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Estimation of Identi®cation Disclosure Risk in Microdata

Guang Chen1 and Sallie Keller-McNulty2

1. Introduction

Data are frequently collected and released by private businesses and government agencies

for the purpose of statistical analysis. These data are typically collected with the assurance

that data, on the micro level, will be kept con®dential. The concern for maintaining data

con®dentiality coupled with the lack of methods to assess disclosure risk severely limits

the ability of data collectors to provide data for legitimate research uses.

A considerable amount of research has been done in the data con®dentiality area. The

research addresses the ways in which the data are released to users, the methods some

users might use to attack the released data, the techniques which can be applied to protect

data con®dentiality, and appropriate measures for disclosure risk (Adam and Wortmann

1989; Blien, Wirth, and MuÈller 1992; Denning and Denning 1979; Denning, Denning,

and Schwartz 1979; Duncan and Lambert 1986 and 1989; Duncan and Pearson 1991;

Fuller 1993; Greenberg and Zayatz 1992; Lambert 1993; Keller and Bethlehem 1992;

Keller-McNulty and Unger 1993; Paass 1988; Skinner 1992; Skinner and Holmes 1992;

Skinner, Marsh, Openshaw, and Wymer 1994; Spruill 1983). A common conclusion in

this research is that the risk of disclosure cannot be eliminated completely. It can only
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be maintained at a certain acceptable level. Therefore, it is very important to ®nd methods

to assess the disclosure risk for released data.

Different types of disclosure have been discussed in the literature (Duncan and Lambert

1989; Skinner 1992; Lambert 1993). The focus of this article is on identi®cation disclosure.

Identi®cation disclosure occurs when a one-to-one relationship can be established between

a record in the released data and a speci®c entity, (e.g., population unit). Implicit in this

de®nition is the fact that the entity must be represented in the released data.

A common characteristic evident in the literature is that for given pre-knowledge,

identi®cation disclosure can occur only if a data record has a set of unique characteristic

variable values, or key variable values, in the released data and also the corresponding

entity has unique key variable values in the population. The entities with unique key

variable values in a population are called population uniques.

The number or percentage of population uniques in the released data plays an important

role in the measurement of identi®cation disclosure risk (Bethlehem, Keller, and

Pannekoek 1990). However, this measurement is not easy to obtain. In practice, the

collected data are frequently a random sample from some corresponding population.

Some records in the collected data may have unique key variable values. These records

are called sample uniques. A sample unique may or may not be a population unique.

Without population information, it is impossible to be certain which sample uniques are

truly population uniques. Therefore, the number of the population uniques that may be

in the collected data needs to be estimated based on the sample information.

This research deals with the development of a new technique to estimate the number of

unique entities in a population based on information contained in a sample. A few

estimation techniques have been developed in the past. These will be brie¯y discussed

in Section 3. It is the case that none of these methods work well for small sampling

fractions. This may be due to ¯aws in their basic model assumptions. The new method

is developed in Section 4. It shows remarkable improvement over existing methods,

especially for small sampling fractions. Section 5 provides discussions on variance

estimation for this problem. The next section gives a description of ®ve examples that

will be used throughout this article to demonstrate the performance of the estimators.

These represent a small sample of many real and simulated populations that have been

studied in connection with this research.

2. Description of Example Data Sets

Three real population data sets and two simulated data sets will be used for demonstration

purposes throughout this article. The ®ve data sets are brie¯y described in this section.

Examples 1 and 2 are real population data sets. They represent a complete census from a

single geographic region taken during the 1980 decennial census (Zayatz 1991a, 1991b).

Both data sets contain the same 87,959 household records. Example 1 has ®ve key

variables: number of children, disability, employment status, marital status, and veteran

status. The total number of non-empty cells de®ned by cross-classifying these ®ve

variables is 1,024. Among them, 222 cells have size one, which is the number of

population uniques in this data set. Example 2 has seven key variables: disability,

marital status, rent or mortgage payment, race, social security, tenure, and veteran status.
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Cross-classifying the seven key variables generated 6,573 cells with a positive count.

There are 3,105 population uniques in Example 2.

Example 3 is also a real population data set. It is a complete university administrative

student database containing 6,270 undergraduate student records. The ®ve variables: sex,

marital status, ethnicity, citizenship, and curriculum were used as key variables in this data

set. Cross-classifying these variables resulted in a total of 558 cells with a positive count and

278 cells of size one. This data set is used as an example of populations with small size.

The data for Example 4 were simulated to illustrate a population of a larger size. The

data set contains 500,000 records and is de®ned by six key variables. It is not clear

what a ``real'' population data set should look like. Many relationships among the distri-

butions of the key variables could exist. To put some reasonable structure on the data, a

six-dimensional multivariate normal distribution was used with the covariance structure

given in Kendall (1980). The covariance structure was for 15 discrete scales of human

response. The covariance structure among the ®rst six variables was used in the simula-

tion. It covers a range of correlation values from 0.0 to 0.8. Once the six-dimensional

multivariate normal data were generated, they were discretized by dividing each marginal

range into several equally spaced intervals, one for each category. Cross-classifying the

six variables generated 15,047 cells with a positive count and 4,479 population uniques.

The data for Example 5 were simulated to illustrate an extreme population distribution.

All ®ve variables used to generate this data set are mutually independent with uniform

marginal distributions. Therefore, the joint distribution is also a uniform distribution,

which is rarely the case in reality. This data set was only used to explore the behavior

of the new estimation method developed in this article. One feature that distinguishes

this data set from others is that its population cell size frequency distribution has a very

short tail. There are 100,000 records and 65,640 non-empty cells in the data set. The

number of population uniques is 40,217.

3. Existing Methods

The structure of the population unique estimation problem can be described as follows.

Suppose a population of size N is partitioned into K cells by a set of key variables, where

K denotes the number of cells with a positive count. A simple random sample of size n is

taken from the population. This random sample is partitioned into k # K cells. Typically,

not all population cells will be observed. The basic problem is to determine the number of

cells of size one in the sample which also have size one in the population. This would

represent the number of unique population entities in the data to be released.

A cell with a single entity in a sample need not correspond to a cell with a single entity

in the population. Usually it is not possible to determine which cells among sample

uniques are truly uniques in the population. Therefore, the number of population uniques

in the sample must be estimated by using the sample information.

Several procedures have been developed in the past for the estimation of population

uniqueness. Among them two procedures are widely discussed in the literature: an

equivalence class procedure (Zayatz 1991a, 1991b; Greenberg and Zayatz 1992) and a

Poisson-Gamma model (Bethlehem, Keller, and Pannekoek 1990; Keller and Bethlehem

1992; Skinner et al. 1994). These procedures will be discussed brie¯y below.
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3.1. Equivalence class procedure

The equivalence class (EQC) procedure (Zayatz 1991a, 1991b; Greenberg and Zayatz

1992) is based on Bayes' rule. An equivalence class is a non-empty cell. The size of an

equivalence class is the cell size. According to the Bayes' rule, the conditional probability

that an observed equivalence class of size one in the sample came from a population

equivalence class of size one, that is, the probability that an observed sample unique is

also a population unique can be written as

P�1pj1s� �
p1P�1sj1p�X

allj

pjP�1sj j�

where pj is the proportion of equivalence classes of size j in the population, and P�1sj j�

follows a hypergeometric distribution for all j's. The total number of population uniques,

Up, can be estimated based on the estimate of this probability. The population proportions

pj's are estimated by the sample proportions cj=k, for all j's; where cj is the number of cells

of size j in the sample.

This procedure seems to work reasonably well for large sampling fractions, i.e., f $ 0:1.

However, for small sampling fractions this procedure can grossly overestimate the number

of population uniques. Table 1 summarizes the estimated values for Up based on random

samples selected from the population data sets of Examples 1, 2, and 3. For each sampling

fraction, 1,000 random samples were selected. Table 1 gives the average (avg) and

standard deviation (sd) among the 1,000 estimates of Up.

The equivalence class procedure clearly behaves differently for different sampling

fractions. This is possibly due to the estimators used for the pj's. With a small sampling

fraction, the sample proportion structure of the equivalence classes may not correspond

to the population proportion structure, thus causing the overestimation of Up as indicated

in Table 1. Note, however, the equivalence class procedure is a consistent estimation

procedure in the sense that the estimate equals Up when the entire population is sampled.

3.2. Poisson-Gamma model

Bethlehem, Keller, and Pannekoek (1990), Keller and Bethlehem (1992), and Skinner

et al. (1994) proposed a Poisson-Gamma (P-G) model for the estimation of population

uniqueness. This model assumes that the cell size structure in the population is a realization
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Table 1. Averages and standard deviations of ÃUp by EQC method based on 1,000 samples

Example 1 Example 2 Example 3
Up � 222 Up � 3; 105 Up � 278

f avg sd avg sd avg sd

0.01 1,816 325.66 13,207 1,214.87 1,591 469.53
0.05 530 70.57 5,643 329.82 368 79.58
0.1 349 42.74 4,028 191.32 274 45.48
0.5 232 19.88 3,098 72.63 270 20.88
1.0 222 0.0 3,105 0.0 278 0.0



from a superpopulation distribution. They assume that cell sizes, denoted by Yi, for

i � 1; 2; . . . ;K, in the population are independent Poisson random variables with

E�Yi� � Npi and that the pi's are independent and identically distributed Gamma random

variables with parameters a and b. The marginal distribution of Yi is then a negative

binomial distribution with parameters a and 1 � Nb. Under this model, the expected

number of population uniques is

Up � KP�Y1 � 1� � KNab�1 � Nb�ÿ�1�a�

The parameters, a and b, are estimated by method of moments by assuming that the

sample cell frequency structure is a representative realization of the population cell

frequency structure. The value of K is assumed known for this procedure.

The estimates for Up in Table 2 were obtained by applying this model to 1,000 random

samples for each sampling fraction from the data sets of Examples 1, 2, and 3. The

parameters a and b were estimated using a direct application of method of moments on

a negative binomial distribution with parameters a and 1 � Nb. This results in
Ãb � �s2=Åc ÿ 1�=N and Ãa � Åc=�N Ãb�, where Åc and s2 are the mean and standard deviation

of the sample cell frequencies, respectively. By further imposing the condition

Kab � 1, the estimator of Up becomes ÃUp � N�1 � N Ãb�ÿ�1� Ãa�. The results show over-

estimation for small sampling fractions and underestimation as the sampling fraction

increases. Severe underestimation was observed with a sampling fraction of 1, i.e., the

entire population. This indicates that the estimation procedure does not consistently

reproduce Up when the entire population is sampled. Alternative parameterizations

were also suggested. However, the empirical results on the example data showed that those

alternatives would produce even more severe underestimation. Greenberg and Zayatz

(1992) applied this model to the prediction of the number of population uniques in nine

different U.S. Census Bureau data sets and found the estimator performed similarly as

shown in Table 2.

An alternative estimator for the P-G model was applied to data from the Italian Census

Bureau by Skinner et al. (1994). In this modi®ed version, the cell size distribution in a

sample is adjusted by the sample size, n. The cell sizes still have a negative binomial

distribution, but with parameters a and 1 � nb. The parameter estimation method was

also modi®ed. Instead of using method of moments, the following two equations are

used to estimate the model parameters.

c1=n � �1 � nb�ÿ�1�a�
�1�
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Table 2. Averages and standard deviations of ÃUp by P-G model based on 1,000 samples

Example 1 Example 2 Example 3
Up � 222 Up � 3,105 Up � 278

f avg sd avg sd avg sd

0.01 647 97.96 12,399 706.02 1,440 336.17
0.05 519 26.74 4,654 135.65 447 50.87
0.1 415 13.58 2,557 59.26 285 21.85
0.5 101 1.20 404 4.39 78 2.52
1.0 39 0.0 157 0.0 41 0.0



and

Kab � 1 �2�

(See Appendix A.2 of Skinner et al. (1994) for a more detailed discussion.) Unfortunately,

the modi®cation did not improve the performance of the P-G model signi®cantly. The

empirical results show that this procedure severely underestimates the number of

population uniques as the sample unique proportion increases beyond 15 per cent. They

concluded that it is necessary to question the P-G model and its assumptions.

The modi®ed P-G model has another problem. The root of Equation 1 (after substituting

b using Equation 2) does not always exist. For a given set of K and n, the right side of

Equation 1 has a maximum value which may be smaller than the observed unique propor-

tions in samples. For instance, with K � 1; 024 and f � 0:05 (i.e., n � 4,398) in Example

1 data set, the maximum value of the right side of the equation is 0.03577. But the max-

imum observed proportions in 1,000 samples is 0.04502.

After careful study of the P-G model, two problems become evident. First, the Poisson-

Gamma model does not adequately represent the cell frequency structure in the popula-

tion. This was indicated by the fact that the model greatly underestimates the number

of population uniques with a 100 per cent sampling fraction. One reason for this problem

is that P�Yi � 0� may be quite large even though Yi are constrained to be strictly positive in

the de®nition of K. For a Poisson distribution with parameter l, the upper limit of

P�Yi � 1� is obtained when l � 1. Therefore, the maximum value of P�Y1 � 1� is

eÿ1
� 0:3679, yielding a maximum possible value for Up of 0.3679K. In practice, we

have found that the number of population uniques can greatly exceed 0.3679K. For

instance, in Example 2 the number of uniques is 0.4724K. Greenberg and Zayatz

(1992) have found the number of population uniques to be as high as 0.778K. One

approach to improving the model would be to allow K to include zero population counts

in cells which are at least possible, in principle, and to ®t a truncated version of the model

to the positive sample cell counts. This and an alternative approach are discussed further in

Section 4.2.

The second problem with this Poisson-Gamma model seems to be the method used to

estimate the model parameters. It does not seem appropriate to use an estimation proce-

dure based directly on the moments of sample cell frequencies, or simply replace N by

n. When a random sample is drawn from the population, individual entities are drawn

at random, not individual cells. An approach to this problem is discussed in Section 5.1.

4. Modeling the Cell Frequency Distribution

4.1. Overall population model

The search for the new estimation method started with the formulation of a model to repre-

sent the cell frequency structure in the population. To model this structure, the population

is treated as a realization of a super population with Ksp cells.

The probability of the ith cell in the superpopulation will be denoted as pi; i � 1; . . . ;

Ksp with

0 < pi < 1

84 Journal of Of®cial Statistics



If every key variable had a uniform distribution, then the probabilities, pi's, for all the cells

should be the same. This is rarely the case in practice. For relatively large Ksp, the pi's

can be thought of as being spread between 0 and 1 continuously. Therefore,

pi; i � 1; 2; . . . ;Ksp can be treated as continuous and identically distributed random

variables with probability density function fP�p�.

The population of size N drawn from a superpopulation can be viewed as an outcome of

N independent trials. In each trial, entities from each cell in the superpopulation get into

the population independently according to the corresponding cell probabilities. So, the

number of entities of the ith cell in the population, Yi, will approximately follow a

binomial distribution with parameters pi and N; i � 1; 2; . . . ;Ksp.

This set-up is similar to the set-up of the model for word usage frequency problems

(Sichel 1975; Bunge and Fitzpatrick 1993). The population cell frequencies, Yi, are

identically distributed random variables with probability distribution

P�Y � yjN� �

�1

0

N

y

 !
p y

�1 ÿ p�NÿyfP�p�dp

Since the population size N is usually quite large and the p is small (due to the large Ksp), a

Poisson distribution can be used to approximate the binomial distribution with l � Np.

Then

P�Y � yjN� <
�1

0

1

y!
eÿNp

�Np� yfP�p�dp

�

�N

0

1

y!
eÿllyfL�l�dl

This results in a compound Poisson distribution as a model for the population cell

frequencies. The only population cells from which sample units can be drawn are those

where Yi > 0. Therefore, the population is de®ned to have K # Ksp cells such that

Yi $ 1; i � 1; 2; . . . ;K. The model developed here focuses on modeling these K non-

zero population cell frequencies.

The distribution of l needs to be chosen. It should be selected to describe the variation

of the expected cell frequencies or sizes. We have found that, in practice, the frequency

distribution of population cell size tends to have an inverse-J shape with a heavy upper

tail. Figure 1 displays the cell size distributions for the population data sets of the ®ve

examples. To illustrate the inverse-J portion of the distributions in detail, the distributions

of the ®rst 30 cell sizes of Examples 1, 2, and 3 are also shown. Figure 1 shows that the

shapes of the cell size distributions of the ®rst four examples are very similar. As

mentioned in Section 2, the cell size distribution of Example 5, which was used to

illustrate an extreme situation, does not have the heavy upper tail.

To model the entire distribution, a mixture distribution for the l is probably necessary.

One distribution could be used to model the inverse-J shape while another distribution

would model the long tail. Since the goal of this research is to estimate the number of

unique cells in a population, ®nding a distribution that adequately models the inverse-J

portion of the cell frequency, i.e., the frequency distribution of small cell sizes, may be

more important than ®nding an appropriate distribution that would also model the tail.
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Fig. 1. Population cell size distributions. The ®rst three pairs of the graphs display the cell size distributions and

the details of the inverse-J portion of the distributions for Examples 1, 2, and 3. The graphs in the fourth row

display the cell size distributions of Examples 4 and 5. Note the short tail of the distribution for Example 5



This will be the case provided the method of parameter estimation only uses information

from the inverse-J portion of the entire distribution.

In the model developed here, it is assumed that l has a single distribution for the entire

range of the cell sizes. This distribution is chosen to accurately represent the frequencies of

small cell sizes, i.e., inverse-J shape part, but not necessarily represent the long tail. A

parameter estimation method is then developed to minimize the effect of the lack of ®t

for the tail distribution.

A Gamma distribution with parameters a and b is selected for the distribution of l. The

marginal distribution of the cell frequency in the population is then a negative binomial

distribution. One advantage to this distribution is that the density function has a workable,

closed form. With some modi®cation, the compound Poisson-Gamma distribution seems

to ®t most real and simulated data sets we have worked with.

4.2. Modeling the inverse-J curve

The possible values of the cell frequencies for the K cells in the population are positive

values, therefore the model distribution must exclude the possibility of Yi � 0. There

are two ways to exclude zero from the compound Poisson-Gamma distribution. One

way is to truncate the distribution at zero. The second way is to slide the entire distribution

one unit to the right.

Applying the zero-truncated negative binomial distributions to several population data

sets indicated that this distribution did not adequately model the inverse-J part of the

population distribution. In the inverse-J part of the distribution, the number of cells seems

to decrease exponentially as the cell size increases. The rate of the decrease between the

frequencies of size one and size two cells is quite high, and is much greater than the rate of

decrease between the frequencies of size two and size three cells. The zero-truncated

negative binomial distribution does not seem to follow these rates of decrease. The shape

of the standard negative binomial distribution seems to follow the rate of the decrease

between its ®rst two points, i.e., zero and one. Truncating at zero causes a probability

mass redistribution that de-emphasizes this drop.

A way to maintain the desired drop and still exclude zero is to slide the entire distribu-

tion one unit to the right. With this shift, the variable values start from one with the same

probability density as the variable value zero in the standard negative binomial distribution.

This distribution will be de®ned as the Slide Negative Binomial (SNB) distribution. The

pdf of SNB is

P�Y � y� �
G�a � �y ÿ 1��

G�a��y ÿ 1�!
ba

�1 ÿ b� yÿ1; y � 1; 2; . . .

Using the SNB distribution to exclude zero from the compound Poisson-Gamma distribu-

tion, the model is set up as follows. Let Y1;Y2; . . . ;YK be identically distributed random

variables which represent the cell frequencies of the cells in the population for which

Yi > 0; �K < Ksp�. Assume Yi; i � 1; 2; . . . ;K has SNB distribution with parameters a

and b. The expected number of uniques in the population is

E�Up� � KP�Y1 � 1� � Kba
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This expectation can be estimated as

ÃUp � K Ãb Ãa

where K is the total number of non-zero cells in the population, and Ãa and Ãb are estimates

of a and b from SNB, respectively. In the next section, we will develop a method of

estimation for a and b.

5. Population Parameter Estimation

5.1. Sample cell frequency distribution

Recall that the population is a realization of the superpopulation and has been treated as a

simple random sample generated through binomial sampling from the superpopulation.

The population is said to be ®nite in the sense that there is not an in®nite number of entities

in each population cell. Therefore, the frequency distribution of a cell in the sample

depends on the particular outcome of this cell from that random process, i.e., the size of

this cell in the population. The size of a cell in the population provides an upper limit

for the size of this cell in the sample. For example, if a cell in the population has size

one, the only possible sizes for this cell in the sample is one or zero. The distribution of

the cell frequency in a sample needs to be based on a conditional distribution given a

particular outcome of the population.

Consider a cell of size y in the population and let f be the sampling fraction. Since each

entity of the cell has probability f to get into the sample, the size distribution of this cell in

the sample will approximately follow a binomial distribution with parameters f and y. Let

X denote the size of a cell in the sample, then

P�X � xjy� �
y

x

 !
f x
�1 ÿ f � yÿx; x � 0; 1; . . . ; y

The marginal distribution of X is

P�X � x� �
X¥

y�max�x;1�

P�X � xjy�P�Y � y�

�
X¥

y�max�x;1�

y!

x!�y ÿ x�!
f x
�1 ÿ f � yÿx G�a � �y ÿ 1��

G�a��y ÿ 1�!
b1ÿa

�1 ÿ b� yÿ1

After simpli®cation,

P�X � x� �

ba
�1ÿf �

�1ÿ�1ÿf ��1ÿb��a
x � 0

ba f x

G�a�x!
G�a�x�

�1ÿ�1ÿf ��1ÿb��a�x �1 ÿ f ��1 ÿ b�x � G�a�xÿ1�
�1ÿ�1ÿf ��1ÿb��a�xÿ1 x �1 ÿ b�xÿ1

h i
x � 1; 2; . . .

8><>: �3�

Based on the previous assumptions, Equation 3 is the distribution of the sample cell

frequencies.

5.2. Parameter estimation procedure

Given the sampling distribution for the cell frequencies in Equation 3, existing parameter
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estimation techniques could be applied. First consider the standard method of moments.

The expectations of cell sizes can be derived using the probability distribution in

Equation 3. The mean and variance are

E�X� � f
a

b
�1 ÿ b� � 1

� �
�4�

and

Var �X � �
a f 2

�1 ÿ b�

b2
�

a f �1 ÿ f ��1 ÿ b�

b
� f �1 ÿ f � �5�

Replacing the left sides of Equations 4 and 5 by the sample mean and variance of cell sizes,

a and b can be estimated by simultaneously solving these two non-linear equations. Note

that when the sample mean and variance are computed, the zero-size cells in a sample

should be counted.

This estimation method was applied to the example data sets. The results showed that

Up tended to be underestimated for small sampling fractions and overestimated as the

sampling fraction increases. The estimator appears to be inconsistent. A possible reason

for this problem is that the population model does not ®t the data well at the upper tail

and this estimation method relies on information from the entire distribution. Recall

that a distribution was chosen to model the inverse-J portion of the population distribution

well, but not necessarily the long tail. Therefore, a different estimation procedure which

uses information primarily from the inverse-J part of the population distribution needs

to be used.

In a sample, the expected number of size one cells is

E�C1� � KP�X � 1�

and the expected number of size two cells is

E�C2� � KP�X � 2�

The parameters a and b can be estimated by setting these expectations to their observed

sample values c1 and c2 and simultaneously solving the nonlinear equations. These

equations are

c1 � K f
b

1 ÿ �1 ÿ f ��1 ÿ b�

� �a a�1 ÿ f ��1 ÿ b�

1 ÿ �1 ÿ f ��1 ÿ b�
� 1

� �
�6�

and

c2 � K
abaf 2

�1 ÿ b�

2�1 ÿ �1 ÿ f ��1 ÿ b��a�2
�2 ÿ �1 ÿ a��1 ÿ b��1 ÿ f �� �7�

There is no closed form solution for this method of moments estimation. Therefore, a

numerical procedure must be used to ®nd Ãa and Ãb.

A method of moments estimation procedure using E�C1� and E�C2� is not the only

choice in this problem. Any set of two simultaneous equations involving a and b could

be used. There are several reasons why E�C1�, and E�C2� were chosen. The lack of ®t
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on the upper tail of the model will have less effect on the c1 and c2 values because small

cells in the sample will be principally generated from small cells in the population. The

inverse-J shape of the population is dominated by the probabilities associated with size

one and size two cells. Therefore c1 and c2 contain much more information about this

part of the population distribution than any other cell sizes. Also, c1 is the only observed

value which directly contains the information about population uniques. Finally, these

estimation procedures are consistent, the proof of which is straightforward.

The results from applying this estimation technique to 1,000 random samples from

Examples 1 to 5 are given in Table 3. These empirical tests provide evidence that this

estimation method works well for both small and large sampling fractions. Figure 2

provides a graphical comparison of the performance of this new procedure to the existing

methods for Example 1, 2, and 3. The improvement is rather dramatic, although the

estimates of Up still have a slight upward bias.

Notice that the results for Example 5 appear unbiased. Recall that the cell frequency

distribution of this data set does not have a long tail. The SNB model has an excellent

®t to the entire cell frequency distribution in Example 5. The good performance of this

example indicates that the lack of ®t of the SNB model at the upper tail portion of the

population cell frequency distribution may still be in¯uencing the estimation of Up,

when the sampling fraction is small. Another possibility for the estimation bias could

be because the procedure does not take into account the constraints S
Ksp

i�1pi � 1,

SK
i�1Yi � N, and SK

i�1Xi � n.

In practice, the total number of cells in a population may not be known. Based on the

sample cell frequency distribution derived in this section, K can be estimated simulta-

neously with Up. The expected number of size zero cells in a sample, which is the expected

difference between observed number of cells in the sample and K, may be used as the third

equation for this purpose. Therefore, K, a, and b can be estimated simultaneously by

solving the three non-linear equations. The empirical results of this procedure indicate

that this estimation method performs reasonably well for large sampling fractions. But

the results are not stable for small sampling fractions. For small sampling fractions, the

variance of the estimates of K can be quite large causing a large variation in the estimates

of Up.

6. Variance of ÃUp

The estimator of Up is a function of Ãa and Ãb, which in turn are functions of C1 and C2.
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Table 3. Averages and standard deviations of ÃUp by SNB model based on 1,000 samples

Example 1 Example 2 Example 3 Example 4 Example 5
Up � 222 Up � 3,105 Up � 278 Up � 4; 479 Up � 40; 217

f avg sd avg sd avg sd avg sd avg sd

0.01 382 68.52 4,055 301.46 321 79.92 6,882 291.0 45,055 2,957.1
0.05 356 53.34 3,648 161.79 305 45.91 6,524 164.2 40,765 1,439.6
0.1 347 63.76 3,645 105.68 307 39.06 6,395 242.4 40,374 1,140.9
0.5 238 28.51 3,200 90.12 280 25.62 4,691 121.9 40,143 165.3
1.0 222 0.0 3,105 0.0 278 0.0 4,479 0.0 40,217 0.0
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Fig. 2. Estimation method comparison. The middle lines of each box represent the averages for ÃUp of the 1,000

samples from each of the three sampling fractions. The two end lines of each box represent average 6 2 (sample

standard deviation)



According to the d-method, the variance of ÃUp can be estimated by

Var � ÃUp� � �¶ ÃUp�
0V�C��¶ ÃUp�

where �¶ ÃUp�
0
� �¶ ÃUp=¶C1; ¶ ÃUp=¶C2�, and V(C) is the covariance matrix of �C1;C2�

0.

Recall that, during sampling, each cell may become a size one cell in the sample with

probability p1 � P�X � 1� and may become a size two cell in the sample with probability

p2 � P�X � 2�. Therefore, the total number of sample size one cells, C1, and the total

number of sample size two cells, C2, follow binomial distributions with parameters

�K; p1� and �K; p2�, respectively. The covariance matrix of C is

V�C� �
Kp1�1 ÿ p1� Kp1p2

Kp1p2 Kp2�1 ÿ p2�

 !

The partial derivatives, ¶ ÃUp=¶C1 and ¶ ÃUp=¶C2, need to be calculated, via Ãa and Ãb, based

on Equations 6 and 7. Because Ãa and Ãb cannot be written explicitly as functions of C1

and C2, the rules for implicit differentiation must be applied. These details are given in

Appendix A.

This approach was applied to Examples 1 to 4. A standard error estimate of ÃUp was

calculated for each of the 1,000 samples from each sampling fraction. The means of the

sets of 1,000 standard error estimates are listed in Table 4 in the column under the head-

ings ``d-meth.'' The empirical standard deviations given in Table 3 are listed again in this

table in the columns under the headings ``sample.'' The results show that the d-method is

not sensitive to the sampling fraction. This insensitivity results in a signi®cant under-

estimation when f is 0.01, and a slight overestimation when f is large (e.g., 0.5). This

method was also applied to a set of samples of size 10,000 from Example 2 data. A similar

pattern was observed.

7. Conclusions

The Slide Negative Binomial model developed in this work has signi®cantly improved the

results of population uniqueness estimation, especially for small sampling fractions.

However, there is still an overestimation problem for small sampling fractions. This over-

estimation can lead to data being unduly withheld from legitimate users. For future study,

a distribution or a mixture of distributions which can better model the upper tail of the

population cell frequency distributions should be considered. The lack of independence
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Table 4. Estimated standard errors of ÃUp using d-method

Example 1 Example 2 Example 3 Example 4
f sample d-meth sample d-meth sample d-meth sample d-meth

0.01 68.52 48.25 301.46 157.7 79.92 46.94 291.0 182.3
0.05 53.34 52.36 161.79 123.3 45.91 45.92 164.2 185.3
0.1 63.76 65.19 105.68 120.3 39.06 41.99 242.4 221.3
0.5 28.51 39.14 90.12 109.3 25.62 33.21 121.9 161.2



in the Yi's that leads to the constraints on the Spi, SYi, and Sxi should also be incorporated

into the model.

Another problem which needs further research efforts in this area is the estimation for

the K unknown case. An investigation of the relationship between the values of K and the

estimates of Up may be helpful for determining the upper and lower bounds of ÃUp since, in

practice, users might have some idea about the range of K even when the exact value of K

is not known.

In addition to the estimation of population uniques, the SNB model may have more

applications. It could be used to model the complete frequency distribution of a cross

tabulation table provided an improvement to the ®t at the upper tail of the distribution

can be found. It may also be applicable to the problem of domain reduction dependencies

in database systems (Hansen and Unger 1991).

Appendix A. Calculation Details for Estimating Variance of ÃUp

To estimate the variance of ÃUp using d-method, the partial derivatives ¶ ÃUp=¶C1 and

¶ ÃUp=¶C2 need to be calculated. Because Up is estimated through the estimates of model

parameters, a and b, these derivatives should be calculated as follows.

¶ ÃUp

¶Ci

�
¶ ÃUp

¶a

¶a

¶Ci

�
¶ ÃUp

¶b

¶b

¶Ci

; i � 1; 2 �8�

From E�Up� in Section 4.2., we have

¶ ÃUp

¶a
� Kba ln b and

¶ ÃUp

¶b
� Kab�aÿ1�

However, the estimates of a and b cannot be written explicitly as functions of C1 and C2.

The derivatives ¶a=¶Ci and ¶b=¶Ci, i � 1; 2, therefore, need to be calculated based on

Equations 6 and 7 using the rules for implicit differentiation. Let g1�a;b� and g2�a; b�

denote the right hand sides of Equations 6 and 7, respectively. De®ne

f1�C1;a;b� � ln C1 ÿ ln�g1�a;b��

f2�C2;a;b� � ln C2 ÿ ln�g2�a;b��

The reason for taking the natural logarithm is to simplify the calculation. Then, by taking

partial derivative with respect to C1 and C2 on both sides of these two equations, four

equations are formed. They are

¶fi

¶Cj

�
¶fi
¶a

¶a

¶Cj

�
¶fi

¶b

¶b

¶Cj

� 0; for i � 1; 2; j � 1; 2

The four partial derivatives desired can be obtained through solving the equation set.
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