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The available multiple frame estimation methods do not deal with the case of mixed frame
level information where units from the same sample are allowed to have mixed information.
That is, some units may have only basic (possibly due to privacy concerns or lack of memory
on the part of the respondent) while others may have more than basic information, where basic
is defined as having known selection probability for each unit from the sampled frame and the
number of frames the unit could have been selected from but not knowing the frame
identification except, of course, for the sampled frame. To address this new problem, we first
propose a unified approach based on multiplicity-adjusted estimation which encompasses all
the proposed estimators (classified in this article as either combined or separate) as well as
new estimators obtained by combining simple and complex multiplicity estimators. We also
propose hybrid multiplicity estimators to account for mixed information. The methods
discussed here are limited to the combined frame approach only because of their ability to deal
with the case of mixed information. Simulation results are presented to compare various
methods in terms of relative bias and relative root mean squared error of point and variance
estimators.

Key words: Basic, partial and full frame level information; multiplicity adjustments; separate
and combined frame approaches; variance estimation.

1. Introduction

In a Multiple Frame (MF) survey, a set of at least two frames is used instead of a traditional

single frame of units from the target population. Each frame by itself may or may not be

complete but the union is assumed to be complete. The cost of sampling from different

frames may vary quite a bit and typically the complete frame (if available) is more

expensive to sample than incomplete frames. Even if this were not the case, it might not be

economical or practical to create a single frame from multiple frames by removing

duplicate units from overlapping parts. The main purpose of using MF surveys is to reduce
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cost while maintaining estimation efficiency almost at par with single frame surveys. They

are also useful for difficult-to-sample populations (rare, elusive, or hidden), improving the

target population coverage and response rates.

For the estimation problem of combining samples from multiple frames, there are

several methods available in the literature that adjust the sampling weights for multiplicity

so that no selected unit from overlapping frames is counted more than once. It is assumed

that the frame level information for any selected unit is of three types: basic (known

selection probability from the sampled frame and the number of frames from which the

unit could have been selected but without the frame identification), partial (basic plus

identification of the frames from which the unit could have been selected), and full (partial

plus the selection probabilities from all the relevant frames). Moreover, units from the

same sample are allowed to have mixed frame level information in that some may have

only basic (possibly due to privacy concerns such as drug-use behavior or elusive-status

behavior in the case of homeless, illegal immigration and ex-imprisonment, or memory

lapse on the part of the respondent) while others may have more than basic. We also

assume no classification error in the frame membership when it is reported.

It is interesting to note that if only basic frame level information is available for all

sampled units, all available MF estimators become inapplicable except for the one recently

proposed by Mecatti (2007) based on the idea of multiplicity counting rule of Sirken

(1972) in network sampling and of Casady and Sirken (1980) in multiple frame sampling;

see also Singh and Wu (1996), who used a dual frame simple multiplicity estimator as

input for weight calibration. In this article, the Mecatti estimator will be termed as simple

multiplicity (SM) because the multiplicity factor for each unit is simply constant for all

frames to which the unit may belong. The class of MF estimators can be broadly classified

into two types termed as separate frame and combined frame approaches, as explained in

the next section. The separate frame approach requires basic or partial frame level

information about sampled units, and encompasses methods of Hartley (1962; 1974),

Fuller and Burmeister (1972), Skinner (1991), Skinner and Rao (1996), Singh and Wu

(1996; 2003), Lohr and Rao (2006), and Mecatti (2007) among others. The combined

frame approach, on the other hand, requires full frame level information about sampled

units, and consists of methods, among others, proposed by Bankier (1986, to be termed as

a nonmultiplicity (NM) estimator because it behaves like a single frame estimator without

requiring any multiplicity adjustment); and Kalton and Anderson (1986), to be termed as

proportional multiplicity (PM) because the multiplicity adjustment factor for each unit is

proportional to the frame-specific sample inclusion probability of the unit. However, none

of the above methods (except SM) deal with the case of mixed frame level information for

units in the same sample.

In this article, we propose new estimators in the combined frame approach obtained by

compositing simple and complex multiplicity estimators. We also propose hybrid

multiplicity (HM) estimators under the combined frame approach to handle the case of

mixed information. The methods discussed here are, however, limited mainly to the

combined frame approach (except for SM) because of their ability to deal with the case of

mixed information. An example of the application of HM might arise in a three-frame

survey (e.g., three homeless shelter lists in a city), where we know the frame identification

of sampled individuals who report the number (and not the identification of frame
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membership) as one or three, but not so for those reporting only two. For units having only

basic information, the HM estimator uses the multiplicity factor as in SM. For units having

full information it can use, in particular, the multiplicity factor as in PM.

To motivate and understand the proposed HM estimators in relation to other estimators,

we first propose a unified formulation of MF estimators, termed as generalized

multiplicity-adjusted Horvitz-Thompson (GMHT) estimators. This class encompasses all

MF estimators (based on separate frame and combined frame approaches) listed above and

includes, of course, Horvitz-Thompson (HT) estimators like the NM estimator which does

not require multiplicity adjustment factors because it does not allow duplicate sampled

units in the combined sample. The NM estimator does not preserve the identity of samples

from different frames, but in effect combines them as a single frame sample (after

deduplication of sampled units, if any) with corresponding inclusion probabilities adjusted

for multiple selection from overlapping frames. The GMHT class of estimators is

analytically simple and can be readily implemented for any number of frames. In addition,

it allows for general HT-type unbiased variance estimation and Sen-Yates-Grundy form,

in particular, for nonrandom sample sizes.

The organization of this article is as follows. Section 2 presents the proposed GMHT

class of estimators while Section 3 shows how the existing and proposed methods under

the combined frame approach and SM under the separate frame approach can be obtained

as special cases of GMHT. In Section 4, a limited simulation study is performed to

compare various estimators in terms of relative bias and relative root mean squared error

of point and variance estimators. A number of different scenarios in a three-frame set-up

are considered by varying the frame-overlapping pattern, the data generation model, and

the population sizes. Three schemes of over- and under-sampling are considered,

including the option of complex designs (e.g., simple random in one frame and probability

proportional to size in others). The impact of small inclusion probabilities on precision of

point and variance estimators is also explored. Finally, Section 5 contains concluding

remarks.

2. Generalized Multiplicity-adjusted Horvitz-Thompson (GMHT) Class of

Multiple Frame Estimators

Let U1· · ·Uq· · ·UQ denote the collection of frames whose union is assumed to cover the

target population U ¼ <qUq. The frames are generally overlapping in practice, and in fact

some of them may be complete by themselves too. Independent samples s1· · ·sq· · ·sQ from

the Q frames are selected under possibly different designs which may be simple (simple

random sample without replacement) or complex (stratified multistage cluster unequal

probability sample, for example). We focus on the estimation of the population total

Ty ¼
P

i[U yi of a study variable y. Estimation in an MF survey is essentially a problem of

combining data from the Q samples. The target parameter Ty can be alternatively

expressed as the sum over (possibly overlapping) frames

Ty ¼
i[U

X
yi ¼

XQ
q¼1 i[Uq

X
yiaq ið Þ ð1Þ

Singh and Mecatti: Unified Approach to Multiple Frame Surveys 635



where aq ið Þ [ 0; 1
� �

, in general but not necessarily, and
P

q aq ið Þ ¼ 1, are the multiplicity

adjustment factors corresponding to frames q for each unit i and sum to one to ensure that

the unit is not counted more than once. Note that the simplest choice of aq ið Þ is inverse of

the unit multiplicity mi ¼ #ðUq ] i Þ although in general it may depend on first and second

order inclusion probabilities under the MF design. Next introduce an observable random

variable diðqÞ for each unit i from frame q under the design-randomization; a common

choice of which, analogous to the HT estimation, is diðqÞ ¼ 1i[sq i.e., the sample

membership indicator of unit i in the sample sq from frame Uq. Note that the subscript

order in aqði Þ helps to interpret it as being defined for each frame q that contains the unit i,

while the reversed subscript order in diðqÞ helps to interpret it as being defined for each unit

i that is contained in the frame q.

Now the Generalized Multiplicity-adjusted Horvitz-Thompson (GMHT) class of MF

estimators corresponding to various choices of ða; dÞ is defined by

tyðGMHTÞ ¼
XQ
q¼1 i[Uq

X
yiaq ið Þ

diðqÞ

E diðqÞ
� � ð2Þ

which is design-unbiased by construction and clearly analytically simple regardless of the

number Q of frames. The HT estimator is a special case when Q ¼ 1 and aqði Þ ¼ 1.

Observe that the GMHT estimators are linear combinations of independent HT-type

estimators, and therefore the exact design-based variance is easily obtained as

Var tyðGMHTÞ

� �
¼
XQ
q¼1 i[Uq

X
z2
iðqÞVar diðqÞ

� �
þ

i–j

X
[Uq

X
ziðqÞzjðqÞCov diðqÞ; djðqÞ

� �8<
:

9=
; ð3aÞ

which for fixed sample designs reduces to

Var tyðGMHTÞ

� �
¼
XQ
q¼1 i,j

X
[Uq

X
2 Cov diðqÞ; djðqÞ

� �
ziðqÞ 2 zjðqÞ
� �2

ð3bÞ

where

ziðqÞ ¼
yiaqði Þ

E diðqÞ
� �

collects all the nonrandom components of tyðGMHTÞ. The Sen-Yates-Grundy form of

unbiased variance estimators for fixed sample size designs in all frames, assuming positive

joint design-expectation, E di qð Þdj qð Þ

� �
. 0 for all pair of units i – j [ Uq, q ¼ 1· · ·Q, is

given by

v tyðGMHTÞ

� �
¼
XQ
q¼1 i,j

X
[Uq

X2Cov diðqÞ; djðqÞ
� �

E diðqÞdjðqÞ
� � ziðqÞ 2 zjðqÞ

� �2
diðqÞdjðqÞ ð4Þ

Note that Cov diðqÞ; djðq 0Þ
� �

¼ 0 for independent frame samples. For diðqÞ ¼ 1i[sq

Equations (3b) and (4) reduce to the usual variance formulae for the sum of independent
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HT-type estimators for fixed sample sizes and are given by

Var tyðGMHTÞ

� �
¼
XQ
q¼1 i,j

X
[Uq

X
piðqÞpjðqÞ 2 pijðqÞ

� � yiaq ið Þ

pi qð Þ
2

yjaq jð Þ

pj qð Þ

 !2

ð5Þ

and

v tyðGMHTÞ

� �
¼
XQ
q¼1 i,j

X
[sq

X piðqÞpjðqÞ 2 pijðqÞ

� �
pij qð Þ

yiaq ið Þ

pi qð Þ
2

yjaq jð Þ

pj qð Þ

 !2

ð6Þ

Finally, for the special case di qð Þ ¼ 1i[sq and simple random sampling in each frame, we

have Eðdi qð ÞÞ ¼ nq=Nq (¼ f q, the sampling fraction from frame q) for all i [ Uq,

Eðdi qð Þ�dj qð ÞÞ ¼ f qðnq 2 1Þ=ðNq 2 1Þ, for all i – j [ Uq, and Equations (3) and (4)

simplify to expressions without the double sum:

Var tyðGMHTÞ

� �
¼
XQ
q¼1

N2
q

1 2 f q
� �

nq

1

Nq 2 1 i[Uq

X
y2
i a

2
q ið Þ 2 Nq

1

Nqi[Uq

X
yiaq ið Þ

0
@

1
A

22
4

3
5 ð7Þ

and

v tyðGMHTÞ

� �
¼
XQ
q¼1

N2
q

1 2 f q
� �

nq

1

nq 2 1 i[sq

X
y2
i a

2
q ið Þ 2 nq

1

nq i[sq

X
yiaq ið Þ

0
@

1
A

22
4

3
5 ð8Þ

The GMHT class encompasses all the MF estimators available in the literature by

suitably specifying aq ið Þ and di qð Þ. The specification of aq ið Þ depends on the available frame

level information for each sampled unit. As mentioned in the introduction, this

information could be basic, partial or full. In the case of basic frame level information for a

sampled unit, we have

1. The unit multiplicity mi for the sampled unit, that is, the number of frames in which

the unit appears, where i [ sq and q ¼ 1· · ·Q; here the frame identification is not

assumed to be available except, of course, for the frame from which it was actually

sampled.

2. The inclusion probability pi qð Þ ¼ Pðsq ] i Þ for the sampled unit only for the

frame(s) from which it was actually sampled, where i [ sq and q ¼ 1· · ·Q.

It is assumed that the basic information is available for all sampled units. In the case of

partial frame level information for a sampled unit, we have

1. Identification of all frame membership for the sampled unit, that is, all the frames the

sampled unit could have come from, where i [ sq and q ¼ 1· · ·Q;

2. The inclusion probability pi qð Þ ¼ Pðsq ] i Þ for the sampled unit only for the

frame(s) from which it was actually sampled, where i [ sq and q ¼ 1· · ·Q.

Clearly, having partial information implies basic plus frame identification. In the case of

full frame level information for a sampled unit, we have

Singh and Mecatti: Unified Approach to Multiple Frame Surveys 637



1. Identification of all frame membership for the sampled unit, that is, all the frames the

sampled unit could have come from, where i [ sq and q ¼ 1· · ·Q;

2. The inclusion probabilities pi qð Þ ¼ Pðsq ] i Þ for the sampled unit for all the frames

from which it could have been sampled (regardless of which frame it was actually

sampled), where i [ sq and q ¼ 1· · ·Q.

Clearly having full information implies partial information plus sample inclusion

probabilities from all the applicable frames. We also consider the case where all units in

the same sample may not have identical frame level information. This leads to the case of

mixed frame level information which may arise, as mentioned in the introduction, when

dealing with respondents’ privacy concerns or sensitivity of information about frame

membership.

For the proposed composite multiplicity estimators (next section), it would be useful to

define a partition of the target population U into disjoint domains and an alternative

expression of the GMHT class as follows. The knowledge of frame membership allows the

classification of each sampled unit into 2Q 2 1 disjoint domains UK ¼
�

q[K
>Uq

�
>�

q�K
>Uc

q

�
following the MF notation of Lohr and Rao (2006), where K # 1; · · ·; q; · · ·;Qf g is

an index set denoting an unordered subset of the collection of frame indices (except B). In

Figure 1 the domain classification and the index sets K # 1; · · ·; q; · · ·;Qf g are exemplified

for the case of three frames.

Each population unit is included in a unique single domain, that is, i [ UK for some K,

to be denoted by UKði Þ to indicate that it corresponds to the unit i. Now an alternative

expression for the GMHT class is given by

tyðGMHTÞ ¼
XQ
q¼1 i[Uq

X
yiaq ið Þ

di qð Þ

E di qð Þ

� � ¼
i[U

X
yi
q[K ið Þ

X
aq ið Þ

di qð Þ

E di qð Þ

� � ¼
i[U

X
yici ð9Þ

whereci ¼
q[K ið Þ

X
aq ið Þ

di qð Þ

E di qð Þ

� � ; andE ci

� �
¼
q[K ið Þ

X
aq ið Þ ¼ 1 ensures design-unbiasedness

Remarks (Separate and Combined Frame Approaches): As mentioned in the

introduction, all the available MF estimators can be classified into two approaches

depending on what frame level information is needed to compute the multiplicity

U3

{1}

{3}

{2}{12}

{13}
{23}{123}

U2U1

Fig. 1. Classification into seven domains for the three-frame set up
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adjustment factors aq ið Þ. If only basic (i.e., number of frames from which the unit could

have been sampled but only identification and inclusion probability for the frame from

which the unit was actually sampled) or partial information (i.e., basic information plus

identification of all the frames from which the unit could have been sampled) is required,

then the estimator is classified under the separate frame approach. On the other hand, if full

information (i.e., partial information plus inclusion probabilities for all the frames from

which the unit could have been sampled) is required, then the estimator is classified under

the combined frame approach. The SM estimator belongs to the separate frame approach

because it only requires the basic information. The separate frame approach may be

preferable in practice to the combined frame approach because there is more likelihood of

having partial than full information for all sampled units.

For the separate frame approach, the multiplicity adjustment factor aq ið Þ is common to

all units belonging to the same domain classification and depends only on the domain K ið Þ

as defined above for each unit i. It could also depend on the study variable and the

underlying sampling designs of multiple frames (first and second order inclusion

probabilities) through variance minimization of the linear combination of estimators

obtained from different samples for the common domain or the overlapping frame. Thus,

for each frame q intersecting with the domain K(i ), the adjustment factor aq ið Þ depends

only on q and can be obtained using optimal regression (for example) as inversely

proportional to the variance of the corresponding estimator under the constraintP
q aq ið Þ ¼ 1, which implies that each factor is between 0 and 1 (here the assumption of

independent samples from different frames for the common domain is used). The above

optimal regression approach in the case of two frames was used in the pioneering papers of

Hartley (1962; 1974) and later by Fuller and Burmeister (1972), who also included, for the

sake of increased efficiency, an extra predictor defined by the difference of the estimated

population counts from the two samples from the common domain. The Fuller-Burmeister

estimator can be viewed as a GMHT estimator because it is equivalent to performing

regression on the extra predictor after obtaining the multiplicity adjusted estimator; that is

calibration following GMHT estimation. Although the above GMHT-type estimators were

developed from the initially calibrated (such as raking-ratio adjusted) estimators from

each frame, the alternative of first defining a GMHT estimator using the initial

uncalibrated weights and then performing calibration on multiplicity-adjusted weights

might be more appealing as it generalizes in a natural way the calibration of single frame

HT estimators to multiple frame GMHT estimators. This topic will be addressed in a

separate paper.

The dual frame estimators of Skinner (1991) for simple random samples and of Skinner

and Rao (1996) for complex designs are also based on regression estimation, but for

combining estimates of the mean for the common domain instead of totals, although the

ultimate goal is to estimate totals. In this case, the estimator of the common domain mean

can be expressed as a ratio of GMHT estimators of the study variable total in the numerator

and the domain subpopulation count in the denominator. It follows that for estimating

domain totals, the above estimator can be expressed as a GMHT estimator by noting that

the multiplicity adjustment factors involve as a denominator the GMHT estimator of the

common domain subpopulation count. To avoid the problem of having to define the

multiplicity adjustment factor for each study variable as encountered by the estimators of
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Hartley and Fuller-Burmeister, Skinner-Rao suggested a compromise using the value

corresponding to the counting variable in estimating the common domain population

count – an important extension of which for the case of multiple frames was provided by

Lohr and Rao (2006). The estimator proposed by Singh and Wu (1996), on the other hand,

provides a generalized regression alternative to the optimal regression approach in

estimating totals for multiple frames in order to avoid the well-known problem of

instability of the optimal regression estimator in the presence of many auxiliary predictors

used for calibration. For this purpose, the simple multiplicity estimators for common

domains were used as the initial estimators before calibration. Later, Singh and Wu (2003)

proposed an optimal modification (to render it somewhat closer to the optimal regression

but without the problem of instability) involving choosing the combining coefficients (or

multiplicity adjustment factors) that minimize the generalized variance over a set of key

study variables.

Having provided above a brief review of methods under the separate frame approach, it

is observed that this approach (except for SM) is generally not applicable to the case of

mixed frame level information (i.e., when some units in the sample may provide only basic

information while others may have more information) which is one of the focal points of

this article. It is for this reason that we limit our study in this article to only the combined

frame approach except for SM of the single frame approach, a detailed discussion of which

is given in the next section.

3. Existing and Proposed Methods Based on Basic or Full Frame Level Information

In this section, in order to propose new estimators based on mixed frame level

information, we review SM requiring basic information under the separate frame

approach and other existing methods requiring full information under the combined

frame approach. We first show how all of them belong to the GMHT class and then

propose new estimators including ones that deal specifically with the case of mixed

frame level information.

3.1. Proportional Multiplicity (PM) Adjusted Estimator (Kalton and Anderson 1986)

The Kalton-Anderson estimator requires full information. It belongs to the GMHT class

and can be expressed as

tyðPMÞ ¼
XQ
q¼1 i[Uq

X
yiaqði Þ

1i[sq

pi qð Þ
¼
XQ
q¼1 i[Uq

X yi1i[sq

mi �pi

; �pi ¼ m21
i

X
q 0[K ið Þ

pi q 0ð Þ ð10aÞ

where aq ið Þ ¼ pi qð Þ=
P

q 0[K ið Þ pi q 0ð Þ (hence the name PM; i.e., aq ið Þ is proportional to pi qð Þ)

and di qð Þ ¼ 1i[sq . It can also be equivalently expressed as

tyðPMÞ ¼
i[U

X
yici;PM ; whereci;PM ¼

q[K ið Þ

X
aqði Þ

1i[sq

pi qð Þ
ð10bÞ

Formulae (3) and (4) for the variance and the variance estimator are directly applicable by

setting zi qð Þ ¼ yi=
P

q 0[K ið Þ pi q 0ð Þ. Under simple random sampling with proportional
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allocation to all frames, we have pi qð Þ ¼ f for all q in K ið Þ, and hence
P

q[K ið Þ pi qð Þ ¼ fmi

where mi denotes the cardinality of the set K ið Þ and f is the common sampling fraction

over all frames. Hence for this sampling scheme, the PM estimator coincides with the

SM estimator of Subsection 3.2 defined below. In fact, this is true more generally

whenever pi qð Þ ¼ pi.

3.2. Simple Multiplicity (SM) Adjusted Estimator (Mecatti 2007)

The Mecatti estimator requires only basic information and leads to the following estimator

tyðSMÞ ¼
XQ
q¼1 i[Uq

X yi1i[sq

mipi qð Þ
ð11aÞ

which can also be equivalently expressed as

tyðSMÞ ¼
i[U

X
yici;SM; whereci;SM ¼

q[K ið Þ

X 1

mi

1i[sq

pi qð Þ
ð11bÞ

The SM estimator is clearly a member of the GMHT class with aq ið Þ ¼ m21
i and di qð Þ ¼

1i[sq so that E di qð Þ

� �
¼ pi qð Þ. Formulae (3) and (4) for variance and variance estimation

are easily applicable with zi qð Þ ¼ yi= mipi qð Þ

� �
.

3.3. Composite Multiplicity (CM) Adjusted Estimator (Proposed)

We observe from (11a) that although the SM estimator requires less information, it may be

unstable (in the sense of high coefficient of variation of point and variance estimators)

when some units may have very small inclusion probabilities–this is likely when dealing

with large populations. On the other hand, the PM estimator requires more information,

but is expected to be more stable because the average of inclusion probabilities for each

unit over the frames is in the denominator of (10a). However, since the choice of aq ið Þ is

not based on optimality considerations, it would be of interest to consider alternatives in

the GMHT class. In particular, assuming the availability of full information, we consider a

composite of the two such as lici;SM þ 1 2 lið Þci;PM minimizing the variance for a

suitable choice of li [ 0; 1
� �

as shown in Appendix A. The resulting estimator, termed

composite multiplicity (CM), is obtained as

tyðCMÞ ¼
XQ
q¼1 i[Uq

X
yia

CM
q ið Þ

1i[sq

pi qð Þ
ð12Þ

where

aCM
q ið Þ ¼ lCMi

1

mi

þ 1 2 lCMi
� �pi qð Þ

mi �pi

ð13aÞ
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and

lCMi ¼

X
q[K ið Þ 1 2 p21

i qð Þ �pi

� �
pi qð Þ 1 2 pi qð Þ

� �
X

q[K ið Þ 1 þ p22
i qð Þ �p

2
i 2 2p21

i qð Þ �pi

� �
pi qð Þ 1 2 pi qð Þ

� � ð13bÞ

Formulae (3) and (4) for variance and variance estimation remain easily applicable. In

the case of simple random sampling with proportional allocation to all frames, that is,

when pi qð Þ ¼ f for all i [ Uq, q ¼ 1· · ·Q, we have from (13b) lCMi ¼ 0; which implies

that all the three estimators, PM, SM, and CM become identical. As an alternative to

the above CM, we also considered the combination
P

q[K ið Þ a
*

q ið Þ1i[sq=pi qð Þ such that the

variance is minimized. This gives rise to a
*

q ið Þ being proportional to the inverse of

the variance of 1i[sq=pi qð Þ, which is
�
p21
i qð Þ

2 1
�
. The resulting estimator, however, tends

to be more unstable than PM (mainly because the coefficient of variation of a
*

q ið Þ turns out

to be higher than that of aPM
q ið Þ) and was not considered further. This is possible since in the

composite multiplicity estimation, instead of minimizing the variance of an overall

estimator for the study variable, we are simply optimizing for the multiplicity factor from

different frames for each unit i.

3.4. Hybrid Multiplicity (HM) Adjusted Estimators (Proposed)

Going back to the case of mixed frame level information not covered by estimators

considered so far except for SM, it would be of interest to explore whether SM could be

improved upon. Let Ufull denote a domain for which full information would be available

for any unit if it were selected, and Ubasic denote a domain for which we would have only

basic information; typically for units in Ubasic, 2 # jK(i )j # Q 2 1 and otherwise for units

in Ufull. A Hybrid Multiplicity (HM1) estimator based on SM and PM, for example, can be

defined as

tyðHM1Þ ¼
XQ
q¼1 i[Uq

X
yia

HM1
q ið Þ

1i[sq

pi qð Þ
ð14Þ

where aHM1
q ið Þ ¼

�
aPM
q ið Þ�1i[Ufull

þ aSM
q ið Þ�1i[Ubasic

�
. Clearly HM1 belongs to the GMHT class

and SM is a special case of it. Similarly, HM2 can be defined as a hybrid of SM and CM.

The HM estimators are expected to improve upon the possible instability of SM when the

inclusion probabilities of some of the units in Ufull could be very small.

3.5. Non-Multiplicity (NM) Adjusted Estimator (Bankier 1986)

As mentioned in the introduction, the Bankier estimator of the combined frame approach

belongs trivially to the GMHT class as it behaves like an HT estimator. The reason is that

this estimator does not require multiplicity adjustment factors because it does not allow

duplicate sampled units in the combined sample. It follows that besides requiring full

information, it also requires extra information at the estimation stage in order to be able to

identify duplicate sampled units. Using the notation of the GMHT class, it is possible to

express the NM estimator in a simple form for any number of frames. First, different frame
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samples s1; · · ·; sq; · · ·; sQ are combined into a single sample s* (with random size n*) of

distinct units by first classifying sampled units into disjoint domains UK , and then

discarding duplicate units if any. Thus, for any population unit i, let the indicator

variable that the sampled unit is in at least one of the frames q [ K ið Þ be

di ¼
�
1 2

‘
q 0[K ið Þ

�
1 2 1i[sq 0

��
. Therefore, the corresponding expectation or the

probability of being selected in at least one of the frames is given by

EðdiÞ ¼ 1 2
q[K ið Þ

Y
1 2 pi qð Þ

� �2
4

3
5 ð15Þ

The NM estimator can be defined as

tyðNMÞ ¼
i[U

X yidi

EðdiÞ
¼

i[s *

X yi

1 2
q[K ið Þ

Q�
1 2 pi qð Þ

� ð16Þ

For the above estimator, being HT (a rather special case of GMHT), the variance and its

estimate can be derived as shown in Appendix B. Note that the Sen-Yates-Grundy form of

the variance estimator is not applicable because of the sample size n* being random. It

may be of interest to note that if the product pi qð Þpi q 0ð Þ of inclusion probabilities is very

small (this could happen if at least one of the two is small enough), the sample is not likely

to have any duplicate units, in which case the NM estimator is approximately equivalent to

the PM estimator.

4. Simulation Study

To compare the six estimators (PM, SM, CM, HM1, HM2, and NM) described in the

previous section, a simulation study was designed involving three frames with simple

random sampling in one frame and unequal probability sampling in the remaining two; in

particular, Rao-Sampford (Rao 1965; Sampford 1967) probability proportional to size

(pps) was used. The pps sampling was introduced by using an auxiliary variable x

designed to be approximately proportional to the study variable y and was generated by

inverting the model y ¼ 5xþ N 0; 1
� �

. The population y-values were generated under six

different models as shown in Figure 2. With three frames, there are a total of seven disjoint

domains (not all of them necessarily nonempty) partitioning the target frame made up of

possibly different patterns of coverage ðNq=NÞ and overlap ðNK=NÞ among the three

frames. Figure 3 shows twelve patterns of coverage and overlap that were considered such

that

Coverage : 1 #
XQ

q¼1
Nq=N # 3 and Overlap : 0 #

X
Kj j$2

NK=N # 1

Figure 4 presents a visual display of examples of different patterns of coverage and

overlap. Note that the measures of coverage and overlap are positively correlated, and

therefore the selected patterns of interest are concentrated around a line sloping upward.
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The choice of the population size N was limited to 50, 100, and 120 to reduce the

computational burden. For a fixed overall sample size, n ¼
P

q nq we considered three

sample allocation schemes for the three frames:

i) Proportional allocation by selecting 10% in each frame, that is, f q ¼ nq=Nq ¼ 0:10,

q ¼ 1; 2; 3

ii) A disproportional allocation by selecting a sample of constant size nq ¼ n=3 in all

the three frames;

iii) Another type of disproportional allocation by over-sampling in one frame (f q around

20%) and under-sampling in the remaining two (f q around 5%).

In all, we considered a total of 32 scenarios for each of the above three sample allocation

schemes, out of which twelve scenarios correspond to two choices of coverage/overlap
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Fig. 2. Six Different models used to simulate y-data
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pattern (LL1, HL1), six different y-models, and N ¼ 100; eight scenarios (actually one

scenario out of nine was dropped due to its demanding computational time) correspond to

three patterns (LL1, LL3, LL4), one y-model (asymmetric unimodal Beta), and N ¼ 50,

100, and 120; and the remaining twelve correspond to each of the twelve patterns of

coverage and overlap with the y-model chosen as the asymmetric unimodal Beta, and N at

100. The above choice of different sample allocations was somewhat ad hoc but was

motivated from realistic scenarios which depend on field implementation and cost

considerations. In practice, however, a cost-variance optimization is usually performed to

obtain suitable sample allocations to different frames.

For the empirical study considered here, it is assumed that we do not have frame

identification whenever the frame multiplicity as reported by the respondent is two out of a

total of three. However, if it is three, then we do have the frame identification because the

total number of possible frames considered here is three. If it is one, then by default, the

frame identification is known. As mentioned earlier, with mixed frame level information,

only three methods, SM, HM1, and HM2, out of six are applicable. However, other

methods (PM, CM, and NM) belonging to the combined frame approach are also included

for the sake of interest although they require full information. For evaluating the

performance of various point estimators, we consider two measures RB and RRMSE as

defined below.

1. (Monte Carlo) Relative Bias: RB EmcðtyÞ2 Ty

� �
=Ty as a measure of simulation

accuracy since all the estimators are unbiased, and

2. Monte Carlo Relative Root Mean Squared Error: RRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Emcðty 2 T2

y

q
=Ty as a

measure of stability like the coefficient of variation.

The total number of simulations was chosen such that RBj j # 0:01 for all the point

estimators. This resulted in the number of simulation runs being between 10,000 and

15,000. We also compared the RRMSE for the variance estimator for each point estimator

to check the stability of variance estimators. In this case the number of simulation runs was

chosen such that the absolute relative bias was less than 0.05 for all the variance

estimators.

All nonempty domains Some empty domains

One complete frame

Fig. 4. Cases of some empty domains and presence of one complete frame in a three-frame set-up

Singh and Mecatti: Unified Approach to Multiple Frame Surveys 645



Tables 1 and 2 provide, respectively, summary measures of RRMSE of ty and vðtyÞ

for the six estimators. It is observed that the SM estimator shows most instability,

especially in the case of variance estimation. This is as expected, because it requires

the least amount of frame level information. In terms of point estimators, however, SM

performs reasonably well in comparison to others. All other estimators perform almost

at par. With respect to the median and the 75th quantile, it is seen that PM and CM

perform most favorably (in terms of small RRMSE) compared to others both with

respect to point and variance estimators. On the other hand, the NM estimator, although

requiring the most information, including deduplication of sampled units, performs

slightly worse for point estimation but better for variance estimation. It also appears

from the behavior of HM estimators that the hybridization approach succeeds in

improving the stability of the SM estimator.

We investigated further how SM and others would behave as the percentage of small

pi qð Þ increases over the 96 simulation scenarios considered. It is known that the presence

of small inclusion probabilities would tend to make any estimator unstable. Using

categories with increasing percentage of small pi qð Þ (defined as being less than 1%), out of

96 scenarios we have 27 with no small pi qð Þ, 39 with less than 10% small pi qð Þ, 26 cases

between 10% and 20% and only four cases with more than 20% of small pi qð Þ in the three

frames. Table 3 presents average RRMSE of point and variance estimators as the

percentage of small pi qð Þ increases. It is seen that all the estimators get worse as the

percentage of small inclusion probabilities increases. However, SM seems to be affected

most.

Table 1. % RRMSE of ty (Summary Measures over 96 Simulation Scenarios)

Estimator Average Min
25th
Quantile Median

75th
Quantile Max

Standard
deviation

SM 24.57 9.63 16.63 22.86 31.31 50.34 9.83
PM 22.90 9.62 16.27 20.26 29.21 50.09 9.26
CM 23.02 9.63 16.42 20.50 29.24 50.09 9.23
HM1 23.45 9.61 16.51 20.49 29.96 50.34 9.19
HM2 23.48 9.62 16.46 20.57 29.96 50.34 9.19
NM 23.39 10.03 16.93 20.66 29.81 50.19 9.14

Table 2. % RRMSE of vðtyÞ (Summary Measures over 96 Scenarios)

Estimator Average Min
25th
Quantile Median

75th
Quantile Max

Standard
deviation

SM 371.04 40.89 116.22 224.63 546.10 1,272.62 907.91
PM 275.83 31.23 75.66 170.40 349.71 1,286.24 687.67
CM 274.64 31.16 74.57 170.33 344.42 1,284.87 685.33
HM1 309.65 40.70 111.57 192.27 408.52 1,287.08 702.33
HM2 309.21 40.77 111.58 191.76 408.17 1,286.99 697.65
NM 272.93 37.99 85.19 167.48 335.65 1,292.89 654.11
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5. Concluding Remarks

We proposed a unified approach to multiple frame estimation using a generalized

multiplicity-adjusted Horvitz-Thompson (GMHT) class of estimators. In this article we

restricted our attention to mainly the combined frame approach (except for one from the

separate frame approach) so that the case of mixed frame level information available for

sampled units could be dealt with. Besides the known estimators PM (Kalton and

Anderson 1986) and SM (Mecatti 2007) that belong to the GMHT class, and the estimator

NM (Bankier 1986) being essentially Horvitz-Thompson (and hence trivially belonging to

the GMHT class), three new estimators, composite multiplicity (CM) and hybrid

multiplicity (HM1 and HM2) in the GMHT class, were considered. Based on a limited

simulation study, it was observed that in terms of relative bias (RB) and relative root mean

squared error (RRMSE) of point estimation, all six estimators are generally at par.

However, in terms of RB and RRMSE of variance estimation, SM could suffer most if

some of the units have very small sample inclusion probabilities. The new estimator CM,

as expected, behaves almost at par with PM. In the case of mixed frame level information,

only SM and the proposed HM estimators are applicable. In practice, however, the HM

estimators may be preferable as they are less subject to the instability problem of SM. In

the near future it is planned to extend our study to include other methods based on the

separate frame approach when at least partial frame level information is assumed to be

available for all sampled units.

Appendix A

We consider the optimal combination of the two unbiased estimators ci;SM and ci;PM

of 1 by minimizing Var lici;SM þ 1 2 lið Þci;PM

� �
for a suitable li [ 0; 1

� �
, i.e.,

find li that

li[ 0;1ð Þ
min l2

i Var ci;SM

� �
þ 1 2 lið Þ2Var ci;PM

� �
þ 2li 1 2 lið ÞCov ci;SM;ciPM

� �� 	
ðA1Þ

Notice that lici;SM þ 1 2 lið Þci;PM ¼ ci;PM þ li ci;SM 2 ci;PM

� �
. Hence the solution of

the problem (A1) is obtained as (minus) the regression coefficient of ci;PM on

Table 3. Average % RRMSE of ty and vðtyÞ as % Small pi qð Þ over Simulation Scenarios Increases

Average %RRMSE of ty Average %RRMSE of vðtyÞ

% of small pi qð Þ % of small pi qð Þ

Estimator 0 0–10% 10–20% .20% 0 0–10% 10–20% .20%

SM 18.53 23.97 29.08 41.81 144.32 362.83 567.27 706.09
PM 18.78 22.17 25.88 38.43 141.50 273.91 356.21 678.89
CM 18.90 22.30 25.99 38.50 140.87 272.70 354.68 676.16
HM1 18.53 23.08 26.77 38.75 145.31 326.43 400.83 662.61
HM2 18.55 23.11 26.82 38.83 145.27 326.11 400.13 660.07
NM 19.20 22.73 26.76 38.66 147.16 267.78 349.48 674.40
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ci;SM 2 ci;PM

� �
; that is, with �pi ¼ m21

i

P
q 0[K ið Þ pi q 0ð Þ we have

lCMi ¼ 2
Cov ci;PM ;ci;SM 2 ci;PM

� �
Var ci;SM 2 ci;PM

� �

¼
q[K ið Þ

Xpi qð Þ 1 2 pi qð Þ

� �
mi �pið Þ2

2
q[K ið Þ

Xpi qð Þ 1 2 pi qð Þ

� �
mipi qð Þmi �pi

q[K ið Þ

Xpi qð Þ 1 2 pi qð Þ

� �
mi �pið Þ2

þ
q[K ið Þ

Xpi qð Þ 1 2 pi qð Þ

� �
m2

i p
2
i qð Þ

2 2
q[K ið Þ

Xpi qð Þ 1 2 pi qð Þ

� �
m2

i pi qð Þ �pi

¼

X
q[K ið Þ

1 2 p21
i qð Þ �pi

� �
pi qð Þ 1 2 pi qð Þ

� �
X
q[K ið Þ

1 þ p22
i qð Þ �p

2
i 2 2p21

i qð Þ �pi

� �
pi qð Þ 1 2 pi qð Þ

� �

ðA2Þ

Appendix B

We have

Var tyðNMÞ

� �
¼

i[U

X
z2
i Var dið Þ þ

i–j

X
[U

X
zizjCov di; dj

� �
ðB1Þ

where zi ¼ yi 1 2
q 0[K ið Þ

Y
1 2 pi q 0ð Þ

� �2
4

3
5
21

; and

Var dið Þ ¼ E 1 2
q 0[K ið Þ

Y
1 2 1i[sq

� �2
4

3
5

2

2 1 2
q 0[K ið Þ

Y
1 2 pi q 0ð Þ

� �2
4

3
5

2

¼
q 0[K ið Þ

Y
1 2 pi q 0ð Þ

� �
1 2

q 0[K ið Þ

Y
1 2 pi q 0ð Þ

� �2
4

3
5 ¼ Pi 1 2 Pið Þ

ðB2Þ

E didj
� �

¼ 1 2
q 0[K ið Þ

Y
1 2 pi q 0ð Þ

� �
2

q 0[K jð Þ

Y
1 2 pj q 0ð Þ

� �

þ
q 0[K ið Þ>K jð Þ

Y
1 2 pi q 0ð Þ 2 pj q 0ð Þ þ pij q 0ð Þ

� �
�

q 0[K ið Þ>K c jð Þ

Y
1 2 pi q 0ð Þ

� �
�

q 0[K jð Þ>K c ið Þ

Y
1 2 pj q 0ð Þ

� �

¼ 1 2
q 0[K ið Þ

Y
1 2 pi q 0ð Þ

� �
2
q 0[K jð Þ

Y
1 2 pj q 0ð Þ

� �

þ
q 0[K ið Þ

Y
1 2 pi q 0ð Þ

� �
�
q 0[K jð Þ

Y
1 2 pj q 0ð Þ

� �
�

q 0[K ið Þ>K jð Þ

Y 1 2 pi q 0ð Þ 2 pj q 0ð Þ þ pij q 0ð Þ

� �
1 2 pi q 0ð Þ

� �
1 2 pj q 0ð Þ

� �

; 1 2 Pi 2 Pj þ PiPj Pij

� �

ðB3Þ
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for i – j [ U, where K ið Þ and K j
� �

denote two domains which need not be distinct, and

Pi, Pj, and Pij denote the corresponding terms in the previous equation. Note that K ið Þ>

K j
� �

;K ið Þ> K c j
� �

and K j
� �

> K c ið Þ are disjoint domains, some of them possibly empty,

and therefore using the independence of frame samples, we have, as expected, Pij ¼ 1 if

K ið Þ> K j
� �

¼ f. We thus obtain

Cov di; dj
� �

¼ PiPj Pij 2 1
� �

ðB4Þ

Finally, since the sample of distinct units s* has random size n*, the Sen-Yates-Grundy

variance estimator is not applicable, but an unbiased Horvitz-Thompson variance

estimator can be obtained from

v tyðNMÞ

� �
¼

i[s *

X
z2
i

Var dið Þ

E dið Þ
þ

i–j

X
[s *

X
zizj

Cov di; dj
� �

E didj
� � ðB5Þ
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