration
weights and the basic weights and then
minimizing this distance subject to speci-
fied consistency constraints, called the
calibration equations. They have also
shown that a “chi-square distance” leads
to the generalized regression estimator
(Sdrndal 1980; Bethlehem and Keller
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1987). In this article, we provide alternative
calibration estimators that are asympto-
tically efficient.

2. General Set-Up

The following theoretical framework is
often assumed in estimating population
parameters. A survey population I/ consists
of ¥ distinct elements identified through the
labels j=1,...,N. The characteristic of
interest y; associated with element j is exactly
known by observing the element j. A sample
is a subset, 5, of U and the associated
y-values, i.e., {(i,3;), i € s}, selected accord-
ing to a specified sampling design which
assigns a known probability p(s) to s such
that p(s) > 0 for all 5 € S, the set of possible
samples 5, and 5 oo p(s) = 1.

We consider general parameters of
interest
H= Zh(yj,-) and H=N'H (2.1
JeU

for a specified function s The choice
h(y) = y gives the population total H = ¥
and the population mean H = Y, while
the choice A(y) = A(t—y) with A(a) =1
when a = 0 and A(g) = 0 otherwise gives
the distribution function

H=F1) :N‘IZA(z~yj)

Jjeu

(2.2)

for each .

The problem is to estimate H or H by
observing a sample selected according to
the specified design and also using available
auxiliary data. We assume that supplemen-
tary information x; = (x;;,...x;,)" asso-
ciated with population elements j is
available at the estimation stage. The case
where only the population total X is avail-
able is also considered.

There are essentially three different
approaches to inference on H or A:
(i) design-based approach, also called
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probability sampling approach; (i) model-
dependent approach, also called prediction
approach; (iii) hybrid approach, called
model-assisted approach. An advantage of
the model-assisted approach is that it pro-
vides valid inferences under an assumed
model and at the same time protects
against model misspecifications in the
sense of providing valid repeated sampling
inferences. In this paper, we will focus on
(1) and (iii), but also consider a conditional
probability sampling approach that pro-
vides conditionally valid repeated sampling
inferences, under model misspecifications,
given suitable ancillary statistics such as
design-unbiased estimators, X, of the
known totals X.

Probability sampling approach refers to
repeated sampling from the survey popula-
tion U involving all samples s € § and asso-
ciated probabilities p(s). It provides valid
inferences irrespective of the population y-
values in the sense that the pivotals ¢ =
(H-H)/s(A) and 1, = (H-H)/ s(H)
are approximately N(0, 1), at least for large
samples, where (H, H) and (s*(H), s*(H))
are design-consistent estimators of (H, H)
and (Var(H), Var(H)) respectively.

We assume that the inclusion probabilities
T =) (e P(S), I=1,... N are positive,
which permits unbiased and consistent
estimation of H and H. We also assume that
the joint inclusion probabilities
Y (sijesy P(8), 1 <j=1,..., N, are positive,
which permits unbiased and consistent
estimation of the variance of A and H.

A general class of estimators of H is given
by

A= Z di(s)h(y;)

ics

i =
“J

(2.3)

where the basic weights 4;(5) can depend both
on s and (i €s5) and satisfy the design-
unbiasedness condition: 3 r.eq p(5)d;{s) =
L fori=1,...,N The choice A(y}) =1y in
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(2.3) gives Godambe's (1955) class of esti-
mators, ¥, of a total Y. The well-known
Horvitz-Thompson (H-T) estimator is a
special case of (2.3) with d;(s) = 77!, The
well-known Murthy’s estimator and Rao-
Hartley-Cochran’s  estimator  (Cochran,
1977, ch. 9A) also belong to the general
class (2.3).

If the variance of ¥, (), becomes zero
when y; « w; for some known non-zero con-
stants w;, then a nonnegative unbiased
quadratic estimator of V(H) is necessarily
of the form (Rao 1979)

v(H) = ZZdz]\sm Wi Z}_)z

i<j
ijes

(2.4)

where z; = h(y;)/w; and the weights d;(s)
can depend both on s and (7,7) €5, and
satisfy the unbiasedness condition. The
well-known Sen-Yates-Grundy {8-Y-G)
estimator of variance of H-T estimator is a
special case of (2.4) with w; =m and
di(s) = (myj— mymy) [ {myymimy), for any fixed
sample size, n, design. It is interesting to
note that the original H-T estimator of
variance does not belong to class (2.4},
although it is valid both for fixed and non-
fixed sample size designs. For the general
estimator (2.3), a H-T type unbiased
variance estimator is given by

= Zdi(f)(

di(s) - E)W%Z?

ics
+2§:§:( (2.5)
i<J
% di(s)d,(s)w;w;z;z;
where Q= Z{s:ijes}p(5>di<5\)dj(s>~ If di(s)

= m; !, then v"(H) reduces to the H-T
variance estimator. The H-T variance
estimator is seldom used in practice since
it can take negative values often and can
lead to a large coefficient of variation.
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Turning to H, a general class of estimators
of H is given by
L 0y
H=Z=2 (2.6)

N Zdi(S\)
€S
Note that if A(y;) = A(¢ — »;) in (2.6), then
H retains the properties of a distribution
function, provided all the basic weights,
di(s), are nonnegative. A consistent estima-
tor of variance of H is obtained from (2.4)
by replacing 4(y;) by (h(y;) — H)/N
The estimators (2.3) and (2.6) do not
utilize the auxiliary information x; (j=
1,...,N) at the estimation stage. A ratio
estimator of H, in the case of a single x-
variable, can be obtained as

(2.7)

G = Zg x;)

jel

and g(x;) is positively related to A(y;) such
that A, reduces to the known total G when
y; o x; forall j € U, and hence the variance
becores zero in the latter case. Note that H,
is a calibration estimator with respect to the
auxiliary variable g(x). If the population
size, N, is known, a ratio estimator of H is
given by

H, = H,/N. (2.8)

In the case of the total ¥, we choose
g(x;) = x; and H, reduces to

~; di(s)y; ZX:
X

> dils)x

ics

RX  (2.9)

where X = 3,y x; is the known total of the
x;’s. The ratio estimator Y, leads to signifi-
cant reduction in the variance relative to
the unbiased estimator ¥, when Yy s
positively related to x;. In the case of the
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distribution function F{r), we can choose
glx) = At - Rx;), provided the popula-
tion total of the g(x;)’s is known. The result-
ing estimator H, = F,(¢) ensures the above
desirable property of zero variance when
y; «x x;. However, in general the correlation
between A(r — y;) and Az — Rx;) is likely
to be weaker than the correlation between
y; and x;, where R = Y/X. As a result, the
gains in efficiency of F,(¢) over the estima-
tor H = F(r) are likely to be smaller than
those achieved by the ratio estimator Y,
over Y.

A regression estimator of A can also be
obtained as

Heyy=H+B(G-G) (2.10)
where
B =cov(H,G)/v(G) (2.11)

and cov(H,G) and v(G) are obtained from
(2.4) by replacing (z; — z;)* with (z; - z;)
(u; —u;) and (u; — uj)z respectively, where
u; = g(x;)/w;. Similarly, a regression esti-
mator of H is given by

I:Ireg = Areg//N (2'12>

provided N is known. In the case of F(z)
with g(x;) = A(f — fixj), the regression
estimator H ., = F,(7) retains the above
desirable property of zero variance when
y; o x;, but it also suffers from the same
drawback as the ratio estimator F,(z). The
regression estimator H reg 18 computationally
more cumbersome than the ratio estimator
H, since it involves the evaluation of
cov(H,G) and v(G). However, the latter
evaluation can be simplified for some
commonly used designs (see Section 5). The
regression estimator H,, can be readily
extended to multiple auxiliary variables.

3. Model-Assisted Approach

Probability sampling approach has been
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criticized on the grounds that the associated
inferences, although assumption-free, refer
to repeated sampling instead of just the
particular sample, s, that has been drawn.
Prediction approach, on the other hand,
assumes that the population y-values are
random and obey a model, and the model
distribution leads to valid inferences refer-
ring to the particular s that has been
drawn, irrespective of the sample design
p(s). Prediction inferences, in large sampiles,
however, are very sensitive to model mis-
specifications, as illustrated by Hansen,
Madow, and Tepping (1983). By considering
only design-consistent estimators and
variance estimators that are also model-
unbiased (at least asymptotically) under
an assumed model, the model-assisted
approach attempts to provide valid condi-
tional inferences under the assumed model
and at the same time protects against
model misspecifications in the sense of
providing valid design-based inferences
irrespective of the population y-values.
Although model-assisted estimators of
a total, ¥, can be obtained under general
linear {or nonlinear) regression models, we
will confine ourselves here, for simplicity,
to a single x-variable and the following
often-used simple linear regression model

En(3)=8x, j=1,...,N (3.1)

where E,, denotes the model expectation
and 8 is an unknown parameter. [t is
further assumed that the y;’s are indepen-
dent with model variance V,(y;) = a‘zxj
and ¢*(> 0) is an unknown parameter and
V., denotes the model variance. We assume
that the population model (3.1) also holds
for the sample, i.e., there is no sample selec-
tion bias (see Krieger and Pfeffermann
(1992) for an illuminating discussion of the
effects of sample selection). An estimator
of Y, say ¥, is model-unbiased for Y
if E,(Y—-Y)=0 for every s € S. Under
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model (3.1), the best linear unbiased
estimator of Y, in the sense of minimizing
the model variance V,,(¥ — Y), is the simple
ratio estimator (/X)X for any p(s), where ¥
and X are the sample means (Brewer 1963;
Royall 1970). Since this estimator does not
depend on the survey weights d;(s), it is
generally design-inconsistent.

A model-assisted estimator of Y, under
model (3.1), is given by

Vo = Zdz’(s)yi + ﬁ(X - Z di(s)xi>

ics i€s
= RX (3.2)
which is the same as the ratio estimator
(2.9). The ratio estimator (3.2) can be
motivated along the lines of Sédrndal
(1980), noting that ﬁxj is a predictor of y;
under model (3.1) and that the total of pre-
diction errors ¢; = y; — Rx]- is estimated by
Yie,di(s)e;. It can also be written as

}}ma = Z dz* (Sb’i

ics

(3.3)

where the revised weight &7 (s) is the product
of the basic weight d;(s) and the so-called
g-weight, g;(s) = X/X, which converges in
probability to 1.

A consistent estimator of variance of ¥,
is either given by the S-Y-G type variance
estimator (2.4) or by the H-T type variance
estimator (2.5) with z; replaced by
(y; — Rx;)/w; = e;/w;, where R is a model-
unbiased estimator of 3. However, it
is in general not model-unbiased (even
approximately) for the model variance
V(Yo — Y). In the case of the H-T esti-
mator of Y with d(s)==;', Sirndal,
Swensson, and Wretman (1989) proposed
a model-assisted variance estimator that is
both approximately model unbiased (when
n/N is of the order O(n™/?) or less) and
design-consistent. This is simply obtained
by changing y to  g(s)e; = (X/X)
(y; — Rx;) in the H-T variance estimator
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(also see Hidirogiou, Fuller, and Hickman
1976).

We now extend the Sdrndal et al. (1989)
result to the ratio estimator (3.3) with
general weights d;(s). We show that the
H-T type variance estimator (2.5) with
w;z; = y; replaced by g;(s)e; is both model-
unbiased (approximately) and design-
consistent. The latter property follows from
the fact that g;(s) converges in probability
to 1. (We assume that the design is such
that v*(Y) is design-consistent.) Under
model (3.1), it is straightforward to show
that

~

Vm(yma - Y)
=q’ [Z{di(s)gi(s)}zxi - Z Xi -
ics el

(3.4)

Also, the proposed variance estimator,
#(¥,q) say, is approximately equal to (2.5)
with changed to g(s)e;, where
¢; = y; — Bx; are independent errors with
mean zero and variance U? = o?x;. Hence,

its model expectation is given by

w,z;

E,( Yma) =0 {Z{di(s)gi(s)}zxi

i€s

- Zdi(s)giz(s)xi}

ics

(3.5)

Comparing (3.4) and (3.5), we note that the
leading terms are identical. Assuming that
n/N is of the order O(n”Y?) or less, the
lower order terms are also approximately
equal by noting that

2
S ds)gi s = o = 3l

i€s X ieU

(3.6)

and that g;(s) converges to 1 in probability.
Unfortunately, the above simple recipe of
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getting a variance estimator that is both
design-consistent and approximately model-
unbiased does not seem to work when
applied to the more useful S-Y-G type
variance estimator (2.4). This is also true
in the special case of H-T weights
di(s) = 77!, unless certain restrictions are
placed on the joint probabilities, ;. (Note
that (2.4) reduces to the S-Y-G variance
estimator in this case.) Nevertheless, we
recommend the variance estimator (2.4)
with w;z; = y; replaced by g;(s)e; since it
remains design-consistent and is expected
to be more stable than the corresponding
H-T type variance estimator, 9( Yma). More-
over, its model bias is likely to be smaller
than that of the customary variance estima-
tor (2.4) with y; replaced by ¢;, although it is
not approximately model-unbiased.

Kott (1990) proposed an alternative
variance estimator for the H-T estimator of
Y which is also design-consistent and
model-unbiased. Generalizing his approach,
we get the following variance estimator

U*(Yﬂ = a VIV, — V)
ra> Em@’(ymﬁ m\ 4L ma )
(3.7)
where
e 2
U(?ma) e Z Zdﬁj;(.&’}wlw] <_, _ _L>
i<j Wy
i,J€s
(3.8)

Vo Yoa — ¥) is given by (3.4) and

Eu(¥,,) = —o* Z Z d;;(s)ww;

i<j
i,j€s

(3.9)

S TN

Note that the unknown parameter o
cancels out in (3.7). An advantage of Kott’s
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approach is that it is applicable to the more
useful S-Y-G type variance estimator,
unlike the Sirndal et al. approach, but the
resulting variance estimator (3.7) is some-
what more complicated.

Turning to the distribution function F(¢), a
predictor of A(z— y;) under model (3.1) is
given by

-1
g(x;) = (Z di(5)> {Z di(s)
x A[x;“((z — Rx)) - e,ﬂ } (3.10)

A model-assisted estimator of F(r) based on
(3.10) is then given by

Fralt) = N7 {Z d(s)A(t - y))

J€s

+

PEEIE f#(S)é(X;)} }

jeu jes

(3.11)

This estimator is asymptotically model-
unbiased for F(#), but its asymptotic
design-bias is zero only for a subclass of
sampling designs which, however, seems to
cover a wide variety of sampling designs
(see Godambe (1989) for details). Using
estimation function theory, Godambe
(1989) arrived at the estimator (3.11) for
the special case of di(s)=m'. Rao,
Kovar, and Mantel (1990) proposed an
alternative model-assisted estimator, for
the special case of d;(s)= =7, which is
asymptotically both model-unbiased and
design-unbiased under all designs. Rao
and Liu (1992) extended this estimator to
the case of general weights 4;(s).

A consistent estimator of variance of
F,,(1) is obtained from (2.4) by changing
z; to {A(r—=y;) —&(x;)}/(Nw;). Tt seems
difficult, however, to construct a model-
assisted variance estimator that is both
asymptotically model-unbiased and design-
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unbiased. We are currently investigating
this problem.

4. Conditional Probability Sampling
Approach

As noted in Section 3, the model-assisted
approach appeals to unconditional repeated
sampling properties of estimators and
variance estimators when the model is mis-
specified. In this section, we develop alter-
native model-assisted estimators of Y and
F(ry with good conditional repeated
sampling properties under model mis-
specification. This is accomplished by
conditioning on a suitable ancillary statis-
tic. To simplify the discussion, we confine
ourselves to simple random sampling with
replacement and omit technical details and
extensions which are given in Liu (1992).
Under simple random sampling (SRS) and
model (3.1), the model-assisted estimator
(3.2) reduces to the simple ratio estimator
Y, = (§/X%)X, noting that 4,(s) = N/n.

Employing real population data, Royall
and Cumberland (1981) studied the con-
ditional bias of estimators and variance
estimators, given the sample mean X which
may be treated as an ancillary statistic when
the population mean X is known. They
drew repeated samples of size n, arranged
them in groups with approximately the
same value of x, and computed the con-
ditional bias of estimators and variance esti-
mators within these groups. Robinson
(1987) used the fact that, given the sample
mean %, the sample mean 7 is asymptotically
normal with mean ¥+ B(¥ — X), where B is
the population regression coefficient and
Y = Y/N is the population mean, to show
that the asymptotic conditional bias of
Y,=7Y,/Nis

E(i{x) _ 7= (R-B)(X - DX/%
(4.1)

Thus, noting that ¥ — X = 0,(n™?) the
conditional bias of ¥, is of the order
Op(n"l’/z), unlike the unconditional bias of
order O(n ). It also follows that the condi-
tional relative bias of ¥, or ¥, i.e., the ratio
of the conditional bias to the conditional
standard error, is of the order O,(1) unlike
the unconditional relative bias of order
O(n’” 2) which is asymptotically negligible.
Thus the ratio estimator ¥, may not lead to
conditionally valid inferences in large
samples, under model misspecification,
although the inferences are asymptotically
valid unconditionally. Note that R=25 if
model (3.1) holds in which case the condi-
tional bias of ¥, is approximately zero.

Using (4.1), Robinson (1987) obtained a
bias-adjusted estimator

V=Y, +(r-b)(x-X)X/x (4.2)

with conditional relative bias of order
Op(n‘m), where = ¥/% and b is the sam-
ple regression coefficient. This estimator
leads to conditionally valid inferences since
the conditional relative bias is asymptoti-
cally negligible. It remains model-unbiased
under model (3.1) since E,,(r —b) =0. An
alternative estimator with conditional rela-
tive bias of order Op(n‘l/z) is given by the
customary linear regression estimator

¥, = N[j+ b(X - 3)] (4.3)

noting  that  E(F|¥)=Y + B(x — X),
-X= 0,n" and E(B%) =B+
0,(n™1/%). Liu (1992) has shown that the con-
ditional variances of Y, and Y, are approxi-
mately equal. Hence, the two estimators
should perform similarly in the conditional
framework. Note that ¥, remains model-
unbiased under model (3.1), and it has a smal-
ler unconditional asymptotic variance than
Y,. However, it has a larger model variance
than ¥, under model (3.1) since Y, is the
best model-unbiased estimator.

Liu (1992) has shown that the customary
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variance estimator of ¥, is conditionally
biased for the conditional variance, and
derived a bias-adjusted variance estimator
which together with ¥, leads to condition-
ally valid inferences. By writing ¥, in the
form (3.3) with d,(s) = N/n and g-weight
gils) =1+ (x;— 0 (X - %)/ ¥ (xi — 8%,
the bias-adjusted variance estimator is simply
obtained from the customary variance esti-
mator by changing &, =y, — 7 — b(x; — X)
to gt’(‘g>ét’

va(Tar) :ﬁo _%> ZM

n i€s n—1
(4.4)

Tt is interesting to note that v,(Y,,) is identical
to the Sdrndal et al. (1989) variance estimator
under the linear regression model y; = o+
Bx;+¢€, j=1,...,N with iid. errors ¢;.
The generalized regression estimator of
Sarndal et al. (1989) reduces to Y, under
the latter model.

Turning to the estimation of the distribu-
tion function F(¢), Rao and Liu (1992) have
shown that the model-assisted estimator
F,.(1), given by (3.11), is conditionally
biased, given ¥. They also obtained a bias-
adjusted estimator given by

Fralt) = Fa(1) + 8 (50 = 5:)(X = %)
(4.5)

where 5., and s,; are the sample covariances
of x and A= A{f-y) and x and g(x)
respectively, and s is the sample variance
of x. The adjusted estimator remains
asymptotically model-unbiased under
model (3.1). Properties of the estimator
(4.5) are under investigation.

We now turn to the case where only the
population mean X is known. The estima-
tors F,,(¢) and Fj,(f) cannot be imple-
mented in this case since they require the
knowledge of all the population values x;.
We therefore adjust the estimator H = F(7)
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to obtain the following bias-adjusted estima-
tor of F(r)

Fa([) = F(t) + (th//si)(y - i)' (46>

The conditional bias of £,(7) is of the order
Op(n”), and as a result £,(z) leads to con-
ditionally valid inferences in large samples,
unlike F(z). However, F,(¢) is asymptoti-
cally model-biased.

5. Calibration Estimators

5.1. General results

Asnoted in Section 1, calibration estimators
satisfy certain consistency constraints with
respect to auxiliary population informa-
tion. The well-known post-stratified estima-
tor and raking ratio estimator are simple
examples of a calibration estimator. If ;N
(j=1,...,J) denote the known population
counts in J cells (e.g., cells based on age
and sex categories), then post-stratification
adjusts the basic weights di(s) to di(s) =
(;N/ ]N )d;(s) if sample element ¢ belongs to
the jth cell, where ]-]\7 = Y ie,s 4i(s) and ;s is
the set of sample elements belonging to the
Jjth cell. The revised weights d; (s) guarantee
that the estimated counts in each of the J
cells equal the corresponding population
counts. Similarly, raking ratio estimators
ensure consistency with two or more sets of
marginal population counts; for example,
row and column margins {;.N} and {,N}
inanIxJtablei=1,....5;j=1,...,J)
of cell counts {;;N}.

We first extend the method of Deville and
Sdrndal (1992) to the general class of
estimators (2.3) with basic weights d;(s).
For simplicity we restrict ourselves to the
chi-square distance

6= S {di(s) - d (Y /ai(s)dils) (5.1)

ics

where g¢;(s) are known positive weights
unrelated to di(s). The uniform weights
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q;(s) = 1 are commonly used, but other types
of weights can also be used; for example,
weights related to the variance structure of
the errors ¢, in a super-population model

Ve =Xi8+¢, k=1,...,N. (5.2)

Minimizing ¢, subject to consistency
constraints (or calibration equations)

E 4 (s)x; =X

i€s
where X = (X,..., X,)’ are known popula-
tion totals, we get the revised (or calibration)
weights d;(s) and the resulting estimator
Y™ =3 e di (s)y; which reduces to

Vo =T+(X-X)B

(5.3)

(5.4)

with

-1
B= (Z di(S)Qi(S>XiX;>

ics

X (Z di(5)9i<5)xzyz>-
i€s

For the special case d;(s) = 7; ' and ¢,(s) =
gi» (5.4) reduces to the calibration estimator
of Deville and Sdrndal (1992) which is iden-
tical to the generalized regression estimator
of Sérndal (1980). Huang and Fuller (1978)
also used the generalized regression estima-
tor with basic weights di(s) = =;', and
developed an algorithm that produced non-
negative revised weights or standardized
revised weights, d7 (s)/ > je; 7 (s), that fall
within a specified range, say [0.25,1.75].
Bankier (1992) used a two-step extension of
Y, o in the context of 1991 Canadian Census
which satisfies several consistency constraints
at the weighting arca (WA) level and at the
same time ensures close agreement at the
enumeration area (EA) level for number of
households and number of persons.

If the set of auxiliary variables xi,...,x,
includes at least one mutuaily exclusive
and exhaustive set of indicator variables
(as in the case of calibrating on known
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marginal population counts of a three-way
table) and ¢;(s) = 1, then it is easy to see
that ¥ —X'B =0 and Y, reduces to the
generalized “projection” estimator

¥, =X'B. (5.5)
This estimator is currently being used in the
Canadian Labour Force Survey. If we parti-
tion the population U into households U;
with  individual values (y;.,x;,), 1=
L...,M;; j=1,... N, then the revised
weights associated with (5.5) may be
written as

i (s) = d(s)X'

j
x Zcz(s) ijzx}z

JjEs, tel;

-1

th

(5.6)

where s, is the sample of households and
d; (s) = a~7j(s) is the common basic weight
attached to all members, r, of the household,
J. It is clear from (5.6) that the revised weights
are different for each member of the house-
hold, but in practice it is desirable to use the
same weight for estimating totals of both
family and individual characteristics. This is
easily accomplished by replacing x;, in (5.6)
with the household mean value z =
Mj_l Y rev Xj;, noting that the population
total > ey Mjz; =X (see Lemaitre and
Dufour (1987) and Stukel and Boyer (1992)
for the special case c?j(s) = 7rj‘1). It should
be noted, however, that the resulting
estimator

-1
f’p =X (Z M]-c?j(s)zjz]/)

jESC
X E d]<5> E Z;Vi¢
J€s, tel;

may not be asymptotically more efficient
than the basic estimator Y, even if y;, and
X;, are positively related.
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We now propose an alternative calibration
estimator that is asymptotically more efficient
than the generalized regression estimator ?gr
or the basic estimator Y. Consider the dif-
ference estimator ¥ + (X —X)'C with a
fixed p-vector of constants, C, and minimize
its variance with respect to C. This leads to
the optimum value C,, and the resulting
optimal estimator ¥ + (X — X)'Cyp, Where
Copt = ) o,x with Z,, and o,y respectively
denoting the p x p covariance matrix of X
and the p-vector of covariances, cov(Y, X,),
t=1,...,p. Replacing Z,, and o,y by their
unbiased estimators X,y and 6,,, we get the
estimator

Yo = T+ (X = X)'2,16,. (5.7)
Fuller and Isaki (1981) and Montanari (1987)
have also studied the optimal estimator (5.7)
in the context of unistage designs and the
Horvitz—Thompson estimator with basic
weights d;(s) = ;.

The estimator Yopt is also a calibration
estimator with respect to x. This follows
by letting y = x; (say) and noting that
Y =X,

2 6 = (1,0,...,0) (5.8)

and Yopt = Y] + (Xl - Xl) = X1. We used
the following matrix results to obtain (5.8).
For any nonsingular p x p matrix A with
elements a5, A is a p X p matrix with
elements lAl_lAij, and |A]™! doaydy =1,
|A|™! > ayd;; =0, i#1, where 4;; is the
cofactor of a;;. If it is considered desirable
to use the same weight for estimating totals
of both family and individual characteristics,
then we simply replace x;, in (5.7) by z; as
before, noting that X and X remain
unchanged.

Following Cochran (1977, ch. 7), it is
easily verified that, for large samples,

A~ A

V( Ygr) - V( Yopt)
= (B - Copt)lzxx(B - COpt) (59)
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where B is the vector of population regres-
sion coefficients. In the special case of
simple random sampling, we have B = C
and Y, = ¥, butin general the two estima-
tors are not equal even for self-weighting
designs.

Another advantage of Yopt is that it
leads to valid conditional inferences, noting
that its conditional relative bias is asympto-
tically negligible given X. On the other
hand, the conditional relative bias of Yg,
may not be asymptotically negligible, as
shown earlier for the ratio estimator
under SRS, Liu (1992) developed condition-
ally valid variance estimators for general
stratified multistage design which together
with }A’Opt lead to conditionally valid
inferences. Casady and Valliant (1993)
also proposed }A’Opt in the context of one-
way post-stratification and studied empiri-
cally the conditional and unconditional
properties of f’Opt and Yg, in multistage
sampling. They showed that Y, is the
preferred estimator from a conditional
point of view.

We now show that Yopt can be expressed
in the form 3 ., ;' (s)y; for two commonly
used sampling designs, stratified simple
random sampling and stratified multi-
stage sampling. That is, the same revised
weights, di(s), are used for all
characteristics y, as in the case of Yg,.

5.2, Stratified simple random sampling

Suppose the population of size N is parti-
tioned into L strata and a simple random
sample, s, of size n, is drawn from the N,
units in stratum /4, independently for
each h=1,...,L (3 n, =n). The custom-
ary unbiased estimator of Y is of the
form Y = 375 X ics, dni()yn; with dy;(s) =
N, /n;,, where y,; is the y-value of the
ith unit in the Ath stratum. The elements
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of £, and G,x may be expressed as

L
~ ! /
Oy = XihiXmhi
e ;; o (5.10)
£m=1, p

L
« ;o
O-yx(:ZE YuiXenis gzlau'vp

(5.11)
with
X = Nyl(1 = 13) (g = 1)1
X (Xgpi — Xn)

Yhi = Nil(1 = f3) fmp(my = D]
X (Vhi = )
where f;, = n,/ Ny, x4p,; is the value of x, for
the (hi)th unit, and ¥ = > seq, i/ M Xon =
Y s, Xeni/my- 1t follows from (5.10) and
(5.11) that the calibration weights asso-
ciated with f’opt may be written as

dii(s) = dp (L + Ny(1 = £3) (ny, — 1)_1
x (X - X)'Z0 (x4 — %))
(5.12)

where  Xp; = (X1ps ... %) and X, =
> ies, Xpi/ny. Note that we have only n — L
independent observations (y},;, Xj;) to esti-
mate Cop since Sxyi=0and Syj =
0, whereas B is based on n independent
observations.

5.3, Stratified multistage sampling

Large-scale surveys often employ stratified
multistage designs with large numbers of
strata, L, and relatively few primary
sampling units (clusters), sampled within
each stratum h. We assume that subsampling
within sampled clusters is performed to ensure
unbiased estimation of cluster totals Y7,;. The
customary unbiased estimator of Y is of the
form Y = } itjes dinl(S)Vhir, where s is
the sample of elements and y,;; is the y-
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value associated with the sample element
(hik) € s. At the stage of variance estima-
tion, the calculations are greatly simplified
by treating the sample as if the sample
clusters are sampled with replacement. This
approximation leads to overestimation of
the variance of Y. This overestimation can
be substantial unless the first-stage sampling
fractions are small.

Writing ¥ as ¥ =37, with 7=
iy ia(s))ynix and By =3 iryi/ny, the
above estimator of variance of Y is simply
given by

oY) =3 rai = 7 = 1)
T
(5.12)

where n,(>2) is the number of sample
clusters from stratum /4. It now follows
that X, and &,; may be expressed as

IS 7 !
Tx,x,, = E E Ughihmpi
hoi

(5.13)
Lm=1,...,p
OA-yx[ = er/hiurfhi
hod (5.14)
£=1,....m
with

whi = [y (my, = D] (g — 1igy)
rhi = [ma(ng — D)7 (rgy = )
weni = 9 (Muldi(9)) Xenik
%
Ugp, = }: Ui/ M-
i
Hence, the calibration weights associated
with Y, may be written as
# 1
diir(s) = dpi(s) |1 MY

x (X = X) 25 (g — ﬁh)}

\

(5.15)
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where W, = (ugpy. .. uy)  and @, =
> iuy,/n,. Note that we have only £ny, — L
independent observations (r},;,u};) to esti-
mate C,p, since > upy; =0 and Y ;r); =
0. The estimator of Cy, therefore, may
not be stable unless Y ,n, — L is large
relative to the number of auxiliary vari-
ables, p. Note that > ,n, is the total
number of sample clusters.
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