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The delete-a-group jackknife can be effectively used when estimating the variances of
statistics based on a large sample. The theory supporting its use is asymptotic, however.
Consequently, analysts have questioned its effectiveness when estimating parameters for a
small domain computed using only a fraction of the large sample at hand. We investigate this
issue empirically by focusing on heavily poststratified estimators for a population mean and a
simple regression coefficient, where the poststratification takes place at the full-sample level.
Samples are chosen using differentially-weighted Poisson sampling. The bias and stability of
a delete-a-group jackknife employing either 15 or 30 replicates are evaluated and compared
with the behavior of linearization variance estimators.
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1. Introduction

The National Agricultural Statistics Service (NASS) has increasingly been using

calibration to produce parameter estimates and a delete-a-group (DAG) jackknife to

measure the precision of these estimates (Kott 2001). In surveys where the DAG jackknife

is used, each sample element k is given R þ 1 weights: the element’s sampling weight

after incorporating all nonresponse and calibration adjustments, wk, and R jackknife

replicate weights, wk(r) with r ¼ 1; : : : ;R.

NASS usually sets R at 15 or 30. The former produces variance estimators for univariate

statistics with 14 nominal degrees of freedom and thus only a modest fattening of coverage

intervals (the t-value for a two-sided 95% coverage interval is 2.145, not much larger

than 1.96 under infinite degrees of freedom). Unfortunately, for constructing multivariate

test statistics, more replicates may be needed, which is why the agency sets R ¼ 30 for

some surveys. Most NASS surveys have thousands of primary sampling units (individual

farms), rendering delete-one jackknives impractical.

Be that as it may, we do not claim here that the DAG jackknife is theoretically superior

to other variance-estimation methods. Rather, our goal is to investigate an empirical

limitation of the DAG jackknife because that is the method NASS uses.

The theory underpinning the use of the DAG jackknife – and all jackknives for

that matter – is asymptotic. See Kott (1998; 2001). We are interested here in evaluating
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the limitations of the asymptotics. In particular, we will be concerned with how well the

DAG jackknife methodology works for parameter estimators defined within a domain

when the (respondent) sample size in that domain is small. In general, this issue is relevant

whenever there are many calibration variables and domain estimates are needed. Domain

estimation is a particular concern of analysts working with data from the third phase of the

Agricultural Resources and Management Survey (ARMS-III; see USDA 2007), NASS’s

principal survey of the economic condition of U.S. farms.

Complicating matters is that the weights for the ARMS-III sample are heavily

calibrated, so that estimates for a number of key variables match outside targets. (These

targets are based on much larger surveys and treated as if they are free of sampling error).

This means initial element sample weights, inverses of the element selection probabilities

(perhaps partially adjusted for nonresponse and/or coverage errors), are adjusted so that

the sample-weighted sums of certain benchmark (calibration) variables equal totals

derived from outside sources.

In the analyses presented here, we will restrict our attention to a Poisson sample without

nonresponse. This is the simplest sample design with variable sample weights. After

reviewing the theory for a more general version of linear calibration, our empirical

investigations will be confined to perhaps the simplest form of calibrated-weighting:

poststratification. By focusing on this relatively simple setup (Poisson sampling with

poststratification), we hope to shed light on the particular issue of the usefulness of the

DAG jackknife methodology – and the alternative linearization methodology – for a

parameter estimate within a domain when the estimator’s weights are calibrated to

benchmark totals at a higher level of aggregation than the domain. Our results reveal

limitations of the DAG jackknife procedure, especially for small samples. These

limitations may or may not exist under more general settings. Therefore, one should be

careful in extrapolating our results to different settings.

A well-known limitation of the DAG jackknife is that it ignores the impact of

large sampling fractions on finite-population variances. This is of little import to most

analysts of ARMS-III data because these analysts are less interested in finite-population

parameter estimates than in estimating the parameters of the models generating the finite

population under investigation. Furthermore, the Panel to Review USDA’s Agricultural

Resource Management Survey, National Research Council (2007) states: “In addition to

descriptive inference, ERS staff and researchers in other organizations also use ARMS

data in analytical inference, in which econometric models are fitted and inference is made

about model parameters.” This subject, as well as other aspects of the theory, is explored

in Section 2. Section 3 lays out the framework for the empirical investigation, the results

of which are reported in Section 4. Section 5 offers some concluding remarks.

2. Some Theory

2.1. Preliminaries

Let ak be the initial sample weight for element k. Let zk ¼ (zk1, : : : , zkP) denote a row

vector of calibration variables associated with k, for which the population total(s), Tz, is

known. Most of the calibration weighting in practice involves a variant of least squares,
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where the calibrated weights have the linear form:

wk ¼ ak þ

"
T z 2

j[S

X
ajzj

#"
j[S

X
ajcjz

0
jzj

#21

akckz
0
k

for some set of constants {ck}, where S denotes the (respondent) sample. By design,P
S wkzk ¼ T z. The ck are often chosen to restrict the range of the wk. A more general

linear form is discussed in Estevao and Särndal (2000).

To simplify matters, we assume here a Poisson sample without nonresponse. The ak are

inverses of the element selection probabilities, pk. We further assume the ck are all equal to

1, and there is a vector l such that zkl ¼ 1 for all k [ S (e.g., one of the components of zk

is always 1). As a result of these assumptions, the calibrated weights can be rendered:

wk ¼ Tz

"
j[S

X
ajz

0
jzj

#21

akz
0
k ð1Þ

(To see why, replace
P

S ajzj in Tz 2
P

S ajzj by
P

S ajl
0z 0jzj ¼ l 0

P
S ajz

0
jzj). This

also allows the DAG jackknife to have certain desirable properties (see Kott 2006a).

However, it should be noted that the weights in (1) are not intended to minimize the

variance of our estimators.

To compute DAG jackknife replicate weights, the sample is randomly ordered and then

systematically divided into R mutually exclusive groups. The complements of the groups

are the replicate groups, denoted Sð1Þ; : : : ; SðRÞ. Each S(r) contains roughly (R 2 1)/R

of the sample. One way to compute the replicate weights is with

wkðrÞ ¼
R

R2 1
wk þ

"
Tz 2

j[SðrÞ

X R

R2 1
wjzj

#"
j[SðrÞ

X
ajz

0
jzj

#21

akz
0
k ð2Þ

when k [ S(r), and 0 otherwise, in order to simplify both the algebra and the numerical

computations. (See Kott 2006b). By design,
P

SðrÞ
wkðrÞzk ¼ Tz. If we replaced the

aj and ak in Equation (2) by their near equalities wj and wk, we could write

wkðrÞ ¼ T z

P
SðrÞ

wjz
0
jzj

h i21

wk z
0
k.

2.2. A Parameter Estimate

We will be interested in a (vector) parameter estimate of the form:

b ¼

"
j[S

X
wjh

0
jxj

#21

j[S

X
wjh

0
jyj ð3Þ

where hj and xj are row vectors of the same length (xj may or may not have components in

common with zj). When hj ¼ xj has more than one component, b is a sample-weighted

regression coefficient. When hj ¼ 1 and xj ¼ xj are scalars, b ¼ b is a sample-weighted

ratio. When, in addition, xj ¼ 1, b is a sample-weighted mean.

Kott and Garren: Small-Sample Bias of the DAG Jackknife 123



The DAG jackknife (matrix) variance estimator for b is

VJ ¼
R2 1

R

XR
r¼1

ðb2 bðrÞÞðb2 bðrÞÞ
0 ð4Þ

where bðrÞ ¼
�P

S wjðrÞh
0
jxj
�21P

S wjðrÞh
0
jyj. Note that we have yet to specify exactly

what b is estimating, making it difficult to judge how good a job VJ does at measuring

its accuracy.

If the goal of b is to estimate the limit of B ¼
�P

U h 0
jx

0
j

�21P
U h 0

jyj as the population

U grows arbitrarily large, then the jackknife can be shown to be an asymptotically

unbiased estimator for the variance matrix of b under mild conditions we assume to hold.

In particular, we assume conditions are such that both B and its limit, call it B*, exist.

Sample selection is essentially two-phased in this framework. The population can be

viewed as a simple random sample drawn from an infinite conceptual population. This is

followed by the actual Poisson selection of the sample. Effectively, we have a Poisson

sample from the infinite population, where the original sampling weights, the ak, reflect

the inverses of the sample-selection probabilities.

We are interested in estimating the limit of B, as opposed to the finite population

parameter itself, because we are looking for insights into the underlying model generating

the population values. Estimating model parameters within specific domains interests

many analysts studying the ARMS-III. Ideally, the underlying model is linear and can be

expressed in this following two-part form:

yk ¼ xkbþ 1k ð5:1Þ

with Eð1kjxj; zj; hj; Ij; j [ U}Þ ¼ 0 ð5:2Þ

where Ij ¼ 1 when j is in the sample, 0 otherwise. The 1k are uncorrelated and have

bounded variances, s2
k . Under this model, the probability limit of B is b.

Although it is often instructive to evaluate variance estimators under the linear model in

both parts of Equation (5), the DAG jackknife has been designed to work (under mild

conditions) whether or not the model, as specified, holds. For example, Equation (5.2)

effectively specifies that the design is ignorable since the expectation of 1k is zero

regardless of which elements are selected for the sample. In practice, the sample design

may not be ignorable. Still, the model in Equation (5.1) may hold with

Eð1kj{xj; hj; j [ U}Þ ¼ 0. The probability limit of B remains b in this case.

An even weaker formulation is possible. Observe the B has been defined so thatP
U h 0

kð yk 2 xkBÞ ¼ 0. Although many would argue that the following is not really a

linear model at all, the way B is defined suggests that if the Equation (5.1) holds with only

Eðh 0
k1kÞ ¼ 0, then the probability limit of B remains b. This formulation is called the

“extended linear model” in Kott (2007).

2.3. Domain Estimates

The asymptotics supporting the use of VJ (with or without the model in Equation (5))

require both the expected sample size (recall the sample is Poisson so its size is random)

and R to be large. We will be concerned in the next several sections with domain estimates

of the form: bd ¼
�P

S djwjh
0
jxj
�21P

S djwjh
0
jyj, where dj ¼ 1 when element j is in the
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domain of interest, 0 otherwise. Notice that if we redefine hj as djhj then bd has exactly

the same form as b in Equation (3). Viewed this way, the realized sample sizes for bd
and the original b are exactly the same! Nevertheless, it seems intuitive that when the

expected overall sample size is in the hundreds but the sample size within the domain is

less than, say, 30, the asymptotics supporting b might not support bd. (Although the

sample within a domain is independently drawn with Poisson sampling, the domain

estimator in our setup is computed using calibration weights that depend on the entire

sample).

There is theory behind this intuition. For the asymptotics to work, each kg-termP
S wjhjkxjg within the nonlinear expression

�P
S wjh

0
jxj
�21

should have a small relative

variance (i.e., Var
P

S wjhjkxjg
� �

= E
P

S wjhjkxjg
� �� �2

) when the sample size is large

(see Kott 2006a). Otherwise, individual observations can have a high leverage on the

estimator. Additional theoretical details follow in the next section.

If most of the sample values of a component are zero, then that may not be the case.

The “mild conditions” we cavalierly added to our requirements for VJ to be asymp-

totically unbiased may be violated.

2.4. Why the DAG Jackknife Works (Asymptotically)

We now take a temporary, but useful, digression. An alternative way to estimate

the variance of b is through linearization (see, for example, Demnati and Rao 2004). Let

Uk ¼

�
j[S

X
wjh

0
jxj

�21

h 0
kð yk 2 xkB*Þ; and uk ¼

�
j[S

X
wjh

0
jxj

�21

h 0
kð yk 2 xkbÞ ð6Þ

Then b 2 B* can ideally be rendered as D ¼
P

S wkUk. Of course, Uk is unknown.

It will ultimately be replaced by uk. For now, however, assume it is known. An idealized

linearization variance estimator for b is

VILðbÞ ¼
k[S

X
w2
k

"
Uk 2 zk

�
j[U

X
z 0jzj

�21

j[U

X
z0jUj

#"
Uk 2 zk

�
j[U

X
z 0jzj

�21

j[U

X
z 0jUj

#
0

ð7Þ

Often, b is treated as an estimator for B, and w2
k in the above equation is

replaced by a2
kð1 2 pkÞ. The 1 2 pk collapse to unity when b estimates the

infinite-population parameter B* (since the sampling fractions become 0). Note that

Uk 2 zk
P

U z 0jzj

� �21P
U z 0jUj serves as the population regression residual (of the

component of Uk on zk) due to the calibration. Why we put w2
k in the above equation

rather than the asymptotically equivalent a2
k will be made clear presently.

Observe that if the linear model in Equation (5) holds, and the population is large enough

both for the distinction between B and b to be ignored and for
�P

U z 0jzj
�21P

U z0jUj to

be effectively equal to a matrix of zeros, then VILðbÞ is

S

X
w2
kEðUkU

0
kÞ ¼

�
S

X
wjh

0
jxj

�21

S

X
w2
kh

0
kEð1k1

0
kÞhk

�
S

X
wjx

0
jhj

�21

;
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which is an unbiased estimator for the variance of b under the linear model no matter what

the sample size. An actual linearization estimator for b, like

VLðbÞ ¼
k[S

X
w2
k

"
uk 2 zk

�
j[S

X
ajz

0
jzj

�21

j[S

X
ajz

0
juj

#

£

"
uk 2 zk

�
j[S

X
ajz

0
jzj

�21

j[S

X
ajz

0
juj

# 0
ð8Þ

must rely on information available in the sample and thus needs a large-enough sample size.

It should be realized, however, that the potential scarcity of nonzero x j when estimating a

domain-specific parameter has no impact on the size of
P

S ajz
0
jzj. The number of nonzero x j

does have an effect on
P

S wjh
0
jxj in uk. Moreover, even under the model in Equation (5),

which treats
P

S wjh
0
jxj as a constant, the number of nonzero x j affects b.

Let us now turn to the DAG jackknife in Equation (4). Observe that under the model

in Equation (5),

b2 bðrÞ ¼ ðb2 bÞ2 ðbðrÞ 2 bÞ

¼

�
j[S

X
wjh

0
jxj

�21

j[S

X
wjh

0
j1j 2

�
j[SðrÞ

X
wjðrÞh

0
jxj

�21

j[SðrÞ

X
wjðrÞh

0
j1j

or

b2 bðrÞ ¼

�
j[S

X
wjh

0
jxj

�21
"

j[S

X
wjh

0
j1j 2

j[SðrÞ

X R

R2 1
wjh

0
j1j

#

þ

�
j[S

X
wjh

0
jxj

�21

j[SðrÞ

X R

R2 1
wjh

0
j1j 2

�
j[SðrÞ

X
wjðrÞh

0
jxj

�21

j[SðrÞ

X
wjðrÞh

0
j1j

ð9Þ

It takes some effort, but the second line on the right-hand side of Equation (9) can be

shown to be asymptotically dominated by the first line under mild conditions (which can

be dubious for domain estimates, since many of the components of h j are zero). This is true

even when the model fails and 1j is replaced by yj 2 xjB*. Plugging only the first line into

the right-hand side of Equation (4), it is not hard to show that the result would be an

unbiased estimator of the variance of b under the model in Equation (5). Additional

mathematical details are available in Kott (2006a).

Without the model,
P

S wjh
0
jxj cannot be viewed as fixed. Still, with work the

asymptotic unbiasedness of VJ can be established. Our goal here was not to rigorously

reprove that fact (established in Kott 2006a), but to sketch such a proof and expose its

limitation when b is a domain estimator.

3. Setting up An Empirical Investigation

The simulations discussed in the next section assume a simple form of calibration:

poststratification. The population is divided into P mutually exclusive classes, and zk in

Equation (1) is a row vector of class-indicators. That is to say, zkp ¼ 1 when k is in class p,
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0 otherwise. Letting Np be the population size of class p, and Sp be the part of the sample in

class p (which we assume is not empty), the calibrated weight for a sampled element

in class p is

wk ¼
NpX

j[Sp

aj
ak ð10Þ

It is a simple matter to derive Equation (10) from (1).

The rth replicate weight for a sample element in class p can be derived from

Equation (2). It is 0 for k not in S(r), and

wkðrÞ ¼
NpX

j[Sp>SðrÞ

aj
ak ð11Þ

otherwise.

One estimator we will investigate is the sample-weighted domain mean:

�ydS ¼

X
k[S

wkdkykX
k[S

wkdk
ð12Þ

in which hk in Equation (3) is equal to the scalar dk (an indicator of domain membership)

and xk is the scalar 1. The other is the simple domain-specific weighted simple regression

coefficient:

bd ¼

X
k[S

wkdkðxk 2 �xdSÞð yk 2 �ydSÞX
k[S

wkdkðxk 2 �xdSÞ
2

ð13Þ

which is the second component of b in Equation (3) when xk ¼ ð1 xkÞ, and hk ¼ dkxk. We

will also be interested in the “degenerate” case where all the dk ¼ 1, and �ydS and bd are the

whole-sample weighted means and weighted simple regression coefficient, respectively.

The R replicate estimates for �ydS and bd can be calculated by substituting wk(r) for wk to

compute each �ydSðrÞ and then substituting wk(r) for wk, �ydSðrÞ for �ydS, and �xdSðrÞ for �xdS to

compute each bd(r). The DAG jackknife in Equation (4) has the simplified scalar form:

vJ ¼
R2 1

R

XR
r¼1

ðb2 bðrÞÞ
2 ð14Þ

The idealized linearization and linearization variance estimators in Equations (7) and

(8) are not so simply rendered. For �ydS, B becomes the scalar B ¼ �ydU ¼
P

U dkyk=
P

U dk,

so that Uk ¼ Uk ¼
P

S wjdj
� �21

dkð yj 2 �ydUÞ and uk ¼ uk ¼ ð
P

S wjdjÞ
21dkð yk 2 �ydSÞ.

Note that both are zero when k is not in the domain. Plugging into Equations (7)
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and (8), we get

VILð�ydSÞ ¼

XP

p¼1

X
k[Sp

w2
k dkð yk 2 �ydUÞ2

XNp

j¼1
djð yj 2 �ydUÞ

Np

2
4

3
5

2

�X
k[S

wkdk

�2
; and

VLð�ydSÞ ¼

XP

p¼1

X
k[Sp

w2
k dkð yk 2 �ydSÞ2

X
j[Sp

widjð yj 2 �ydSÞ

Np

2
664

3
775

2

�X
k[S

wkdk

�2
ð15Þ

For bd as an estimator for the limit of

Bd ¼

X
k[U

dkðxk 2 �xdUÞð yk 2 �ydUÞX
k[U

dkðxk 2 �xdUÞ
2

it helps to first redefine xk as ð1 xk 2 �xdsÞ, with hk ¼ dkxk redefined accordingly, so thatP
S wjh

0
jxj is diagonal. The scalars Uk and uk become

Uk ¼
dkðxk 2 �xdSÞekX

j[S

wjdjðxj 2 �xdSÞ
2

and uk ¼
dkðxk 2 �xdSÞrkX

j[S

wjdjðxj 2 �xdSÞ
2

where ek ¼ ð yk 2 �ydUÞ2 ðxk 2 �xdUÞBd is the population residual (for the regression

coefficient), and rk ¼ ð yk 2 �ydSÞ2 ðxk 2 �xdSÞbd is the sample residual. Note that Uk and

uk are again zero when k is not in the domain.

We can now conclude

vILðbdÞ ¼

XP

p¼1

X
k[Sp

w2
k dkðxk 2 �xdSÞek 2

XNp

j¼1
djðxj 2 �xdSÞej

Np

2
4

3
5

2

X
j[S

wjdjðxj 2 �xdSÞ
2

" #2
; and

vLðbdÞ ¼

XP

p¼1

X
k[Sp

w2
k dkðxk 2 �xdSÞrk 2

X
j[Sp

wjdjðxj 2 �xdSÞrj

Np

2
664

3
775

2

X
j[S

wjdjðxj 2 �xdSÞ
2

" #2
ð16Þ
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It was partly in response to the somewhat complicated nature of Equations (15) and (16)

that NASS decided to use the DAG jackknife rather than the linearization for the ARMS-

III. In the next section, we also evaluate simplified versions of each:

VILð�ydSÞ ¼

XP

p¼1

X
k[Sp

w2
k½dkð yk 2 �ydSÞ�

2

X
k[S

wkdk

 !2
ð17Þ

and

vSLðbdÞ ¼

XP

p¼1

X
k[Sp

w2
k½dkðxk 2 �xdSÞrk�

2

X
j[S

wjdjðxj 2 �xdSÞ
2

" #2
ð18Þ

These simplified versions effectively assume there is no gain (reduction in variance)

from poststratification. In our simulations in Section 4, we compare results from using

(17) and (18) to results from using (15) and (16), for the purpose of examining the

impact of poststratification.

4. A Simulation Study

We began our simulation study with an ARMS-III respondent sample of 986 farms in

California. Our original plan was to use this sample and its final weights to generate a

population.

Each farm in the sample had associated with it a frame value based on previous sales

data. We called this value xk. Classes were created by partitioning the x-values in 22

intervals, where the smallest interval was [0, 10,000), the largest interval was [750,000, 1),

and 20 intervals of equal width were spaced between 10,000 and 750,000.

We assigned a fraction of the 986 farms to domains of interest systematically to the

original data set of x-values prior to running the simulations. Since the original data are not

ordered, these domain assignments to the original data were random. One such domain

contained 5% of the population, a second 10%, and a third 20%. Recall that our goal here

is to explore estimating the variances of domain estimates, not domain estimation per se.

Consequently, all we require of our domains is that they have a particular expected size,

which is accomplished by these random assignments. The behavior of survey values

outside the domain being investigated is irrelevant for our purposes.

Each farm in the sample also had a final weight associated with it, which we rounded to

the nearest integer and labeled ak. At this point, each sampled farm had attached to it an

x-value, an a-value, a class identifier, and three yes/no domain identifiers (identifying

whether or not the farm unit had been assigned to the 5%-of-the-population domain, the

10%-of-the-population domain, or the 20%-of-the-population domain). We reproduced

each sampled farm and its attachments 10,000 times. Furthermore, the assignment of

the domains was performed prior to this reproduction of these 10,000 multiples.
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Our original idea was also to include survey-reported sales as the y-value for each of the

986 sampled farms and to create a fixed population of size N ¼
P9;860;000

ak. That is to

say, the y, x, class identifier, and domain identifiers for each sampled farm k would be

replicated 10,000ak times in the population. This would create a very large population with

the same moments of y and x as the a-weighted sample. Independent samples could then be

drawn from the putative population by giving each element replicated from k a Poisson

selection probability of 1/(10,000ak). The expected size for each sample would be 986.

Alas, no matter how large we made the simulated population, we found the results

unsettling. This was because there could only be 986 possible realizations of the

y-variable. Even if these y-values were originally generated from a normal distribution, the

roughly 49 that would fall into the smallest domain of interest could (and sometimes did)

have population moments very different from that of the normal distribution.

Consequently, we decided that we needed to generate the y-values for each putative

population unit directly from a model. To keep our results as realistic as possible, we

selected a model to produce y-values similar to actual data.

We used two models to generate the y-values. Both had the form:

yk ¼ b0 þ b1x
a
k þ b2 log ðakÞ þ 1k ð19Þ

where the 1k were independent draws from a N(0,1002) distribution, b0 ¼ 50, and b1 ¼ 2.

For one of the models, labeled Model 1, we set a ¼ 1, and b2 ¼ 0. It is a simple linear

model under an ignorable sampling mechanism. For the other, labeled Model 2, we set

a ¼ 1:1, and b2 ¼ 100. The model was nonlinear and the sampling mechanism

nonignorable. Other choices of b1, b2, a and the variance of 1k were used in the

simulations, but these additional choices did not have a large impact on the overall results.

The specific parameter selections used herein were chosen, since they allow a strong

distinction between Model 1 and Model 2, and allow a reasonable amount of variability in

the simulated data, similar to the variability observed in the ARMS-III sample from

California. The choice of b0 is irrelevant, since b0 is merely a location parameter.

Ten thousand simulated samples were effectively drawn from the putative population

with y-values generated by one of the two versions of Equation (19) in the following

manner. A farm in the original sample was associated with a particular x-value, class and

domain identifiers, and with ak y-values generated from Equation (19) with certain

settings. Each y-value, together with its associated x-value, class identifier, and domain

identifiers, was given an independent 1/ak probability of being selected into a simulated

sample. As a result, the expected size for each simulated sample was 986. We expected

49.3 farms to be in each 5%-domain sample, 98.6 in each 10%-domain sample, and 197.2

in each 20%-domain sample. This approach allowed variability in the y-values, by

producing multiple values of y, based on the same values of x, class and domain.

Estimated means and simple regression coefficients were calculated from the simulated

samples using Equations (12) and (13) respectively.

The targets of the estimated means and simple regression coefficients were

parameters of a conceptual infinite population. In Section 2, such parameters were

labeled (when scalars) B*. We computed analogous and near-identical large-population

B-values thusly. We generated 9,860,000 y-values under the respective versions of

Equation (19); 10,000 for each original farm k. Such a y-value, together with an
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associated x-value, class identifier, and domain identifiers, was repeated ak times.

The mean y-value and the slope of the linear regression of the yk on the xk were

then computed for this simulated population and for the three designated domains of

the population.

Table 1 displays the relative empirical biases from using the DAG jackknife and

linearization methods for estimating the mean squared error of b (which could be either �ydS
or bd) as an estimator for B. These relative empirical biases are computed using

X10;000

t¼1
vt 2

X10;000

t¼1
ðbt 2 BÞ2X10;000

t¼1
ðbt 2 BÞ2

where bt and vt are computations of the parameter estimate and its estimated variance

based on the tth simulated sample. In the above equation, since
P10;000

t¼1 vt=10;000 is the

empirical average of the estimated variance of the estimator, and
P10;000

t¼1 ðbt 2 BÞ2=10;000

is the empirical variance of the estimator, then

"X10;000

t¼1

vt 2
X10;000

t¼1

ðbt 2 BÞ2

#
=10;000

is the empirical bias of the estimated variance of the estimator. The estimated standard

errors of the relative empirical biases tended to be between 0.015 and 0.02.

The empirical variance as a fraction of empirical mean squared error was always over

96% for every b with an estimated mean squared error on the table. Consequently, whether

we treat the DAG jackknife and its linearization counterparts as estimators of variance or

mean-squared-error makes little practical difference.

As the table shows, the empirical biases from using the DAG jackknife in Equation (14)

are all positive, while the biases from using the full linearization estimator in Equations

(15) (for the mean) and (16) (for the simple regression coefficient) are almost all negative.

Both tend to get worse, in absolute terms, as the domain sample size decreases.

Table 1. Relative Biases of Estimators for Mean Squared Error

Domain
proportion
of sample

Estimated mean Estimated regression coefficient

DAG Jackknife Linearization DAG Jackknife Linearization

R ¼ 15 R ¼ 30 Full Simplified R ¼ 15 R ¼ 30 Full Simplified

Model 1
5% 0.076 0.078 20.069 0.041 0.126 0.116 20.241 20.232
10% 0.026 0.010 20.041 0.078 0.086 0.093 20.036 20.024
20% 0.018 0.002 20.029 0.151 0.040 0.016 20.040 20.012
100% 0.016 0.032 0.000 3.717 0.061 0.035 20.010 20.007

Model 2
5% 0.059 0.066 20.075 0.019 0.248 0.249 20.195 20.182
10% 0.038 0.049 20.015 0.088 0.048 0.047 20.176 20.180
20% 0.024 0.022 20.013 0.137 0.048 0.005 20.133 20.112
100% 0.018 0.019 0.004 2.347 0.069 0.099 20.123 20.165
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This happens whether estimating the mean squared error of a domain mean or a simple

regression coefficient or whether generating the y-values with Model 1 or Model 2.

When estimating means, the relative empirical biases are always under 10% in absolute

terms using either the full linearization variance estimator or the DAG jackknife with 15 or

30 replicates. Using the simplified linearization estimator in Equation (17), however,

appears badly biased for the full-population mean under either model. This variance

estimator gets better as the domain sample size gets smaller. It is reasonable to conclude

that the effect on mean estimation of poststratification (which was done at the full-sample

level) becomes less powerful the smaller the domain of interest. Notice that when the

second term in the numerator of VLð�ydSÞ in the full linearization variance estimator (15)

is removed, we obtain the simplified linearization estimator (17). Any effect due to

poststratification is reflected in this second term, which is a function of the domain dj.

Therefore, when the domain fraction is small, the effect due to poststratification is small as

well, so the full formula in (15) is close to the simplified formula in (17). Hence, a larger

bias occurs when a strong poststratification effect is ignored in the simplified formula.

Estimating the mean squared error of the full-sample simple regression coefficient using

the simplified linearization in Equation (18) works well under Model 1 because the

poststratification is irrelevant in the context where the y-values are generated by a linear

form of Equation (19), and the ek ¼ ð yk 2 �ydUÞ2 ðxk 2 �xdUÞBd are uncorrelated with the

ak. Therefore, under Model 1, using the simplified linearization produces results similar to

using the full linearization, for the full-sample simple regression coefficient.

We do not observe much difference between the full and simplified linearization variance

estimators for the full-sample simple regression coefficient under Model 2. The impact

of poststratification appears to be overwhelmed by the correlation between the ek and

the ak in this context. Notice that this regression estimator is a ratio, and the bias due to

ignoring poststratification appears in both the numerator and denominator of this ratio and is

somewhat canceling itself. Furthermore, when estimating the regression coefficient under

either Model 1 or Model 2, the jackknife overestimates the mean squared error, whereas

the linearized estimators underestimate the mean squared error, as noted in Table 1.

For the 5% domain (domain sample sizes of around 50), none of the variance estimators

for the estimated simple regression coefficient have relative empirical biases of less than

10% in absolute terms under either Model 1 or Model 2. The two jackknives produce

relative empirical biases closer to zero for the 10% domain (domain sample sizes of

around 100) and the 20% domain, however, as do the two linearization estimators under

Model 1. This failure of the estimators for the 5% domain is due to the small samples,

noting that the jackknife and linearization estimators are based on asymptotics. Somewhat

similar results hold under Model 2, in that the large (e.g., 20%) domains tend to produce

relative empirical biases closer to zero than the small (e.g., 5%) domains do.

Table 2 displays the coefficients of variation for our several estimators of mean squared

error, where the coefficient of variation is the empirical standard error of a mean squared

error divided by its empirical mean. A 30-replicate DAG jackknife has more stability (a

smaller coefficient of variation) than a 15-replicate version. Linearization is more stable

than either jackknife. Stability typically increases with the size of the domain sample due

to the increased sample size, and stability is usually less for the variance estimator of the

simple regression coefficient than for the mean. Also, the coefficient of variation does not
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change much when comparing the full to the simplified linearization variance estimators,

except when estimating the mean under 100% domain for both models (in which case,

the relative biases in Table 1 are also quite different, again when comparing the full to

the simplified linearization variance estimators). We did not determine results for domain

sizes strictly between 20% and 100%.

5. Concluding Remarks

We are hesitant to make overly bold claims from the results of our limited empirical study.

Nevertheless, we were pleased to see from Table 1 that using a delete-a-group jackknife

with as few as 15 replicates on a heavily calibrated sample, one containing 22 poststrata,

produced reasonable and conservative variance measures for an estimated mean based

on samples containing as few as 50 domain members. It is possible, however, that had

there been more calibration variables, the results would not have been as reasonable.

Variance measures for an estimated simple regression coefficient did not behave as well

until domain samples were roughly twice as large. They did, however, remain competitive

were more complicated linearization-based alternatives. These alternatives weremore

stable but, when done properly, consistently underestimated true mean squared errors.

The DAG jackknife with 30 replicates is rather unstable. Though more stable than the

DAG jackknife with 15 replicates, it is considerably less stable than the linearization

methods. We anticipate that the DAG jackknife can be improved in this regard by

employing even more replicates.

It seems to us that the DAG jackknife is a reliable variance-estimation tool for simple

ratios like the population mean with domain sample sizes in the 50 and above range. On the

other hand, we would not be comfortable using the DAG jackknife for estimating the

variance of regression coefficients with less than 100 in-scope sample units. This

discomfort extends to all “model-free” variance-estimation methods. When sample sizes

get too small, we strongly suspect one needs to assume a model and estimate variances

using a technique appropriate for that model, noting however that a misspecified model

can worsen the variance estimates.

Table 2. Coefficients of Variation of Estimators for Mean Squared Error

Domain
proportion
of sample

Estimated mean Estimated regression coefficient

DAG Jackknife Linearization DAG Jackknife Linearization

R ¼ 15 R ¼ 30 Full Simplified R ¼ 15 R ¼ 30 Full Simplified

Model 1
5% 0.76 0.68 0.59 0.60 0.90 0.83 0.56 0.56
10% 0.55 0.46 0.36 0.36 0.55 0.48 0.36 0.36
20% 0.47 0.37 0.25 0.24 0.47 0.39 0.27 0.27
100% 0.50 0.42 0.32 0.16 0.62 0.56 0.46 0.47

Model 2
5% 0.76 0.70 0.60 0.63 1.13 1.09 0.70 0.69
10% 0.56 0.47 0.38 0.36 0.76 0.69 0.51 0.49
20% 0.47 0.37 0.26 0.25 0.62 0.55 0.43 0.42
100% 0.52 0.43 0.34 0.18 0.66 0.54 0.36 0.36
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