
Evaluating Alternative One-Sided Coverage Intervals
for a Proportion

Yan K. Liu1 and Phillip S. Kott2

The construction of coverage intervals for a proportion is difficult, especially when the
proportion is very small or very large. Most of the methods treated in the literature implicitly
assume simple random sampling. These interval-construction methods are not immediately
applicable to data derived from a complex sample design. Some recent papers have
addressed this problem, proposing modifications for complex samples. Matters are further
complicated when a one-sided coverage interval is desired. This article provides an extensive
review of existing methods for constructing coverage intervals for a proportion under both
simple random and complex sample designs. It also evaluates the empirical performances of
different one-sided coverage intervals under both a simple random and a stratified random
sample design.
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1. Introduction

In survey practice, we are often interested in constructing a coverage interval for a

proportion of successes in the population that represents one of two outcomes. The

binomial distribution is frequently used to model the number of successes in a simple

random sample of size n from a population of size N. If the sample selections are not

independent (i.e., sampling is without replacement), the resulting distribution is a

hypergeometric distribution, not a binomial one. However, for N much larger than n, the

binomial distribution is a good approximation and widely used. Therefore, the proportion

is also referred as the binomial proportion when the population size is large enough.

Throughout this article, we use the term “coverage interval” instead of “confidence

interval,” which is explained at the end of Section 2.

It is well-known that the standard Wald method for constructing coverage intervals

around a proportion behaves erratically, especially when the proportion is near 0 or 1. Its

coverage probability can be severely under or over the nominal level even when sample

size is large. Because of the poor performance of the standard Wald method, the literature

contains a series of modifications, alternative methods, and comparisons for a two-sided

coverage interval under a simple random sample design (Brown et al. 2001; Agresti
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and Coull 1998; Vollset 1993; Clopper and Pearson 1934). Some recent papers have

addressed this problem under more complex sample designs (Feng 2006; Sukasih and Jang

2005; Kott et al. 2001; Korn and Graubard 1998).

The construction of coverage intervals for a proportion is difficult because the

sampling distribution of the proportion does not closely follow its normal approximation

and because the binomial distribution has the lattice structure. Constructing empirically

effective one-sided coverage intervals can be an even more difficult task because of the

skewness of the sampling distribution of the proportion. Cai (2004) and Hall (1982)

use an Edgeworth expansion to develop one-sided coverage intervals under a simple

random sample. Kott and Liu (2009) modify the Hall method and extend it to handle

data from a complex sample design with a particular emphasis on stratified (simple)

random sampling.

We are particularly interested here in constructing one-sided coverage intervals

for proportions that are either very small (less than 20%) or very large (more than 80%).

This is a case with many useful applications. For example, when auditing insurance

claims, the proportion of underpaid claims and its upper bound are often of interest.

Because of the large number of claims in the population, only a small statistical sample

can be reviewed. Stratified simple random sampling is often used to select the sample

because different sampling rates are needed and different error rates are believed in

different strata. The stratifiers can be geographic location, type of insurance, characteristic

of insurer, and so forth. The coverage interval of a proportion is also often used in quality

control. The Statistics of Income division in the IRS has been reviewing the quality of IRS

customer services using statistical samples. One of such projects is the National Quality

Review System (NQRS) that reviews telephones and paper cases. A statistical sample is

selected for reviewing E-mails, Account calls, Tax Law calls and so on. A fixed number

of sampling units are randomly selected from each service location every day. Because

the total numbers of units are different on different days and at different locations, the

sample is considered a stratified random sample with day and location as stratifiers. After

the sampled units are reviewed each month, the data collected is used to estimate the

accuracy rates as well as the coverage limits. In some circumstances, these estimated

accuracy rates can be close to 1, where the lower bounds may be desired. The applications

in health care are often carried out using complex sample designs. The 2006/2007

Northern Ireland Drug Prevalence Survey (UK Department of HSSPS, Technical Report

2008) published a series of proportions of drug use and their coverage intervals. The

survey uses a multistage sample design. In the first stage, a stratified sampling design is

used to select primary sampling units of electoral districts. Within each electoral district,

residential households are randomly selected. One member of each sampled household is

selected as the final sampling unit. The effective-sample-size-adjusted Clopper-Pearson

method is used for interval estimates of prevalence rates. Only two-sided coverage

intervals are published in this report, but one-sided upper limits may also be of interest.

Organizationally, the article is divided up into four parts. This introduction is Section 1.

Section 2 provides an extensive list of coverage-interval methods under simple random

sampling and then compares them. Section 3 looks at interval methods modified to handle

complex sample data and evaluates their performances under stratified random sampling.

Section 4 contains a summary and discussion of our results.
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2. Interval Construction Under a Simple Random Sample

Let X follow a binomial distribution with parameters n and p. The parameter p is

sometimes called a “binomial proportion.” In the survey sampling setting, n is the sample

size of a simple random sample. Let k denote a sampled element and xk be either 0 or 1.

Assuming that xk follows the Bernoulli distribution with parameter p, the estimator for

p from the sample is p̂ ¼ x=n, where x ¼
Pn

xk.

This section contains a summary of many of the interval-construction methods under

simple random sampling that have appeared in the literature. All the methods assume

that the population size is large enough not to need a finite population correction.

The symbol z is used to denote the z-score of a standard normal distribution associated

with one-sided (1 2 a)% coverage intervals. For 95% coverage intervals, a ¼ 0:05, and

the z-score is 1.645.

2.1. The Methods

2.1.1. Standard Wald Interval

This is the best known and most commonly used interval. It is based on the limiting

distribution (as n grows arbitrarily large): ðp̂2 pÞ=
ffiffiffiffiffiffiffiffi
vðp̂Þ

p
! Nð0; 1Þ, where

vðp̂Þ ¼ p̂ð1 2 p̂Þ=ðn2 1Þ. The lower and upper bounds are

LS ¼ p̂2 z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1 2 p̂
� �

= n2 1ð Þ

q
; and US ¼ p̂þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1 2 p̂
� �

= n2 1ð Þ

q
ð1Þ

That is to say, the two one-sided Wald intervals for p are p $ LS, and p # US.

2.1.2. Wilson (Score) Interval

Instead of using the variance estimator for p̂, this interval employs the true variance

Vðp̂Þ ¼ pð1 2 pÞ=n. It is based on the limit: ðp̂2 pÞ=
ffiffiffiffiffiffiffiffiffi
Vðp̂Þ

p
! Nð0; 1Þ. The lower and

upper bounds are

LW ¼ ~p2
z
ffiffiffi
n

p

nþ z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1 2 p̂
� �

þ
z2

4n

r
; and UW ¼ ~pþ

z
ffiffiffi
n

p

nþ z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1 2 p̂
� �

þ
z2

4n

r
ð2Þ

where ~p ¼
p̂þ z2=2n

1 þ z2=n

2.1.3. Logit Interval

A logistic transformation l̂ ¼ log ½p̂=ð1 2 p̂Þ� stabilizes the variance of p̂. The logit

interval is based on the limit: ðl̂2 lÞ=
ffiffiffiffiffiffiffiffiffi
vðl̂Þ

p
! Nð0; 1Þ, where vðl̂Þ ¼ 1=½np̂ð1 2 p̂Þ�. The

lower and upper bounds are

LL ¼
elL

1 þ elL
; where lL ¼ l̂2 z

ffiffiffiffiffiffiffiffiffi
vðl̂Þ

q
; and

UL ¼
elU

1 þ elU
; where lU ¼ l̂þ z

ffiffiffiffiffiffiffiffiffi
vðl̂Þ

q ð3Þ
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2.1.4. Angular (Arcsine of Square Root) Interval

Another variance-stabilizing transformation is the angular transformation, d ¼ arcsin ð
ffiffiffi
p

p
Þ.

The interval for d is based on the limit: ðd̂2 dÞ=
ffiffiffiffiffiffiffiffi
vðd̂Þ

p
! Nð0; 1Þ, where d̂ ¼ arcsin ð

ffiffiffî
p

p
Þ

and vðd̂Þ ¼ 1=ð4nÞ. This results in these lower and upper bounds for p:

LA ¼ sin 2ðdLÞ ¼ sin 2 arcsin ðd̂Þ2 z=ð2
ffiffiffi
n

p
Þ

� �
; and

UA ¼ sin 2ðdLÞ ¼ sin 2 arcsin ðd̂Þ þ z=ð2
ffiffiffi
n

p
Þ

� � ð4Þ

2.1.5. Jeffreys Interval

The Bayesian Posterior interval under a Jeffreys prior of the beta distribution Beta

(1/2,1/2) is

LJ ¼ Betaða; xþ 1=2; n2 xþ 1=2Þ; and

UJ ¼ Betað1 2 a; xþ 1=2; n2 xþ 1=2Þ
ð5Þ

2.1.6. Clopper-Pearson Exact Interval

This interval is based on inverting the equal-tailed binomial tests of the null hypothesis

H0 : p ¼ p0 against the alternative hypothesis H1 : p – p0. The lower and upper bounds

can be obtained by solving the polynomial equations:

LCP ¼ p :
Xx21

t¼0

n

t

 !
ptð1 2 pÞn2t ¼ 1 2 a

( )
; and

UCP ¼ p :
Xx
t¼0

n

t

 !
ptð1 2 pÞn2t ¼ a

( )

They can be expressed in terms of a beta distribution as

LCP ¼ Betaða; x; n2 xþ 1Þ; and UCP ¼ Betað1 2 a; xþ 1; n2 xÞ ð6Þ

2.1.7. Mid-P Clopper-Pearson Interval

One way to reduce the perceived over-conservativeness of the Clopper-Pearson method

obtains by solving the polynomial equations:

pL ¼ p :
1

2

n

x

 !
pxð1 2 pÞn2x þ

Xx21

t¼0

n

t

 !
ptð1 2 pÞn2t ¼ 1 2 a

( )

pU ¼ p :
1

2

n

x

 !
pxð1 2 pÞn2x þ

Xx21

t¼0

n

t

 !
ptð1 2 pÞn2t ¼ a

( )

Journal of Official Statistics572



The interval can be expressed in terms of a beta distribution as

LMP ¼
1

2
{Betaða; x; n2 xþ 1Þ þ Betaða; xþ 1; n2 xÞ}; and

UMP ¼
1

2
{Betað1 2 a; x; n2 xþ 1Þ þ Betað1 2 a; xþ 1; n2 xÞ}

ð7Þ

Note its similarity to the Jeffreys interval in Equation (5).

Brown et al. (2001) evaluate the properties of these seven methods for constructing

two-sided intervals (replacing a by a/2 and z by the z-score of 1 2 a/2). Unfortunately, an

effective two-sided-interval method may not work as well in constructing a one-sided

interval. This is because a two-sided interval can have compensating one-sided errors due

to the sampling distribution of p̂ being asymmetric.

The following methods were developed specifically to construct one-sided intervals

based on an Edgeworth expansion that explicitly adjusts for the skewness in p̂.

2.1.8. Hall Interval

The bounds for this interval translate the Wald bounds in Equation (1) towards 1
2
. They are

LH ¼ p̂þ d2 z
ffiffiffiffiffiffiffiffi
vðp̂Þ

p
; and UH ¼ p̂þ dþ z

ffiffiffiffiffiffiffiffi
vðp̂Þ

p
ð8Þ

where vðp̂Þ ¼
p̂ð1 2 p̂Þ

n2 1
and d ¼

z2

3
þ

1

6

� �
ð1 2 2p̂Þ

n

The translation term, d, is OP(1/n). Terms of smaller asymptotic order have been dropped.

Hall (1982) has n in the denominator of vðp̂Þ rather than n 2 1. This difference has no

practical consequence when n $ 30.

2.1.9. Cai Interval

Cai (2004) goes further than Hall in correcting for the skewness in p̂ by keeping OP(1/n 2)

terms producing the bounds:

LCai ¼ �p2
zffiffiffi
n

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1 2 p̂Þ þ

g1p̂ð1 2 p̂Þ þ g2

n

r
; and

UCai ¼ �pþ
zffiffiffi
n

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1 2 p̂Þ þ

g1p̂ð1 2 p̂Þ þ g2

n

r ð9Þ

where �p ¼
p̂þ h=n

1 þ 2h=n
; h ¼

z2

3
þ

1

6
; g1 ¼ 2

13

18
z2 2

17

18
and g2 ¼

1

18
z2 þ

7

36

2.1.10. Kott-Liu Interval

Under simple random sampling, Kott and Liu (2009) propose a slight modification of the

Hall interval that better handles samples with small p̂ð1 2 p̂Þ values:

LKL ¼ p̂þ d2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2vðp̂Þ þ d2

p
; and UKL ¼ p̂þ dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2vðp̂Þ þ d2

p
ð10Þ
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where vðp̂Þ and d are unchanged from those in Hall. Notice that the lower bound attains its

minimum value, 0, when p̂ ¼ 0, and the upper bound attains its maximum value, 1, when

p̂ ¼ 1. This method will be described further in the following section.

2.1.11. Other Intervals

There are also various continuity-correction approaches (Vollset 1993) that are not

included in this article. Two other methods not treated here are the Wilson-logit and the

likelihood-ratio interval (Brown et al. 2002; Feng 2006). These methods employ an

iteration algorithm to obtain the interval end-points and therefore harder to compute.

Finally, when n is large and p is close to 0, the binomial distribution Bin(n,p) can be

approximated by a Poisson distribution PðX ¼ xÞ ¼ l xe2l=x!, where l ¼ np (Newcombe

1998; Feng 2006). The lower and upper bounds for p are

LP ¼ x2
2x;a=ð2nÞ; and UP ¼ x2

2ðxþ1Þ;12a=ð2nÞ

This method has to be redefined for p near 1 to be effective and is not useful when p is not

very near either 0 or 1.

2.2. Comparison of One-Sided Intervals Under Simple Random Sampling

In this subsection, the methods defined in Equations (1) through (10) are used to construct

one-sided 95% coverage intervals. They are then compared in terms of their coverage

probabilities and the average distances from their endpoints to the true value of p.

The coverage probability for the given p and n is defined as the probability of p falling

within the coverage interval CI, that is,

Pð p [ CIÞ ¼
Xn
x¼0

IðxÞPðxÞ

whereCI ¼
ðL; 1Þ; for lower bound

ð0;UÞ; for upper bound

(

PðxÞ ¼
n

x

 !
pxð1 2 pÞn2x; 0 , p , 1 and IðxÞ ¼

1; if p [ CI

0; if p � CI

(

The average distance for the given p and n is defined here as the mean of the absolute

distance of lower or upper bound from the true value of p, that is,

AD ¼
Xn
x¼0

DðxÞPðxÞ

whereDðxÞ ¼
LðxÞ2 pj j; for the lower bound

UðxÞ2 pj j; for the upper bound

(

We are interested in a setting where the sample size n is relatively small but large enough

for the asymptotic theory supporting some of the methods to be effective. Therefore, we

evaluate a sample of size 30. Coverages perform differently for different sample sizes and
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different values of p (Brown et al. 2001, 2002, discuss this at length for two-sided

intervals). Thus, we evaluate one-sided coverages over the entire range of potential

p-values.

We make a few sensible modifications of the methods when x ¼ 0 or n. We force the

lower bound to be 0 at x ¼ 0 and the upper bound to be 1 at x ¼ n. We also force the lower

bound to be 0 if it falls below 0 and the upper bound to be 1 if it falls above 1. In addition,

when a bound is not defined at x ¼ 0 or n for a method (the Wald, Logit and Mid-P), we

take a conservative stance and replace it with the Clopper-Pearson.

The coverage probabilities and average distances for all the methods are symmetric or

very nearly so in the range 0 # p # 1. Consequently, conclusions drawn about lower

bounds for, say, p , .2 also apply to upper bounds for p . .8, and conclusions about lower

bounds for p . .8 apply to upper bounds for p , .2. These values are calculated at

p ¼ :001; :002; :003; : : : ; :998; :999.

Fig. 1. Coverage probabilities of lower bound at 95% nominal level: simple random sample with n ¼ 30
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The plots of coverage probabilities for n ¼ 30 are displayed in Figure 1. The vertical

line at p ¼ :905 represents the p-value where p30 ¼ :05. So, when p $ .905, p̂ has at least

a 5% probability of being 1.

The following conclusions can be drawn from the plots in Figure 1:

. All methods have 100% coverages as p gets very close to 1. The region of the 100%

coverage is called “lip” in this article. All methods can sometimes experience a

downward spike before the “lip,” we call it “dip.”

. The Wald and Angular methods are systematically biased, sometimes in one

direction sometimes in the other.

. The Clopper-Pearson method always has at least the nominal coverage (95%), but

often over-covers. It has 100% coverage when p $ .905.

. The Wilson and Logit methods are systematically biased in the opposite direction of

the Wald but to a lesser degree. They tend to under-cover for small p and over-cover

for large p. The over-coverage for the Wilson near p ¼ 1 is not as pronounced as for

the Clopper-Pearson.

. The Jeffreys and Hall methods have large downward spikes (under-coverages) near

the two boundaries.

. The Mid-P has some large downward spikes near p ¼ 0, but performs reasonably

well for large p.

. The Kott-Liu and Cai methods provide good coverages almost everywhere. Both

have 100% coverages as p gets very close to 1, but this “lip” begins for the Kott-Liu

(at 0.929) while the Cai is still experiencing its worst downward spike or “dip”

(it reaches a minimum coverage of 88% before beginning its lip at 0.935; the Kott-Liu

minimum coverage is 90.1%). Before then, the two methods have identical coverages

for large p-values ($ .873).

The above analysis of coverage shows that when the proportion is in the middle range

(between 0.2 and 0.8), there are many good methods: Jeffreys, Hall, Mid-P, Cai, and

Kott-Liu. When the proportion is either very small (less than 20%) or very large (more

than 80%), Mid-P, Cai, and Kott-Liu are the better methods. Analogous graphs for a few

other sample sizes n ¼ 20; 60; and 120 (not shown) behave similarly.

We plot the average distances of lower bounds versus the tail values of p for the better

methods (Mid-P, Cai, and Kott-Liu) and for the conservative Clopper-Pearson in Figure 2.

In general, the average distance is longer when the coverage probability is larger. The

Clopper-Pearson has a much longer average distance than the other methods, not

surprisingly since it tends to be conservative. For small p, the Kott-Liu and Cai behave

very similarly. For large p, the Kott-Liu tends to be slightly longer than the Cai. The Mid-P

becomes longer than Kott-Liu and Cai when p gets near 1 but not before.

In summary, the Kott-Liu and Cai methods are the best in terms of having coverages

almost always close to the nominal and a reasonable average distance. For Mid-P method,

when p is near the end (larger than 0.95), it is more conservative than the Kott-Liu and Cai

methods but less conservative than the Clopper-Pearson. Mid-P has large downward

spikes when p is near 0. The Clopper-Pearson never under-covers, but has longer average

distances. Many view the property of never providing less than nominal coverage as very

desirable, if not absolutely required (see the discussions in Brown et al. 2001). They argue
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that users should have confidence that their intervals always cover at least as well as

advertised, hence the popular term “confidence interval.” However, the confidence

interval can be too conservative for particular values of p. In addition, such confidence is

not always justified with some complex sample data, as we shall see. Therefore, we use the

term “coverage interval” instead of “confidence interval” in this article. Our goal is to

determine coverage intervals for particular values of p.

3. Interval Construction Methods Under Stratified Random Sampling

Let s denote elements of the whole sample, k (again) denote an element, and wk the weight

of element k. Let xk be either 0 or 1. The estimated proportion is p̂ ¼
P

s wkxk=
P

s wk.

3.1. The Methods

The most common way of extending interval-construction methods to handle sample data

from a complex design is by replacing the sample size n with the (estimated) effective

sample size n* and replacing x with x* ¼ n*p̂. When vðp̂Þ . 0, where vðp̂Þ is the estimated

variance of p̂ under the complex sample design, the effective sample size n* can be

defined as

n* ¼
p̂ð1 2 p̂Þ

vðp̂Þ
ð11Þ

Sometimes, n* is defined as 1 plus the left-hand side of Equation (11). The distinction is

usually trivial when n $ 30. The ratio n=n* is called “the (estimated) design effect.”

The idealized effective sample size ~n features the true variance vðp̂Þ in the denominator

of Equation (11) in place of the estimated variance vðp̂Þ. Unfortunately, Vðp̂Þ is unknown

and needs to be estimated from the sample in practice.

The ad hoc procedure of replacing n by n* and x by x* is used and discussed in Breeze

(1990, cited in Feng 2006) for modifying the Poisson interval, in Kott and Carr (1997) for

modifying the Wilson interval and in Korn and Graubard (1998) for modifying the

Clopper-Pearson interval. Using the same procedure, Feng (2006) treats a few other

two-sided intervals: Wald, Logit, Angular, and Likelihood Ratio intervals. We also apply

Fig. 2. Average distance of lower bound at 95% nominal level: simple random sample with n ¼ 30

Liu and Kott: One-Sided Coverage Intervals for a Proportion 577



this procedure to the one-sided Hall interval and Cai interval. The estimated variance vðp̂Þ

in the Hall interval is calculated under the complex sample design, that is,

vðp̂Þ ¼ p̂ð1 2 p̂Þ=n
*
.

We focus in this section on an empirical evaluation of one-sided interval methods under

stratified random sampling. We apply the effective sample size procedure to all the

methods from Section 2 except the Kott-Liu, which was designed especially to handle data

from stratified random samples. We follow Korn and Graubard and set n
*
¼ n when

vðp̂Þ ¼ 0.

Let Wh ¼ Nh=N for a stratified random sample with H strata. The estimated overall

proportion is p̂ ¼
PH

Whp̂h, where p̂h is the observed stratum proportion of stratum h.

Adapting the Edgeworth expansions in Hall (1982) and Cai (2004) under a simple random

sampling, Kott and Liu (2009) discuss three different coverage intervals for data from a

stratified random sample.

3.1.1. Basic Kott-Liu Interval

LKL1 ¼ p̂þ d1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2v1ðp̂Þ þ d2

1

q
; and UKL1 ¼ p̂þ d1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2v1ðp̂Þ þ d2

1

q
ð12Þ

where v1ðp̂Þ ¼
XH

h¼1
W2

h p̂hð1 2 p̂hÞ=ðnh 2 1Þ; and

d1 ¼
z2

3
þ

1

6

� �XH
W3

h p̂hð1 2 p̂hÞð1 2 2p̂hÞ=½ðnh 2 1Þðnh 2 2Þ�XH
W2

hp̂hð1 2 p̂hÞ=ðnh 2 1Þ
ð13Þ

The variance of p̂ is not a simple function of the true p and n under stratified random

sampling as it is under simple random sampling. As a result, Vðp̂Þ must be estimated from

the sample. The estimation has its own random error, which cannot be completely

eliminated from the Edgeworth expansion (moreover, following Cai and keeping OP(1/n 2)

terms becomes impossible).

3.1.2. DF-adjusted Kott-Liu Interval

One way to adjust for the error in the implicit estimator for Vðp̂Þ in the basic Kott-Liu

method is by replacing the z-score in Equation (12) with a t-score from a Student t.

A t-distribution needs a degrees-of-freedom calculation. Kott and Liu (2009) discuss a

number of ways of estimating the effective degrees of freedom. When each stratum has at

least ten observations, a nearly unbiased estimator for this quantity is

df 1 ¼
2a2

1

a3 2 a2
2=a1

where

a1 ¼
XH

W2
hp̂hð1 2 p̂hÞ=nh; a2 ¼

XH
W3

hp̂hð1 2 p̂hÞð1 2 2p̂hÞ=n
2
h; and

a3 ¼
XH

W4
hp̂hð1 2 p̂hÞð1 2 2p̂hÞ

2=n3
h
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An asymptotically biased, but more stable, effective-degrees-of-freedom estimator treats

ph as if they were equal:

df 2 ¼
2
XH

h¼1
W2

h=nh

� 	2

p̂ð1 2 p̂Þ

XH

h¼1

W4
h

n3
h

2
XH
h¼1

W3
h=n

2
h

 !2,XH
h¼1

W2
h

nh

8<
:

9=
;ð1 2 2p̂Þ2

A slightly conservative policy, followed here, sets the estimated effective degrees of

freedom at df ¼ min ðdf 1; df 2Þ and uses tðdf ; 1 2 aÞ in place of z in the lower and upper

bounds defined in Equation (12).

3.1.3. Kott-Liu iid Interval

If an independent and identically distributed (iid ) Bernoulli model is assumed, then a

different way to generalize Equation (10) is with

LKL2 ¼ p̂þ d2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2v2ðp̂Þ þ d2

2

q
; and UKL2 ¼ p̂þ d2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2v2ðp̂Þ þ d2

2

q
ð14Þ

where; v2ðp̂Þ ¼
XH

W2
h p̂ð1 2 p̂Þ=nh; and

d2 ¼
1 2 z2

6

XH
W3

h=n
2
hXH

W2
h=nh

þ
z2

2

XH W2
h

nh

0
@

1
Að1 2 2p̂Þ ð15Þ

Since both the basic and DF-adusted Kott-Liu intervals are undefined when p̂ ¼ 0 or 1,

Kott and Liu (2009) suggest using the iid method in Equation (14) in this situation.

3.2. Comparison of One-Sided Intervals Under Stratified Random Sampling

All the methods described in the text are evaluated under the following stratified random

sampling designs using simulations. A population of 6,000 is divided into 3 equal strata,

that is, Nh ¼ 2; 000; h ¼ 1; 2; 3. The overall proportion p takes the values of 0.001, 0.002,

0.003, : : : , 0.998, 0.999. We consider these six settings for the stratum sample sizes and

the comparative values of ph. They are shown in Table 1. One sample size allocation – 10,

10, 10 – has a total sample size of 30, our minimum. The other allows one stratum to be

big enough to stand alone, nh ¼ 30, while the other two strata contain 10 units. As for the

Table 1. Simulation settings

Stratum proportions ( p1, p2, p3)

Stratum sample sizes n1, n2, n3 Equal ( p, p, p) Unequal ( p 2 pq, p, p þ pq)

10, 10, 10 A B
10, 30, 10 C D
10, 10, 30 Same as C E
30, 10, 10 Same as C F

q ¼ 1 2 p.
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ph-values, either they are all equal or their spread is, in some sense, maximized while

allowing all the ph-values fall into the 0 to 1 range.

For the simulations, we first generate a finite population of 2,000 units in each stratum h,

denoted as xhi ¼ 1; 2; : : : ; 2; 000. We then draw 1,000 stratified random samples for each

stratum sample size allocation. For each stratum proportion pk, we set

yhi ¼
1; if xhi # 2; 000 phi

0; otherwise

(

The weighted estimate for the proportion of y ¼ 1 is calculated for each value of p and for

each sample. The coverage intervals are constructed using the methods described earlier in

the text with the coverage probabilities and the average distances calculated from the

1,000 samples for each p.

Analogously with the simple random sampling case, only the simulation results for a

lower bound need be considered. Given space limitation, we only display the lower-bound

coverage plots using the Mid-P, Cai, three Kott-Liu methods, and Clopper-Pearson. As

discussed in Section 2.2, Mid-P, Cai, and Kott-Liu are the better methods than others; and

Clopper-Pearson method is the conservative benchmark to compare with.

The plots for setting A (not displayed) mirror those in Figure 1 with the three Kott-Liu

methods being virtually identical. This is not surprising since the ph are equal, the

idealized effective sample size is 30, and the effective degrees of freedom are nearly

infinite (as in simple random sampling).

Figure 3 displays the coverage plots for Setting B that has same stratum sampling rates

and unequal ph. Despite the variability in the ph, not much changes from Setting A. The

Clopper-Pearson still has coverage above the nominal level. Its lip again begins at 0.905,

which is marked by a vertical dash in all the plots. The basic and DF-adjusted Kott-Liu

methods remain virtually identical everywhere, while the iid version is slightly more

variable than the others when p is roughly between 0.2 and 0.8 but matches their behavior

Fig. 3. Coverage probabilities of lower bound at 95% nominal level for setting B: stratified random sample with

ðn1; n2; n3Þ ¼ ð10; 10; 10Þ and ð p1; p2; p3Þ ¼ ðp2 pq; p; pþ pqÞ
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in the tails. The Mid-P is similar to the three Kott-Liu methods when p . .8 for both

settings A and B, but continues to be plagued by downward spikes for some very small

p. Cai is similar to the Kott-Liu iid methods in the whole range of p.

Figure 4 displays the coverage plots for Setting C that has different stratum sampling

rates and same stratum proportion ph. The vertical dash line at p ¼ :942 in all the plots

corresponds to the p-value at which the Clopper-Pearson starts to lip. The basic Kott-Liu

has a very final deep dip just before its lip. The DF-adjusted version is only slightly better.

Its lip starts at 0.951 rather than at 0.956 (the basic has a minimum coverage of 82.0%,

the DF-adjusted 84.1%). The Kott-Liu iid method hardly dips at all. Its lip starts at 0.948.

Its coverage is close to nominal level almost everywhere. The lip for the Mid-P starts at

0.942, just like the lip of the Clopper-Pearson. The Cai’s lip does not begin until 0.961,

while its dip (bottoming at 87.9%) is not as great as those of the basic and DF-adjusted

Kott-Liu methods.

For settings D, E, and F where the stratum proportions ph are not equal and stratum

sampling rates vary, the coverage plots are displayed in Figures 5–7. For Setting D

(Figure 5), except that the Kott-Liu iid method has a much higher coverage level, other

methods behave similarly to those in Setting C. This suggests that Kott-Liu iid method

may be sensitive to the assumption of equal stratum proportions ph.

In Setting E (Figure 6), all the methods suffer from a deep dip before the final lip. Here,

there is no advantage of the DF-adjusted Kott-Liu over the basic. Its lip starts slightly

earlier, but by then the basic’s dip has ended. The Clopper-Pearson has the slightest dip

and longest lip among the methods, but its dip is well below the nominal (87.8% at 0.941

as opposed to iid Kott-Liu’s 84.4% at 0.947). The Cai has the deepest dip (74.1% as

opposed to the basic and DF-adjusted Kott-Liu’s 83.1%). Both the Clopper-Pearson and

the Kott-Liu iid method consistently over-cover when p is less than 0.5.

In Setting F (Figure 7), only the basic and DF-adjusted Kott-Liu methods have final

dips, and these are modest (the basic’s bottom is 88.8% at 0.955, while the DF-adjusted’s

Fig. 4. Coverage probabilities of lower bound at 95% nominal level for setting C: stratified random sample with

ðn1; n2; n3Þ ¼ ð10; 30; 10Þ and ð p1; p2; p3Þ ¼ ð p; p; pÞ
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is 91.1% at 0.951). The Clopper-Pearson consistently over-covers for all values of p. The

Kott-Liu iid method consistently over-covers when p is greater than 0.5 and suffers

downward spikes for very low values of p, but not as severely as the Mid-P. The Mid-P and

Cai tend to over-cover for p . .6, but by not as much as the Clopper-Pearson and Kott-Liu

iid methods.

The average distances for tail p-values in Settings B, C, D, E, and F are displayed in

Figure 8 for p # .2 and p $ .8. Because the average distances of the basic and DF-adjusted

Kott-Liu methods are so close, only the DF-adjusted version is displayed in the graphs.

The conservative Clopper-Pearson method exhibits the longest average distances, while

the Cai method tends to have the smallest average distances, but not by much.

Fig. 5. Coverage probabilities of lower bound at 95% nominal level for setting D: stratified random sample with

ðn1; n2; n3Þ ¼ ð10; 30; 10Þ and ð p1; p2; p3Þ ¼ ðp2 pq; p; pþ pqÞ

Fig. 6. Coverage probabilities of lower bound at 95% nominal level for setting E: stratified random sample with

ðn1; n2; n3Þ ¼ ð10; 10; 30Þ and ð p1; p2; p3Þ ¼ ðp2 pq; p; pþ pqÞ
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An important scenario in survey practice posed by an anonymous referee is when one

wishes to estimate the upper bound of a rare trait and knows in advance that the trait is

concentrated in a particular stratum. The example given by the referee is that Americans who

become addicted to smoking cigarettes are more likely to be from families of lower

socioeconomic status. Since one usually wants to study the relationship of the trait to other

characteristics, it is often efficient for that purpose to oversample the stratum where the trait

is most prevalent. Figure 6 shows that a few methods are conservative when the highest

stratum proportion is paired with the highest stratum sampling fraction. In order to give more

direct details to support this conclusion, we have added simulations for the stratum

proportions of ( p/3, 2p/3, 2p) that allows the prevalent rate in Stratum 3 (p3 ¼ 2p) is much

higher than those in the other two strata (p1 ¼ p=3 and p2 ¼ 2p=3). We consider a sample

size n ¼ 60 with stratum allocations of (10, 20, 30), (20, 20, 20), and (30, 20, 10), and a larger

sample size n ¼ 180 with stratum allocations of (30, 60, 90), (60, 60, 60), and (90, 60, 30).

Figures 9 and 10 give the coverage levels of the upper bound for the overall proportion p in

the range of [0, 0.3]. Because of the large sample size, the basic and DF-adjusted Kott-Liu

methods remain identical everywhere. The DF-adjusted Kott-Liu method is not included in

the graphs. A vertical dash line in each graph represents the p-value at which the Clopper-

Pearson method starts to have 100% coverage. It is at p ¼ :048 in Figure 9 and p ¼ :016 in

Figure 10. As shown in Figure 9 and 10, when the highest proportion is paired with the

highest sampling fraction (settings (10, 20, 30) and (30, 60, 90)), the Mid-P and Cai methods

are conservative, but not as much as the Clopper-Pearson. When the stratum sample sizes are

reasonably large, the less conservative Kott-Liu (basic or DF-adjusted) is preferred as the

coverage level is very close to the nominal. On the other hand, when the lowest proportion is

paired with the highest sampling fraction (settings (30, 20, 10) and (90, 60, 30)), there is a dip

when the proportion is close to 0 in all methods. When the proportion is not near 0, Kott-Liu,

Cai, and Mid-P have good coverage level. Figure 10 confirm that the equal stratum sampling

rates for a given total sample size always give a coverage level closer to the nominal level

than unequal allocations.

Fig. 7. Coverage Probabilities of Lower Bound at 95% Nominal Level for Setting F: Stratified Random Sample

with ðn1; n2; n3Þ ¼ ð30; 10; 10Þ and ðp1; p2; p3Þ ¼ ð p2 pq; p; pþ pqÞ
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4. Summary and Discussion

After reviewing much of the literature on constructing one-sided coverage intervals under

simple random sampling, we conducted our own empirical evaluation and found that,

among the methods reviewed, Cai and Kott-Liu produced one-sided interval coverages

closest to nominal. We also confirmed that the Clopper-Pearson method always provided

at least the nominal coverage, which many find a singularly desirable property.

Fig. 8. Average distances of lower bound at 95% nominal level for settings B–F and P in the range of [0, 0.2]

and [0.8, 1]
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We then turned to stratified random sampling. We adjusted all the non-Kott-Liu

methods by replacing the sample size with an estimate for the effective sample size. The

Clopper-Pearson was still the most conservative method with coverage probabilities

usually, but not always, at or above the nominal level.

For a given sample size, the setting of equal stratum sampling rates gave a better

coverage than settings of unequal stratum sampling rates. The potential for under-

coverage was larger when the sampling fraction varied across the strata.

Fig. 9. Coverage probabilities of upper bound at 95% nominal level for settings: ðn1; n2; n3Þ ¼

ð10; 20; 30Þ; ð20; 20; 20Þ; ð30; 20; 10Þ and ðp1; p2; p3Þ ¼ ð p=3; 2p=3; 2pÞ

Liu and Kott: One-Sided Coverage Intervals for a Proportion 585



The Cai and Mid-P methods appeared to be more conservative than Kott-Liu (basic).

Forcing the lower bound to be zero when p̂ ¼ 0 removed what would have been sharp

downward spikes for small p-values. The Cai and Mid-P methods outperformed Kott-Liu

for unequal stratum proportions and small sample size. When the sample size is reasonably

large, which is often the case in practice, Kott-Liu is better in terms of the coverage and

average distance.

The iid version of the Kott-Liu provides the best coverage when the assumption of

same stratum proportions ph is reasonable. The basic Kott-Liu method worked well

Fig. 10. Coverage probabilities of upper bound at 95% nominal level for settings: ðn1; n2; n3Þ ¼

ð30; 60; 90Þ; ð60; 60; 60Þ; ð90; 60; 30Þ and ð p1; p2; p3Þ ¼ ð p=3; 2p=3; 2pÞ
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when the sample size was reasonably large. Adjusting the basic Kott-Liu method for its

effective degrees of freedom improved the coverage for extremely large and small p, but

not by much.

Finally, we suggest another alternative when the value of p is extreme. The lower

bounds constructed using any of the methods have “lips” very near 1, that is, a region in

which coverage is 100%. It is easy to see that this region includes all p . 1 2 2d1 (see

Equations (12) and (13)) using the basic Kott-Liu method and all p . 1 2 2d2 using the

iid method (see Equations (14) and (15)).

Using the Clopper-Pearson method, the lip begins in general at p ¼ pL for the lower

bound and at p ¼ 1 2 pL for the upper bound, where pnL ¼ a, or equivalently,

pL ¼ pLða; nÞ ¼ exp ½ log ðaÞ=n� ð16Þ

Suppose all the ph were equal to, say, r. If r were greater or equal to pL, and thus in the

Clopper-Pearson lip, then p̂ would have at least a probability a of being 1. No matter how

large p̂ was, r would have to be in the lower one-sided interval to assure at least (1 2 a)%

coverage. As a consequence, finding a lower bound producing close to the nominal

(1 2 a)% coverage when p ¼ r can be an impossible task. Nevertheless, it would be a

prudent rule not to let the lower bound for an interval be any higher than pL (and,

symmetrically, not let the upper bound be any lower than pU ¼ 1 2 pL). The size of the lip

from using this rule is of asymptotic order 1/n: it decreases as the sample size increases.

We have marked where pL falls in our coverage plots. Notice that not allowing the lower

bound to be higher than pL reduces the size of dips that would result from using the Cai or

one of the Kott-Liu methods in the settings displayed in Figures 1 and 3. There remain

deep dips using all the methods in Setting E (Figure 6), even the Clopper-Pearson. This

may be because the ph are not all equal and neither are the sampling fractions.

Observe that when the sampling fractions are the same across the three strata –

log ðpn1

1 pn2

2 pn3

3 Þ ¼
X

nh log {p½1 þ ð ph 2 pÞ=pÞ�} <
X

nh{ log ð pÞ þ ð ph 2 pÞ=p}

¼ log ð pÞ ¼ log ð pnÞ

–the impact of the variability of the ph is muted. This suggests the following policy when

the sampling fractions are not all equal: setting the maximum value of the lower bound at

pL2 ¼ pLða;N min {nh=Nh}Þwith pL(.,.) defined in Equation (16) (and setting the minimum

value of the upper bound at 1 2 pLða;N min {nh=Nh}Þ. Such a policy will often be very

conservative, extending the region where coverage will be 100%. This is a reflection of the

difficulty of constructing a lower bound at all when p . pLða;N min {nh=Nh}Þ, and the

variability among the ph is unknown. There is no parallel difficulty constructing an upper

bound for large p or a lower bound for small p. In any event, when one-sided coverage

intervals for a small or a large proportion is a survey goal, it would be wise to avoid

stratification schemes with widely varying sampling fractions if possible.

Constructing one-sided coverage intervals with the Kott-Liu method under sampling

designs with multiple stages has not been addressed in this article, but these methods

(perhaps modified in the tails) can be extended to cover such samples. Two components in

Equation (13) are replaced by the counterparts under complex sample design. Replacing

the estimated third central moment of p̂,
PH

W3
h p̂hð1 2 p̂hÞð1 2 2p̂hÞ=½ðnh 2 1Þðnh 2 2Þ�,
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is discussed in Kott et al. (2001). Similarly,
PH

W2
h p̂hð1 2 p̂hÞ=ðnh 2 1Þ can be replaced

by a standard randomization-based variance estimator for p̂ under complex sample design.

This variance may be estimated using repeated sampling methods or the Taylor

linearization method. More work on data from such designs will have to wait for another

time. For the other methods, one need only replace n by the effective sample size n* and x

by x* ¼ n*p̂, which was explained in the text.
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