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Experiments with Controlled Rounding for Statistical
Disclosure Control in Tabular Data with Linear Constraints

Matteo Fischetti1 and Juan-JoseÂ Salazar-GonzaÂlez2

1. Introduction

A statistical agency collects data to be processed and published. Usually, this data

is obtained under a pledge of con®dentiality: statistical agencies have the responsibility

of not releasing any data or data summaries from which individual respondent information

can be revealed. On the other hand, statistical agencies aim at publishing as much informa-

tion as possible. This results in a trade-off between privacy rights and information loss, an

issue of primary importance in practice. We refer the interested reader to Willenborg and

De Waal (1996) for an in-depth analysis of statistical disclosure control methodologies.

Controlled rounding is a widely-used technique for disclosure avoidance, and is typi-

cally applied to 2- or 3-dimensional tables whose entries (cells) are subject to marginal

totals; see Fellegi (1972). We will introduce the basic controlled rounding problem with

the help of a simple example, taken from Willenborg and De Waal (1996). Figure 1(a)

exhibits a 2-dimensional table giving the investment of enterprises (per million of
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guilders), classi®ed by activity and region. Let us assume that the Statistical Of®ce wants

to protect the sensitive information of the table by ``perturbing'' its entries by small

amounts. For instance one can consider rounding all the table entries to the nearest integer

multiple of 5 (say). However, rounding in this way the entries in the row corresponding to

Activity III would lead to the inconsistency 15 � 30 � 10 � 60 in the marginal sum. To

avoid this drawback, the statistical of®ce asks for a controlled rounding of the table, mean-

ing that each entry has to be rounded to any of its lower/upper integer multiples of 5, so as

to preserve the marginal totals in each row and in each column. As to the entries which are

already multiples of 5, one typically requires that they are preserved in the ®nal table

(zero-restrictedness condition) so as to produce statistically unbiased rounded tables;

see Figure 1(b) for an illustration.

A more detailed description of the problem is as follows. Let I be the index set of a given

table to be protected.

The nominal values ai (i [ I) in the table satisfy a given set of linear equations, say

Ma � b (our model can easily be extended to the case of linear inequalities). Each column

of matrix M corresponds to a cell (including marginals), and each row to a link between

cells. For example, in the case of k-dimensional tables with marginals the system is of the

form Ma � 0 and gives the 1-, 2-, . . ., k ÿ 1-way marginal projections.

As customary, for any real value z let bzc and dze denote the lower and upper integer part

of z, respectively. Given a certain rounding base b, we allow each table entry ai to be

rounded to

Äai [ fbbai=bc; bdai=beg
This implies, in particular, that Äai � ai whenever ai is an integer multiple of b. Notice

that one can with no loss of generality assume that b � 1 (if this is not the case, just divide

each ai by b). Therefore, if not stated differently, we always assume b � 1 in the sequel.

Each entry ai of the table has two associated weights, say wÿ
i $ 0 and w�

i $ 0, giving a

measure of the loss of information incurred if the ai is rounded to baic or to daie, respectively.

The (zero-restricted) Controlled Rounding Problem (CRP) then calls for ®nding a

rounding Äai of each entry ai, such that M Äa � b and the associated total rounding weight

(expressed in terms of the given w�
i and wÿ

i ) is minimized.

This combinatorial optimization problem was ®rst introduced by Bacharach (1966) in

the context of replacing non-integers by integers in tabular arrays. It can be solved in poly-

nomial time for k-dimensional tables with marginals if k # 2, but for k $ 3 it belongs to

the class of the strongly N P-hard problems; see e.g., Kelly, Golden, and Assad (1990 b).
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Region Region
A B C Total A B C Total

Activity I 20 50 10 80 Activity I 20 50 10 80
Activity II 8 19 22 49 Activity II 10 20 20 50
Activity III 17 32 12 61 Activity III 15 30 15 60

Total 45 101 44 190 Total 45 100 45 190

(a) Original table (b) Published (rounded) table

Fig. 1. Investment of enterprises by activity and region



Previous works on CRP mainly concentrate on 2- and 3-dimensional tables with

marginals. Cox and Ernst (1982) proved that the zero-restricted CRP associated to

any 2-dimensional table with row and column marginal totals is always feasible.

They also gave ef®cient methods for ®nding optimal controlled roundings. These

methods are based on the transformation of CRP into a network ¯ow problem;

see Section 3.

Causey, Cox, and Ernst (1985) showed that the zero-restricted CRP on 3-dimensional

tables with marginal totals is not always feasible, and gave a simple 2 ´ 2 ´ 2 counter-exam-

ple. Kelly, Golden, Assad, and Baker (1990) proposed a branch-and-bound procedure

based on a Linear Programming for the exact solution of the problem, and addressed

relaxed models.

Heuristic solution procedures have been proposed by several authors, including Causey,

Cox, and Ernst (1985), and Kelly, Golden, and Assad (1990 a, 1993).

Starting in 1996, the European Union supported through EUROSTAT (the European

Statistical Of®ce) a 3-year ESPRIT research project aimed at developing and testing

new methodologies within statistical disclosure control. The project, coordinated by

Dr. Leon Willenborg from Statistics Netherlands, involves several research groups from

both academia and national statistical of®ces. We participated in the project for the de®-

nition of mathematical models and solution algorithms for protecting sensitive infor-

mation in tabular data. The present article describes some of the results we obtained by

using the controlled rounding methodology. Results pertaining to the use of a different

technique, known as the Complementary Cell Suppression, can be found in Fischetti and

Salazar (1996, 1998). For both approaches, the algorithms we propose have been

embedded within t-ARGUS, a prototype software package for statistical disclosure control

under development at Statistics Netherlands.

In this article we address mathematical models and solution algorithms for controlled

rounding in the general case in which data is subject to a generic system of linear con-

straints. Hence our study covers, among others, k-dimensional tables with marginals as

well as hierarchical and linked tables. Moreover, we analyze the use of enlarged rounding

windows to deal with the cases in which the zero-restricted version of the problem admits

no feasible solution. The article is organized as follows.

In Section 2 we address the problem of ®nding any feasible solution of the (zero-

restricted) controlled rounding problem. This is actually the main issue for many practical

cases in which the objective function is not speci®ed. We rephrase this problem as

®nding an integral point belonging to a certain polytope (a dif®cult problem in

general), and address the related problem of ®nding an extreme point (vertex) of the

same polytope.

We then consider the case in which any user-de®ned linear objective function giving a

measure of the perturbation introduced in the rounded table, has to be minimized.

Computational results for the zero-restricted CRP on 2- and 3-dimensional tables are

reported in Sections 3 and 4, respectively.

Section 5 introduces the CRP version with relaxed rounding windows, and gives

computational results for 3- and 4-dimensional tables. An interesting outcome is that 4-

dimensional tables often admit no zero-restricted rounding, whereas slightly enlarged

rounding windows produced feasible instances in all the cases in our test bed.
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2. Finding Feasible Solutions of the Zero-restricted CRP

Let a � �ai : I] be the given nominal table, viewed as a vector in RI, and de®ne the poly-

tope

PCRP � fÄa [ RI : M Äa � b; baic # Äai # daie for all i [ Ig

containing the (possibly fractional) vectors Äa which satisfy the given linear system along

with the lower and upper bounds derived from rounding.

An important observation is that PCRP is never empty, in that it contains the ``nominal''

vector [ai].

By construction, there is a 1-1 correspondence between the integer points in PCRP

and the feasible CRP solutions. Hence CRP essentially translates into the problem of

determining an integer point inside PCRP.

A somehow related problem consists in ®nding an extreme point (vertex) of PCRP. If M

is totally unimodular (see Nemhauser and Wolsey (1988)), as in the case of 2-dimensional

tables with marginals, the two problems are in fact equivalent. Even if this is not the case,

however, a vertex of PCRP is likely to contain just a few fractional components (never more

than the number of rows in M), hence a vertex can be viewed as a good starting point for

heuristic algorithms to determine actual integer CRP solutions.

Classical linear programming theory shows that every nonempty polytope always has a

vertex; see e.g., Nemhauser and Wolsey (1988). The proof of this basic result is construc-

tive, and applies iteratively the following procedure to convert any given point of PCRP

into a vertex. Assume without loss of generality that the system matrix M has linear

rank equal to the number of its rows, i.e., no linear equation in the system is redundant.

Given the current point Äa [ PCRP, let

F � fi [ I : baic < Äai < daieg
contain the indexes of the fractional components of Äa (those which are not equal to the

prescribed lower or upper bounds). If the columns of the submatrix of M indexed by F

are linearly independent, then the current point Äa is a vertex of PCRP, and we are done.

Otherwise, there exists a nonzero multiplier vector [li : i [ I] such that li � 0 for all

i Ó F and Si[IliMi � 0, where Mi denotes the column of M indexed by i. Notice that

such a l can be found ef®ciently through well-known numerical techniques. But then

for every real e we have that

M�Äa � el� � M Äa � b

i.e., the point Äa � el satis®es again the given linear system. In other words, l gives

a ``direction'' along which one can perturb the current point without affecting the linear

system validity.

Suppose now we start with e � 0, and keep increasing (or decreasing) e until a threshold

e� is reached such that any further increase would lead to a point Äa � el violating a lower

or upper bound on the variables. In this situation, one can readily see that the new point

Äa � e�l has at least one more integer component than Äa, i.e., the set F associated with

the new point has fewer elements. One can then replace Äa by Äa � e�l, and repeat the pro-

cedure until the fractional support F of the current point corresponds to a set of linearly

independent columns.
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The above technique allows one to ®nd ef®ciently a vertex of PCRP. For the case of 2-

dimensional tables with marginals, this vertex is guaranteed to be integral and hence

corresponds to a feasible CRP solution. Moreover, in this case the method has a nice inter-

pretation in terms of ¯ow circulations in a certain incremental network, as discussed in the

next section.

3. Zero-restricted CRP on 2-Dimensional Tables

Let us consider a 2-dimensional table [ai j : i � 0; 1; . . . ; n; j � 0; 1; . . . ;m] of real num-

bers satisfying the system Ma � b �� 0� given by:Xn

i�1

ai j ÿ a0 j � 0; for all j � 0; 1; . . . ;m

Xm

j�1

ai j ÿ ai 0 � 0; for all i � 0; 1; . . . ; n

where index 0 corresponds to row/column marginals.

As we have already observed, the system matrix M is totally unimodular in this case,

hence every vertex of polytope PCRP is integer. In this situation one can then solve

CRP ef®ciently by applying standard linear programming techniques. Well-known ef®-

cient solution algorithms are based on a network-¯ow interpretation of the above linear

system; see e.g., Nemhauser and Wolsey (1988) and Ahuja, Magnanti, and Orlin (1993)

for the necessary background.

Consider the following (directed) network G � �V ;A� with jV j � n � m � 2 nodes. G

has a row node ri associated to every row i of the table, and a column node cj associated

to every column j of the table. The network has the following arcs:

· an arc (ri; cj) for every row i Þ 0 and every column j Þ 0,

· an arc (c0; ri) for every row i Þ 0,

· an arc (cj; r0) for every column j Þ 0,

· the ``grand total'' arc (r0; c0).

Every arc in the network then corresponds to an entry ai j of a table, and has two associated

lower and upper capacity bounds equal to bai jc and dai je, respectively.

By construction, there is a 1-1 correspondence between the consistent roundings of the

original table and the integer ¯ow circulations in the associated network. It then follows

that a consistent rounding minimizing a given cost function can be found ef®ciently by

solving a min-cost ¯ow problem on the network.

We have implemented this idea by using the network simplex algorithm embedded in

the commercial LP package CPLEX 3.0. Computational analysis has been performed

on 3,000 random instances generated as in Kelly, Golden, Assad, and Baker (1990),

that we solved on a PC Pentium/75 notebook.

The base number was ®xed at 3, and the table entries have been generated as random

integers equal to 0 (with a certain probability d) or between 1 and 2 (with probability

1 ÿ d). The cost function was the distance between the rounded and the nominal table

(the method can easily deal with any other linear objective function speci®ed by the user).
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Table 1 reports average computing times for several possible ``percentage-of-zeros''

densities d (percentage of table entries whose nominal value is zero). All the instances

have been solved to proven optimality within a rather short computing time.

When no cost function is given, a simpler computation can be performed to ®nd a

feasible CRP solution. This is in the spirit of the previously described procedure to detect

vertices of a polytope, as it applies to the network-¯ow interpretation of the equation

system Ma � b. The method needs no LP-solver, and can be implemented rather easily.

We consider the initial (feasible and fractional) ¯ow circulation f given by fi j � ai j for

all i; j, and apply iteratively the following procedure until all the ¯ow components become

integer. We de®ne the incremental network G� f � � �V ;A� f �� associated with the current

¯ow [ fi j]. For every arc (i,j) in G with bai jc < f i j < dai je, the incremental network has two

arcs with opposite directions, namely a forward arc (i, j) and a backward arc ( j, i). By

construction, circuits in G� f � correspond to ¯ow re-routing, i.e., to patterns of linearly

dependent columns of the system matrix M. Hence any circuit gives a ``perturbation direc-

tion'' along which one can get a new ¯ow circulation f 0 with one less fractional ¯ow com-

ponent. Iterating this procedure leads to the required integer CRP solution.

The above algorithm has been implemented in C and ran on a PC Pentium/75 notebook.

Table 2 reports average computing times on the same instances considered in the previous

table. It can be seen that the method allows for a considerable computing time saving with

respect to the use of CPLEX 3.0 network simplex algorithm.

4. Zero-restricted CRP on 3-Dimensional Tables

We are given a 3-dimensional table [ai j k : i � 0; 1; . . . ; n; j � 0; 1; . . . ;m; k � 0; 1; . . . ; p]

of real numbers satisfying the system Ma � b �� 0� given by:Xn

i�1

ai j k ÿ a0 j k � 0; for all j � 0; 1; . . . ;m; and for all k � 0; 1; . . . ; p

Xm

j�1

ai j k ÿ ai 0 k � 0; for all i � 0; 1; . . . ; n; and for all k � 0; 1; . . . ; p

Xp

k�1

ai j k ÿ ai j 0 � 0; for all i � 0; 1; . . . ; n; and for all j � 0; 1; . . . ;m
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Table 1. Average computing time, in PC Pentium/75 seconds, for ®nding an optimal CRP solution

m ´ n Percentage of zeros
0 25 50 75 90

100 ´ 100 1.67 1.01 0.59 0.28 0.11
200 ´ 200 9.04 6.92 4.51 2.09 0.57
300 ´ 300 25.28 18.91 12.69 5.91 1.83

Table 2. Average computing time, in PC Pentium/75 seconds, for ®nding a feasible CRP solution

m ´ n Percentage of zeros
0 25 50 75 90

100 ´ 100 0.38 0.26 0.18 0.11 0.08
200 ´ 200 3.03 1.91 1.12 0.56 0.34
300 ´ 300 10.06 6.18 3.37 1.51 0.81



where, as before, zero indexes correspond to marginal entries. Notice that the above sys-

tem includes both 1- and 2-way marginal projections (easier versions of the problem can

deal with 1-way projections only).

Unlike the 2-dimensional case, the zero-restricted CRP on 3-dimensional tables can be

infeasible; see Causey, Cox, and Ernst (1985). Moreover, Kelly, Golden, and Assad (1989)

proved the N P-hardness of the problem.

In order to determine consistent roundings with minimum distance from the

nominal table, we have implemented a branch-and-bound procedure based on classical

linear programming relaxation, in the vein of Kelly, Golden, Assad, and Baker (1990).

We evaluated the performance of our branch-and-bound method on random instances

generated as in Kelly, Golden, Assad, and Baker (1990). We generated and solved

20,000 tables with 60 entries, according to different dimensions and density levels. In par-

ticular 1,000 tables were generated for each choice of (m, n, p) in {(15, 2, 2), (10, 3, 2), (6,

5, 2), (5, 4, 3)} and for percentage-of-zeros density in {0%, 25%, 50%, 75%, 90%}. All

tables had integer entries between 0 and 2, and were rounded using base 3.

Table 3 gives the average results for the above instances. Column ``count'' gives

the number of instances (out of 1,000 trials) that required branching. Column

``nodes'' gives the average number of explored nodes when branching is needed. The

computing time for solving each instance in our test bed never exceeded 0.5 seconds on

a PC Pentium/75.

Additional experiments have been performed on larger instances. Table 4 gives average

results for tables from 4 ´ 4 ´ 4 to 8 ´ 8 ´ 8. Here column ``time'' gives the average
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Table 3. Statistics on Kelly-Golden-Assad-Baker tables

m ´ n ´ p Percentage count nodes
of zeros

15 ´ 2 ´ 2 0 36 3.89
15 ´ 2 ´ 2 25 15 3.80
15 ´ 2 ´ 2 50 18 5.00
15 ´ 2 ´ 2 75 18 3.33
15 ´ 2 ´ 2 90 2 3.00

10 ´ 3 ´ 2 0 37 4.46
10 ´ 3 ´ 2 25 52 4.12
10 ´ 3 ´ 2 50 45 3.98
10 ´ 3 ´ 2 75 21 4.24
10 ´ 3 ´ 2 90 7 3.57

6 ´ 5 ´ 2 0 82 3.98
6 ´ 5 ´ 2 25 92 4.72
6 ´ 5 ´ 2 50 81 4.21
6 ´ 5 ´ 2 75 35 3.91
6 ´ 5 ´ 2 90 9 3.22

5 ´ 4 ´ 3 0 140 5.07
5 ´ 4 ´ 3 25 156 5.63
5 ´ 4 ´ 3 50 129 5.16
5 ´ 4 ´ 3 75 59 3.98
5 ´ 4 ´ 3 90 12 3.17



computing time on a PC Pentium/75 notebook (over 1,000 trials). Column ``count'' gives

the number of instances requiring branching (out of the 1,000 trials). Column ``nodes''

gives the average number of nodes computed with respect to the cases requiring branch-

ing. Again, all problems were solved to optimality within short computing time.

The above ®gures show the effectiveness of our branch-and-bound method, which is

mainly due to the fact that a vertex of the polytope PCRP associated with 3-dimensional

tables very likely has (almost) all integer components. Moreover, all the instances in

our test bed admitted a zero-restricted controlled rounding solution.

5. Controlled Rounding with Relaxed Rounding Windows

In order to deal with the cases in which the zero-restricted CRP has no feasible solution,

we propose the following model.

Let a � �ai : i [ I� be again the nominal table, satisfying a certain linear system

Ma � b, and let b � 1 be the base number. We associate an integer variable xi to each

i [ I, representing a possible rounding for entry ai. In addition, for each xi we specify a

lower and an upper bound, say lbi and ubi, respectively. In the classical (zero-restricted)

CRP one de®nes lbi � baic and ubi � daie. In the present model, instead, we allow some

entries to have a larger rounding window �lbi; ubi�. In any case, we require lbi # ai # ubi.

The CRP with relaxed rounding windows is now stated as the following integer LP:

minimize
X
i [ I

wi xi
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Table 4. Statistics on larger 3-dimensional tables

m ´ n ´ p Percentage time count nodes
of zeros

4 ´ 4 ´ 4 0 0.29 62 4.03
4 ´ 4 ´ 4 25 0.27 33 4.94
4 ´ 4 ´ 4 50 0.25 27 5.67
4 ´ 4 ´ 4 75 0.23 27 5.07
4 ´ 4 ´ 4 90 0.19 3 3.67

6 ´ 6 ´ 6 0 2.32 121 17.79
6 ´ 6 ´ 6 25 1.57 123 12.77
6 ´ 6 ´ 6 50 1.16 112 13.11
6 ´ 6 ´ 6 75 0.66 91 12.05
6 ´ 6 ´ 6 90 0.28 36 6.72

7 ´ 7 ´ 7 0 13.66 162 40.54
7 ´ 7 ´ 7 25 12.18 159 40.85
7 ´ 7 ´ 7 50 6.58 152 24.49
7 ´ 7 ´ 7 75 4.63 134 25.81
7 ´ 7 ´ 7 90 2.49 78 10.82

8 ´ 8 ´ 8 0 64.97 172 102.09
8 ´ 8 ´ 8 25 46.19 175 83.42
8 ´ 8 ´ 8 50 30.01 173 68.98
8 ´ 8 ´ 8 75 15.13 165 58.78
8 ´ 8 ´ 8 90 3.18 97 18.69
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Table 5. 3-dimensional tables (10 instances for each trial)

dim d time nodes r1 r2

10 ´ 10 ´ 12 0 47.90 (113.03) 23.9 (68) 10 0
10 ´ 10 ´ 12 25 21.75 (32.77) 9.9 (17) 10 0
10 ´ 10 ´ 12 50 13.98 (22.59) 12.2 (28) 10 0
10 ´ 10 ´ 12 75 2.54 (7.21) 8.8 (34) 10 0
10 ´ 10 ´ 12 90 0.28 (0.52) 2.6 (8) 10 0

10 ´ 10 ´ 16 0 84.13 (170.51) 18.1 (52) 10 0
10 ´ 10 ´ 16 25 59.28 (165.72) 20.6 (76) 10 0
10 ´ 10 ´ 16 50 35.14 (112.69) 19.6 (83) 10 0
10 ´ 10 ´ 16 75 5.76 (16.39) 10.8 (46) 10 0
10 ´ 10 ´ 16 90 0.44 (1.02) 3.0 (12) 10 0

10 ´ 10 ´ 20 0 131.72 (181.14) 12.4 (22) 10 0
10 ´ 10 ´ 20 25 142.51 (489.76) 26.7 (116) 10 0
10 ´ 10 ´ 20 50 55.61 (156.12) 17.1 (57) 10 0
10 ´ 10 ´ 20 75 11.52 (29.91) 12.7 (39) 10 0
10 ´ 10 ´ 20 90 1.02 (3.12) 7.8 (36) 10 0

10 ´ 12 ´ 12 0 99.15 (350.53) 29.8 (134) 10 0
10 ´ 12 ´ 12 25 54.50 (84.24) 21.9 (43) 10 0
10 ´ 12 ´ 12 50 27.40 (57.93) 18.2 (41) 10 0
10 ´ 12 ´ 12 75 3.25 (4.80) 5.8 (14) 10 0
10 ´ 12 ´ 12 90 0.38 (0.63) 2.9 (7) 10 0

10 ´ 12 ´ 16 0 260.47 (707.39) 38.0 (139) 10 0
10 ´ 12 ´ 16 25 178.70 (273.64) 33.7 (51) 10 0
10 ´ 12 ´ 16 50 59.37 (185.63) 18.6 (68) 10 0
10 ´ 12 ´ 16 75 31.38 (252.83) 64.9 (591) 10 0
10 ´ 12 ´ 16 90 0.71 (1.74) 3.8 (13) 10 0

10 ´ 12 ´ 20 0 488.20 (1,547.80) 47.0 (200) 10 0
10 ´ 12 ´ 20 25 458.52 (782.36) 64.1 (103) 10 0
10 ´ 12 ´ 20 50 143.45 (450.69) 29.4 (117) 10 0
10 ´ 12 ´ 20 75 33.66 (133.42) 33.4 (181) 10 0
10 ´ 12 ´ 20 90 0.81 (1.24) 2.3 (6) 10 0

10 ´ 14 ´ 16 0 394.83 (1,053.44) 45.1 (136) 10 0
10 ´ 14 ´ 16 25 315.57 (516.02) 39.9 (88) 10 0
10 ´ 14 ´ 16 50 144.17 (297.62) 31.5 (83) 10 0
10 ´ 14 ´ 16 75 17.86 (48.57) 13.6 (44) 10 0
10 ´ 14 ´ 16 90 1.14 (2.28) 5.1 (15) 10 0

10 ´ 14 ´ 20 0 947.80 (2,268.79) 69.0 (183) 10 0
10 ´ 14 ´ 20 25 676.15 (1,261.33) 60.6 (106) 10 0
10 ´ 14 ´ 20 50 422.20 (615.34) 63.7 (91) 10 0
10 ´ 14 ´ 20 75 38.04 (104.45) 17.8 (53) 10 0
10 ´ 14 ´ 20 90 1.42 (2.08) 3.3 (8) 10 0

10 ´ 16 ´ 16 0 800.64 (1,921.04) 62.7 (143) 10 0
10 ´ 16 ´ 16 25 463.16 (999.41) 51.5 (139) 10 0
10 ´ 16 ´ 16 50 253.62 (583.32) 42.5 (112) 10 0
10 ´ 16 ´ 16 75 143.83 (1,110.21) 121.1 (1,037) 10 0
10 ´ 16 ´ 16 90 1.51 (4.09) 5.9 (23) 10 0



subject to

Mx � b

lbi # xi # ubi for all i [ I

xi integer for all i [ I

where one can set e.g., wi � 1 if ai # �lbi � ubi�=2 and wi � ÿ1 otherwise, so as to encou-

rage rounding a cell to its nearest bound.

For the solution of the above model we have implemented a branch-and-cut scheme in the

spirit of the one proposed by Padberg and Rinaldi (1991) for the solution of hard integer

LP's. In our implementation, at each node of the branching tree the quality of the LP

relaxation of the model is enhanced by the addition of classical Gomory cuts, as well as

of the {0, 1/2}-cuts recently proposed by Caprara and Fischetti (1996).

A critical point concerns the choice of the lower/upper bounds to be imposed on

each variable xi. We conducted experiments by starting with the smallest (zero-restricted)

rounding windows, and enlarging some of them if no feasible solution existed. To be more

speci®c, we decided to always set lbi � baic and ubi � daie for the fractional entries ai. As to

the integer entries ai, the rounding window is de®ned according to one of the following

rules:

1. lbi � ubi � ai for each integer ai (zero-restricted case);

2. lbi � ai and ubi � ai � 1, for each integer ai (weight wi being set to a large positive

number).

In our experiments, the second rule is only applied when the ®rst rule does not yield any

feasible controlled rounding solution, a situation arising when all the nodes of the branch-

and-cut tree produced inconsistent LP relaxations of our model. Notice however that, in

practice, one can use the second rule directly, as the large weights wi assigned to the inte-

ger ai's guarantee that an optimal solution has as few components xi � ai � 1 as possible

(none if a zero-restricted solution exists).
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Table 5. (cont)

dim d time nodes r1 r2

10 ´ 16 ´ 18 0 1,210.74 (2,549.81) 75.9 (169) 10 0
10 ´ 16 ´ 18 25 1,129.88 (2,466.72) 95.8 (212) 10 0
10 ´ 16 ´ 18 50 358.91 (789.12) 50.1 (109) 10 0
10 ´ 16 ´ 18 75 51.99 (192.16) 23.3 (103) 10 0
10 ´ 16 ´ 18 90 1.81 (3.58) 5.5 (15) 10 0

10 ´ 16 ´ 20 0 1,602.96 (4,226.44) 79.5 (239) 10 0
10 ´ 16 ´ 20 25 1,266.72 (2,241.60) 82.0 (177) 10 0
10 ´ 16 ´ 20 50 426.43 (670.66) 46.6 (83) 10 0
10 ´ 16 ´ 20 75 91.72 (189.95) 34.3 (92) 10 0
10 ´ 16 ´ 20 90 3.42 (8.04) 9.1 (26) 10 0

10 ´ 18 ´ 18 0 1,571.32 (4,100.47) 75.1 (235) 10 0
10 ´ 18 ´ 18 25 966.47 (1,921.61) 57.3 (119) 10 0
10 ´ 18 ´ 18 50 696.01 (1,842.77) 74.3 (189) 10 0
10 ´ 18 ´ 18 75 138.73 (402.68) 50.6 (192) 10 0
10 ´ 18 ´ 18 90 2.74 (9.49) 6.7 (33) 10 0
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Table 6. 4-dimensional tables (10 instances for each trial)

dim d time nodes r1 r2

4 ´ 4 ´ 4 ´ 4 0 0.44 (1.05) 2.8 (7) 10 0
4 ´ 4 ´ 4 ´ 4 25 0.61 (1.47) 6.0 (16) 6 4
4 ´ 4 ´ 4 ´ 4 50 0.45 (0.67) 1.7 (6) 1 9
4 ´ 4 ´ 4 ´ 4 75 0.30 (0.28) 1.3 (3) 1 9
4 ´ 4 ´ 4 ´ 4 90 0.13 (0.25) 1.4 (3) 9 1

4 ´ 4 ´ 4 ´ 6 0 1.26 (2.30) 7.7 (15) 10 0
4 ´ 4 ´ 4 ´ 6 25 1.90 (5.39) 22.6 (82) 8 2
4 ´ 4 ´ 4 ´ 6 50 1.11 (3.16) 6.5 (27) 4 6
4 ´ 4 ´ 4 ´ 6 75 0.43 (0.70) 2.9 (7) 2 8
4 ´ 4 ´ 4 ´ 6 90 0.22 (0.32) 1.4 (4) 6 4

4 ´ 4 ´ 4 ´ 8 0 3.33 (5.86) 13.6 (24) 10 0
4 ´ 4 ´ 4 ´ 8 25 4.62 (9.01) 43.7 (97) 10 0
4 ´ 4 ´ 4 ´ 8 50 2.49 (5.81) 15.6 (75) 4 6
4 ´ 4 ´ 4 ´ 8 75 0.56 (1.00) 4.2 (14) 4 6
4 ´ 4 ´ 4 ´ 8 90 0.23 (0.41) 2.1 (7) 8 2

4 ´ 4 ´ 4 ´ 10 0 6.84 (10.43) 16.9 (31) 10 0
4 ´ 4 ´ 4 ´ 10 25 7.25 (21.33) 43.3 (138) 10 0
4 ´ 4 ´ 4 ´ 10 50 6.65 (24.39) 33.2 (135) 7 3
4 ´ 4 ´ 4 ´ 10 75 0.91 (2.19) 1.8 (3) 1 9
4 ´ 4 ´ 4 ´ 10 90 0.30 (0.45) 1.7 (7) 5 5

4 ´ 4 ´ 6 ´ 6 0 7.79 (12.04) 19.2 (36) 10 0
4 ´ 4 ´ 6 ´ 6 25 38.25 (183.34) 240.7 (1,155) 10 0
4 ´ 4 ´ 6 ´ 6 50 9.75 (35.14) 32.5 (137) 3 7
4 ´ 4 ´ 6 ´ 6 75 1.29 (2.38) 8.0 (25) 0 10
4 ´ 4 ´ 6 ´ 6 90 0.28 (0.39) 1.0 (1) 4 6

4 ´ 4 ´ 6 ´ 8 0 26.21 (40.72) 35.2 (65) 10 0
4 ´ 4 ´ 6 ´ 8 25 118.24 (367.05) 365.7 (1,194) 10 0
4 ´ 4 ´ 6 ´ 8 50 165.55 (613.63) 203.6 (1,100) 3 7
4 ´ 4 ´ 6 ´ 8 75 2.55 (5.15) 9.3 (24) 0 10
4 ´ 4 ´ 6 ´ 8 90 0.42 (0.85) 2.6 (14) 4 6

4 ´ 4 ´ 6 ´ 10 0 152.07 (1,009.12) 182.3 (1,369) 10 0
4 ´ 4 ´ 6 ´ 10 25 364.43 (1,485.83) 659.8 (2,746) 10 0
4 ´ 4 ´ 6 ´ 10 50 1,186.62 (3,339.20) 2,193.0 (6,170) 5 5
4 ´ 4 ´ 6 ´ 10 75 6.51 (12.62) 12.7 (49) 0 10
4 ´ 4 ´ 6 ´ 10 90 2.95 (21.12) 37.3 (302) 2 8

4 ´ 4 ´ 8 ´ 8 0 93.27 (110.25) 69.9 (86) 10 0
4 ´ 4 ´ 8 ´ 8 25 688.74 (1,658.92) 1,017.7 (2,673) 10 0
4 ´ 4 ´ 8 ´ 8 50 3,357.11 (9,152.79) 6,202.5 (26,268) 6 4
4 ´ 4 ´ 8 ´ 8 75 15.47 (27.12) 30.8 (90) 0 10
4 ´ 4 ´ 8 ´ 8 90 0.80 (2.13) 5.3 (26) 2 8

4 ´ 6 ´ 6 ´ 6 0 90.42 (294.33) 100.8 (380) 10 0
4 ´ 6 ´ 6 ´ 6 25 829.33 (2,630.27) 1,506.8 (4,883) 10 0
4 ´ 6 ´ 6 ´ 6 50 1,844.17 (4,422.22) 1,597.3 (10,813) 2 8
4 ´ 6 ´ 6 ´ 6 75 10.81 (34.60) 37.4 (129) 0 10
4 ´ 6 ´ 6 ´ 6 90 0.73 (1.46) 3.7 (17) 0 10



Our branch-and-cut algorithm has been coded in C, by using CPLEX 3.0 as the LP-

solver. Tables 5 and 6 report computational results on 3- and 4-dimensional instances,

respectively (for 4-dimensional tables, system Ma � b contains all 1-, 2-, and 3-marginal

projections).

Random instances have been generated as in Kelly, Golden, Assad, and Baker (1990):

rounding base is 3, and for each given ``percentage-of-zeros'' density d [ {0%, 25%,

50%, 75%, 90%} the internal nominal values are 0 with probability d, and random integers

in {1, 2} with probability 1 ÿ d. We solved 10 random instances for each trial.

Tables 5 and 6 provide the following information:

dim : table dimension;

d : percentage-of-zeros density;

time : average (maximum) computing time, in PC Pentium 75 seconds, of the overall

procedure;

nodes : average (maximum) number of nodes explored by the overall procedure;

r1 : number of feasible instances with rule 1 (zero-restricted case), out of 10 ÿ r1 trials;

r2 : number of feasible instances with rule 2, out of 10 trials.

According to Tables 5±6, a zero-restricted solution was found for all the 3-dimensional

tables in our test bed, whereas for 4-dimensional tables about 40% of the generated

instances have no zero-restricted CRP solution. In any case, rule 2 was suf®cient to ensure

a feasible rounded solution when a zero-restricted solution did not exist.
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