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Local Recoding and Record Swapping by Maximum Weight
Matching for Disclosure Control of Microdata Sets

Akimichi Takemura

As a technique of disclosure control of microdata sets, we propose local recoding and record
swapping based on the optimum matching of the records, where pairs of close records are
formed and observed values are recoded or swapped within each pair. For optimally forming
pairs we can employ Edmonds’s algorithm (Edmonds 1965) of maximum weight matching.
We illustrate the technique by applying it to the Japanese causes of death statistics data.’
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1. Introduction

Global recoding is the obvious and the most important technique in disclosure control of
microdata sets. In global recoding the observed values are grouped into broader intervals
or categories. It is called global since the grouping is performed uniformly throughout the
microdata set. In this article we consider local recoding (De Waal and Willenborg 1996;
De Waal and Willenborg 1999), where each observed value is recoded into broader inter-
vals or categories when necessary. We also consider record swapping (Schlorer 1981;
Dalenius and Reiss 1982), because our technique can be equally applied to record swap-
ping and local recoding.

As a means of performing local recoding and record swapping we propose matching or
pairing of close individuals of a microdata set. When two individuals are grouped into a
pair, we can locally recode or swap observations within the pair. The idea of local recoding
is not necessarily tied to matching, and other techniques may be used to perform local
recoding. One advantage of matching is that a well-known algorithm of optimum match-
ing is available and local recoding and record swapping can be performed in a reasonable
amount of computer time.

Many techniques have been proposed for disclosure control of microdata sets. The local
suppression, where individual observations are marked as missing, is extensively discussed
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in Section 5.4 of Willenborg and de Waal (1996) and references therein. In Section 2.1
below we argue that local suppression is an extreme form of local recoding. In this sense
local recoding is a more general technique of disclosure control than local suppression.

Addition of noise to original observations is dicussed by many authors including Fuller
(1993) and Duncan and Pearson (1991). One conceptual difficulty of the addition of noise
is that it is not clear how one can add noise to purely categorical variables. The post random-
ization method (PRAM; see Gouweleeuw et al. (1998)) is a probabilistic perturbation tech-
nique for categorical variables. Fienberg et al. (1998) give a survey of perturbation
techniques for categorical data. One advantage of the present procedure is that local recoding
and record swapping can be applied to a data set with both continuous and categorical
variables.

The idea of pairing presented in this article is close to the idea of multivariate micro-
aggregation in Mateo-Sanz and Domingo-Ferrer (1998). They use clustering algorithms
whereas we use matching algorithms to form groups. One disadvantage of clustering
might be the lack of a well-defined notion of optimality among various clustering algo-
rithms. Various alternative techniques for implementing microaggregation are discussed
in Defays and Anwar (1998) and references therein.

The organization of this article is as follows. In Section 2 we explain the idea of match-
ing by a simple numerical example. In Section 3 we discuss full optimization and approxi-
mate optimization procedures based on Edmonds’s algorithm. In Section 4 our procedures
are applied to a real data set of considerable size. We shall show that computations can be
done in a reasonable amount of time. Section 5 comprises discussion.

2. Simple Numerical Example

Here we discuss a simple numerical example at some length, because our idea and tech-
nique are best explained by an example.

2.1. Example data set

Consider a hypothetical population consisting of ten household records listed in Table 1.
Table 1 presents the whole population and there is no complication associated with sam-
pling, such as the distinction of the population unique and the sample unique. The vari-
ables observed are (1) Age of head of household, (2) Size of household, (3) Income,

Table 1. Hypothetical population of size ten

No. Age Size Income Occup
1 47 4 490 A
2 52 3 720 B
3 38 4 480 A
4 43 5 610 C
5 46 3 870 B
6 35 3 540 A
7 43 4 640 C
8 51 2 560 A
9 44 6 580 A

10 33 3 380 A
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Table 2.  Result of obvious global recoding

No. Age Size Income Occup
1 40 4 400 A
2 50 3 700 B
3 30 4 400 A
4 40 5 600 C
5 40 3 800 B
6 30 3 500 A
7 40 4 600 C
8 50 2 500 A
9 40 6 500 A

10 30 3 300 A

and (4) Occupation in three categories (A, B, or C). We consider these four variables as
key variables which can be used to identify the individual household records.

From Table 1 we immediately see that all the households are population uniques. There-
fore we need some disclosure control measures to avoid identification of households. It is
reasonable to round the values of age and income. If we round the age down to 10’s and the
income to 100’s, we obtain Table 2.

We see that even after this global recoding all the households remain population
uniques. This can be understood by the following simple calculation. In Table 2 we count
the number of categories present for each variable. The numbers are three for Age, five for
Size, five for Income, and three for Occupation. Therefore the total number of possible
combinations of the categories is

3X5x5%x3 =225

We can think of ten households thrown into 225 boxes and it is likely that these households
will fall into different boxes. The usual calculation of the ‘birthday problem,’’ i.e., the
calculation of the probability of finding two people with the same birthday in a group
of people, yields an approximate probability e 97225 — =02 — ()82 of ten house-
holds thrown into different boxes.

We proceed to more drastic global recoding: grouping the household sizes into two cate-
gories (=4 or =3) and income into two categories (=500 or < 500). The total number of
combinations is reduced to 3 X2 X 2 x 3 = 36 and the resulting table is Table 3.

We note that in Table 3 households No. 4 and No. 7 coincide and are no longer popula-
tion uniques. However, the other eight households remain population uniques. At this
point it seems to be very difficult to perform further global recoding without losing a sub-
stantial amount of information in the data set. This suggests that relying on global recoding
alone may result in a microdata set which is too coarse.

Now let us consider the 2nd and the 5th household in Table 3. These two differ only in
Age. Therefore we might locally recode Age for these two households and exhibit these
households as follows:

No Age Size Income Occup.

2 40-50 3 500 B
5 40-50 3 500 B
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Table 3. Result of further global recoding

No. Age Size Income Occup
1 40 4 400 A
2 50 3 500 B
3 30 4 400 A
4 40 4 500 C
5 40 3 500 B
6 30 3 500 A
7 40 4 500 C
8 50 3 500 A
9 40 4 500 A
10 30 3 400 A

Then these two households are no longer population uniques. Alternatively we can swap
the value of Age of these two households and exhibit these households as follows:

No Age Size Income Occup.
2 40 3 500 B
5 50 3 500 B

Then these two households are protected by perturbation of the observations.
Let us match the remaining six households into the following three pairs:

(1,3),(6,8),(9, 10)

and locally recode the observations into intervals or unions of categories. The result is
shown in Table 4.

Note that Size and Income of the pair (9, 10) are denoted by ‘***” and locally suppressed.
This is because merging two categories of a dichotomous variable (a variable which has
been globally recoded into two categories) is equivalent to suppressing the observation.
Therefore we can interpret local suppression as an extreme form of local recoding.

2.2.  Optimum matching based on distance function

The matching of households in Table 4 was performed by inspection. Here we formulate
the matching problem more precisely in order to perform the matching by a computer. The

Table 4. Local recoding by inspection from Table 3

No. Age Size Income Occup
1 30-40 4 400 A
2 40-50 3 500 B
3 30-40 4 400 A
4 40 4 500 C
5 40-50 3 500 B
6 30-50 3 500 A
7 40 4 500 C
8 30-50 3 500 A
9 30-40 * * A
10 30-40 * * A
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Table 5. Distances between ten households

1 2 3 4 5 6 7 8 9 10
1 0 8 2 5 7 4 4 5 3 4
2 8 0 10 7 3 8 6 5 9 10
3 2 10 0 7 9 2 6 7 5 2
4 5 7 7 0 6 7 1 8 4 9
5 7 3 9 6 0 7 5 8 8 9
6 4 8 2 7 7 0 6 5 5 2
7 4 6 6 1 5 6 0 7 5 8
8 5 5 7 8 8 5 7 0 6 7
9 3 9 5 4 8 5 5 6 0 7
10 4 10 2 9 9 2 8 7 7 0

basic idea of the matching was to find close households. Therefore we introduce a distance
function between the households. A distance function can be chosen in accordance with
convenience. As a simple distance function we may use the Hamming distance, where
we just count the number of variables with different values. It is probably better to con-
sider relative importance of the variables and weight the variables accordingly.
Consider Table 2. Although the local recoding in Table 4 was obtained from Table 3,
Table 3 is already too coarse and it seems to be better to perform local recoding to the
values of Table 2. Concerning the distance function, we might argue as follows. Let us
measure the difference of five years in the age as Distance ‘‘1,”” since five years difference
might be noticeable from the appearance. Then ten years difference in the age is measured
as Distance 2. Concerning the size of the household, we measure the difference of 1 as just
1, since neighbours may know the exact household size. We measure the difference of 100
in the income as 1. Here we have in mind that in the case of Japanese households the dif-
ference of 100 in the annual income might be noticeable to neighbors. (The unit here is ten
thousand yen.) Finally we measure the difference in the occupation as 2. As the total dis-
tance between two households, we add these individual distances for the four variables.
Let x = (x1,x,,%3,%x4) and y = (y1,2,3,Ys) denote the values of Age, Size, Income,
and Occupation of two households. Then the distance between x and y may be defined as

dist (x,y) = |x; — y1I/5 + x5 — yo| + |x3 — y31/100 + 21}, 2,

where Iy, +,,) is the indicator function

1, ifxg %y,
Tt =90 s _
s 4 — V4

Table 5 shows the distance matrix regarding the ten households. Using Table 5 we can
list closest households (‘‘nearest neighbors’”) to each household, as shown in Table 6.

From Table 6 the average distance to the nearest neighbors is calculated as 2.4. It is
noted that the relation to nearest neighbor may be ‘‘one-sided.”” For example the nearest
neighbor of household No. 9 is household No. 1, whereas the nearest neighbor of No. 1 is
No. 3. If we allow this one-sidedness, we can match each household to its nearest neighbor
and apply local recoding to each household. If there is more than one nearest household,
we arbitrarily choose one of the nearest households. We call this type of local recoding



280 Journal of Official Statistics

Table 6. Nearest neighbor and distance to nearest neighbor

N.N. Distance
1 3 2
2 5 3
3 1 or6orl0 2
4 7 1
5 2 3
6 3or10 2
7 4 1
8 lor2oré6 5
9 1 3
10 3or6 2

“‘one-sided nearest neighbor local recoding’” or ‘‘optimum one-sided matching.”” A
resulting data set with local recoding is shown in Table 7.

In Table 7 each row corresponds to at least two households in the population. Therefore
the one-sided nearest neighbor local recoding can withstand the *‘fishing strategy attack’’
(Miiller et al. 1995), where an intruder chooses an arbitrary record of the microdata set and
tries to identify this record in the population. On the other hand the one-sided nearest
neighbor local recoding does not guarantee defense against the direct search attack (Miiller
et al. 1995), where an intruder possessing information on a household in the population
tries to identify the household in the microdata set. For example household No. 9 of the
hypothetical population corresponds only to the 9th row of Table 7 and in this sense the
9th row of Table 7 might be identified. This weakness clearly results from the one-sided-
ness of the matching.

We now allow only two-sided pairs and obtain optimum matching in the sense of mini-
mizing the sum of the distances within the pairs. We call recoding by this type of two-
sided matching ‘‘two-sided nearest neighbor local recoding’’ or ‘‘optimum two-sided
matching.”” This optimization problem is called ‘‘maximum weight matching’’ in the field
of graph algorithms. In particular Edmonds’s algorithm (Edmonds 1965) is a well-known
algorithm for solving the maximum weight matching problem. In the next section we
describe our maximization problem and Edmonds’s algorithm more formally.

In our hypothetical example 7 is only ten and the total number in which five pairs out of

Table 7. One-sided matching to nearest neighbor

No. Age Size Income Occup
1 30-40 4 400 A
2 40-50 3 700-800 B
3 30-40 4 400 A
4 40 4-5 600 C
5 40-50 3 700-800 B
6 30 3-4 400-500 A
7 40 4-5 600 C
8 50 2-3 500-700 AorB
9 40 4-6 400-500 A
10 30 3-4 300-400 A
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Table 8. Two-sided matching to nearest neighbor

No. Age Size Income Occup
1 30-40 4 400 A
2 50 2-3 700-800 B
3 30-40 4 400 A
4 40 4-5 600 C
5 50 2-3 700-800 B
6 30 3 300-500 A
7 40 4-5 600 C
8 40-50 2-6 500 A
9 40-50 2-6 500 A
10 30 3 300-500 A

ten households can be formed is
mM—Dxn—3)%X---X3X1=9XTX5x3 =945

Therefore we can check all 945 pairings and compute the sum of distances. Then the opti-
mum matching is found to be

(1,3) (2,5) 4,7) (6,10) (8,9)

with the average distance of 2.8 within pairs. The resulting data set with local recoding is
shown in Table 8.

From Table 7 and Table 8 we see that two-sided nearest neighbor local recoding leads to
stronger protection accompanied by larger average distance within pairs. The advantage of
the two-sided nearest neighbor local recoding is that it withstands both the fishing strategy
attack and the direct search attack. From the computational viewpoint, the one-sided
matching is very simple because we can treat each record separately, whereas the two-
sided matching is more complicated and requires combinatorial optimization.

Once the two-sided optimum pairs have been obtained, the swapping can be done within
these pairs. Since the pairs are formed optimally, the swapping is performed only between
close records. We do not exhibit the result of swapping, since it can be immediately
written down from Table 8. Note that if the matched records differ in more than one vari-
able, the statistical agency can choose which observations to swap. Therefore the statisti-
cal agency can fine-tune the strength of protection by choosing the number of swapped
observations.

The resulting optimum matching depends on the distance function. Further discussion
on the choice of the distance function is given in Section 5.

3. Full Combinatorial Optimization by Edmonds’s Algorithm and Its
Approximation

In this section we explain our implementation of Edmonds’s algorithm for our problem
and an approximation to the full combinatorial optimization. The material in this section
is largely due to Daishin Nakamura.

Let G = (V, E) be a graph consisting of a set of vertices V and a set of edges E. A match-
ing is a subset E C E of the edges such that each vertex v € V is contained in at most one
edge e c E. Suppose a weight w, is associated with each edge e € E. The problem of
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maximum weight matching is to obtain a matching E such that the sum of the weights of
edges in E is maximized:

Z w, — max (D

e€E
Edmonds’s algorithm (Edmonds 1965) is a remarkable algorithm for solving the maxi-
mum weight matching problem and is fully explained in a number of standard textbooks
on graph theory (e.g., Gondran and Minoux 1984; Lawler 1976). The algorithm recur-
sively forms vertices into smaller subgroups (called ‘‘blossoms’’), solves smaller pro-
blems, and attains the global optimum matching when the recursion terminates.

As in the example of the previous section, suppose that a data set X is given as an n X p
matrix. For simplicity we assume that 7 is even. Choose some appropriate distance func-
tion dist(x;, x;) between two rows x;, x; of X. Then our goal is to form a complete matching

J
of n rows such that the sum of distances within the pairs is minimized:

Z dist (x;, x;) — min (2)

Here complete matching refers to the requirement that every row of X belong to some pair
and hence n/2 pairs be formed. Choose M such that
M > max dist(x;,x;) 3)

l=si<j=n
and define the weight of the edge e = (x;, x;) by
W[j = M — dist ()Cl',.xj')

Then the minimization in (2) is reduced to the maximization in (1). Note that the optimum
matching in (1) is automatically a complete matching if the weights w,, e € E, are all posi-
tive. Therefore by choosing M as in (3) we obtain a complete matching in (2) by solving
(1).

Edmonds’s algorithm requires an amount of time of the order of O(n*). It can be
improved to O(n’) time using O(n*) amount of memory. In our application 7 is not small
and the latter approach is not practical. As shown in Section 4 full optimization by
Edmonds’s algorithm is found to be too intensive for a data set of size n > 10, 000. Hence
there is a need for an approximate optimization.

Here we propose an approximation, which is found to work very well in our experiment
in Section 4. Obviously more experimentation is needed to assess the overall quality of the
following approximation. Let k be a small integer. We first construct a list of edges to the k
nearest neighbors for each row of X. This requires O(kn) amount of memory. Let G, be a
graph having the above kn edges. Note that the same edge can appear twice in the above
list and therefore the number of the different edges of the graph G, is at most kn. We apply
Edmonds’s algorithm to G; and obtain an optimum matching for G;. It may be the case
that for small , the resulting matching is not complete. In this case we increase k and per-
form the optimization again. Let k* be the smallest k such that the resulting optimum
matching is complete. We use this matching as an approximate solution to our problem.
For finding k* we could start with a fairly small value of k (k =5 for example) and
increase k if the resulting matching is not complete and decrease k if the resulting match-
ing is complete. In practice it would be better to try some k much larger than k*, possibly
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Table 9. Ten records of the dataset

Sex Age Month Major and subcause Accident
1 56 3 El 2
2 86 4 N4 2
2 68 2 L9 2
2 47 11 PO 2
2 80 9 B3 2
2 81 1 B9 2
1 78 3 Cc7 2
1 84 1 Q8 2
2 64 4 Q3 2
2 97 10 Cc7 2

with a randomly selected subset of rows of X, and see if the average distance of the opti-
mum matching drastically decreases with larger k. If not, our approximate solution seems
reasonable.

4. Experiment with Japanese Causes of Death Statistics

Here we apply the procedure of the previous section to a data set of considerable size and
show that computations can be done in a reasonable amount of time. In the experiment it is
found that the full combinatorial optimization using Edmonds’s algorithm is computation-
ally too intensive. We show that our approximation described in the previous section
achieves almost the same optimization as the full optimization with a fraction of computa-
tion time. The source code of a working program by Daishin Nakamura for the computa-
tions of this section is available from the URL included in References.

4.1. The data set

The data set used is the death records for the year 1995 from the Ministry of Health and
Welfare of Japan. This data is a ‘‘census’’ recording all deaths of Japanese nationals.
Except for the classification of cause of death, which might be sensitive and requires a cer-
tain amount of medical knowledge, all variables are straightforward personal attributes.
We prepared a file of 78,648 deaths in a certain prefecture during 1995. The variables
we chose are the following: (1) sex (1 or 2), (2) age (in years), (3) month of death, (4)
major cause of death, (5) subcause of death, (6) traffic accident or not (1 or 2). The major
cause of death is coded by a single letter in the alphabet range A—Y and the subcause of
death is coded by a single digit. Detailed description of the variables is not relevant for the
present discussion. The first ten records of the data set are shown in Table 9.’

Among the 78,648 deaths, 17,090 deaths (21.72%) were unique with respect to these
variables. In this article we only discuss the results of computations on this subset of
17,090 unique deaths. The distance function we chose is

dist (x, y) = 2001y, #y,1 + 2150 — Yol + x5 = y3] + 31,2y, F+ L=y Do 2ys) + 10015 2y
“)

3 Actually the observations in Table 9 show simulated values different from the real values on the magnetic tape
supplied by the Ministry of Health and Welfare. This is due to the condition of the special permit granted to us by
the Management and Coordination Agency of the Japanese Government.
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Table 10. Distribution of distances of optimally matched pairs

Distance 1 2 3 4 5 6 7 8 9 10
Number of pairs 4,896 1,878 1,531 142 60 15 9 4 1 3
Distance 11 12 13 14 15 16 17 18 19 20
Number of pairs 1 2 2 0 0 0 0 0 0 1
where

x; = Sex, x, = Age, x3 = Month, x; = Major Cause, x; = Subcause, xs = Accident

Here we measure a one month difference as 1. Then we count the difference in sex as 20, a
one year difference in age as 2, and a difference of the major cause of death as 3. The dif-
ference of subcause is 1 provided that the major cause of death is the same, and traffic acci-
dent is ten. We choose these weights because they roughly reflect the relative importance or
noticeability of these key variables.

The machine used to measure the processing time was equipped with an Intel Pentium
Pro Processor with the clock speed of 200MHz and 64 MB of memory. We have first per-
formed the one-sided matching among these 17,090 deaths. The CPU time needed was 224
seconds and the average distance within the pairs in the optimum one-sided matching was
1.49508.

The full optimization by Edmonds’s algorithm took 328,163 CPU seconds (about four
days) with the minimized sum of distances 14,418 or the average distance of
14,418/8,545 = 1.6873. The distribution of the distances of the optimality matched pairs
is tabulated in Table 10.

Although the exact optimization was possible, a processing time of four days is not
practical. Therefore we applied the approximate optimization discussed in the previous
section. Table 11 presents the results of the computation.

CPU seconds in Table 11 is the time for obtaining the maximum weight matching for kn
edges. In addition it took about 340 CPU seconds to form the list of k neighbors for each of
n = 17,090 rows of the data set.

For k = 22 there does not exist a complete matching. However, for 5 = k = 22 all but
two deaths are matched in pairs. k* = 23 is the minimum k, for which the maximum
weight matching becomes complete. In this matching the sum of distances is 14,423
with the average distance 14,423/8,545 = 1.6879. This is almost the same as the fully
optimized matching with the sum of distances 14,418. The distribution of distances of
approximately optimized pairs with k = k* = 23 is tabulated in Table 12, which is very
close to Table 10.

The actual local recoding for the first 20 rows of the data set is shown in Table 13. The
first set of columns, ‘‘Original,”’ shows the original rows and they are the same as in
Table 9. The second set of columns, ‘‘One-sided N.N,’’ shows the result of the one-sided
nearest neighbor local recoding. The third set of columns and the fourth set of columns
show the results of fully optimized two-sided matching and approximately optimized
two-sided matching, respectively. The last set of columns, ‘‘Quadruples,”” show the
results of tentative formation of quadruples by application of matching to matched pairs.



Table 11. Approximate optimization results for various k

k 1 2 3 4 5 6 7 8 9 10
Number of pairs 6,553 8,115 8,537 8,543 8,544 8,544 8,544 8,544 8,544 8,544
Sum of distances 9,273 13,803 15,297 14,872 14,692 14,578 14,519 14,467 14,446 14,427
CPU seconds 165 218 245 283 298 311 330 355 368 391
k 11 12 13 14 15 16 17 18 19 20
Number of pairs 8,544 8,544 8,544 8,544 8,544 8,544 8,544 8,544 8,544 8,544
Sum of distances 14,412 14,405 14,403 14,396 14,395 14,394 14,394 14,393 14,392 14,392
CPU seconds 420 438 456 469 482 498 544 539 556 576
k 21 22 23 24 25 26 27
Number of pairs 8,544 8,544 8,545 8,545 8,545 8,545 8,545
Sum of distances 14,392 14,392 14,423 14,423 14,423 14,423 14,423
CPU seconds 595 614 631 650 669 688 707
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Table 12. Distribution of distances of pairs for k = k* = 23

Distance 1 2 3 4 5 6 7 8 9 10
Number of pairs 4,899 1,869 1,534 148 55 13 13 2 4 3
Distance 11 12 13-20 21
Number of pairs 3 1 0 1

See Section 5 for discussion of forming the quadruples. In Table 13 the comma denotes
““or’” of the categories. If the main cause of death is locally recoded, then the subcause
of the death becomes irrelevant and is denoted by an asterisk.

5. Discussion

In local recoding the observations are displayed as intervals or unions of categories when
necessary. The presentation of this form might be unfamiliar to the users of the data set.
Therefore statistical agencies may prefer swapping to local recoding for the convenience
of users. On the other hand statistical agencies may want to avoid distorting the informa-
tion in the data set. In the interval presentation of observations in local recoding, the obser-
vations are not distorted, whereas in swapping they are. In this sense local recoding is not a
perturbation technique, whereas swapping is a perturbation technique.

From the viewpoint of usability, locally recoded data sets are not convenient for causal
users, because the data sets cannot be directly analyzed by means of standard statistical
packages. On the other hand, locally recoded data sets have the advantage of conveying
the amount of information loss due to local recoding. The users can assess the influence
of local recoding on their statistical analysis by doing their own simulations from the
locally recoded data sets. They can randomly choose a possible value from each interval
presentation of the observations and form a usual working data set for standard statistical
packages. They can repeat this simulation run many times and observe the variability of
the results of statistical analyses. For reporting purposes, the users can take the average
of the simulation runs. We can interpret this simulation process by the users as follows:
the users themselves form data sets with swapped observations without knowing the
original data set. Therefore the process of swapping is shifted from the statistical
agency to the users. If a single data set with swapped observations is published by
the statistical agency, the users cannot numerically assess the information loss due to
the swapping. In this sense, local recoding provides the users with more information
than swapping. At the same time, from the viewpoint of protection, local recoding
based on the two-sided matching is weaker than swapping, because it indicates which
records are paired.

The choice of a distance function in our approach is based on convenience. The basic
requirement for a distance function is that it should contain all relevant key variables
and the weight of each key variable in the distance function should reflect the relative
importance and noticeability of the variable. The distance function is just a tool for letting
the computer do the matching. The resulting matching depends on the choice of the dis-
tance function in a rather unpredictable manner. From the viewpoint of protection, this
dependence is an advantage to the statistical agencies in the case of swapping. By not



Table 13. Local recoding by one-sided and two-sided matchings

Original One-sided N.N. Two-sided Exact Two-sided Approx. Quadruples

SAMCT

15 3E12 1 56 23E12 1 56 23E12 1 56 23E12 1 56 23E1,3,72
28 4N42 2 8 4N3,42 2 8 4N3,42 2 8 24N42 2 8 25N3,42
268 2192 2 68 2L1,92 2 68 23L92 2 68 23L92 2 68 23L1,4,92
24711 P02 2 47 11-12 PO,72 2 47 11-12 PO,72 2 47 11-12 P0,72 2 47 9-12P0,72
28 9B32 2 80 9B3,42 2 8 9B3,82 2 80 9B3,42 2 80 9B3,4,7,82
28 1BY9Y2 2 8 1B7,92 2 8 1B7,92 2 8 12B0,92 2 8 12B0,2,7,92
178 3C72 1 78 3C7,82 1 78 3C7,82 1 78 3C7,82 1 78 24C1,7,82
18 1Q82 1 8 1Q7,82 1 8 1Q7,82 1 84 1Q7,82 1 8 12Q4,7,8,92
264 4Q32 2 64 34Q3,72 2 64 4Q,1%*2 2 64 4Q,1*2 2 64 34Q,J*2
29710C72 2 97 9-10C1,72 2 97 910C1,72 2 97 9-10C1,72 2 97-98 6-10C 1,72
248 1 B32 2 48 1-2B32 2 48 1B2,32 2 48 1B232 2 48 1-2B1,2,32
2 1110PO1T 2 11 810FP*1 2 11 S8-10F,P*1 2 11 810FP*1 2 11-12 810D, F, P * *
28 8E72 2 8 8EO0,72 2 8 8EO0,72 2 80 8EO0,72 2 8 89E0,4,72
1 7710 K42 1 77 10-11 K42 1 77 10K1,42 1 77 10-11 K42 1 76-77 10-12K 42
247 7D42 2 47 T79D42 2 47 17-8D2,42 2 47 78D2,42 2 47 78N,D,F*2
2 8 11 K42 2 8 10-11K 1,42 2 80 11-12K 1,42 2 80-81 11K42 2 79-81 11-12K 1,42
18 1K32 1 8081 1K32 1 80-81 1 K32 1 80-81 1K32 1 80-81 1-3K 1,3,42
28 8A82 2 8 8K A*2 2 8 S8T,A*2 2 8 8T,A*2 2 8 8CT,AM*2
1510C12 1 55 10-11C12 1 55 10-11C12 1 55 10-11C12 1 55 8-11C12
270 3 D42 2 70 3-4D42 2 70 34D42 2 70 3-4D42 2 70 2-4D4,8,92
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disclosing the actual form of the distance function, the statistical agencies make it very
difficult for intruders to undo the swapping.

In this article we have discussed forming pairs of individuals for disclosure control. For
more security it might be more desirable to form groups of larger size. Unfortunately, it is
generally known that the problem of optimally forming disjoint triples is an NP-complete
problem and hence it is practically infeasible to obtain a fully optimized set of triples for
large n. See the description of 3-dimensional matching problem and the exact cover by 3-
sets problem on page 221 of Garey and Johnson (1979). This does not preclude the pos-
sibility that there might exist a satisfactory algorithm for approximate optimization. Even
if this is the case, it may be hard to measure the performance of an approximate optimiza-
tion algorithm in the absence of a full optimization algorithm.

For groups of size 2", h = 2,3,..., we might apply the optimum matching algorithm
repeatedly. After forming matched pairs, we can introduce a distance measure between
two pairs of rows of X and use the optimum matching algorithm again to form pairs of
pairs or groups of size 4. If we repeat this process, we can form approximately optimized
groups of size 2" h=2. The ‘‘quadruples’” of Table 13 show local recoding based on
groups of size 4.

A more precise description of the procedure we used for forming quadruples of Table 13
is as follows. We started with the results of matching by approximate optimization with
k = k* = 23 as discussed in Section 4. Since there were an odd number (i.e., 8,545) of
pairs, we took out one pair and worked with 8,544 pairs. We defined the distance between
two pairs (x,x) and (y,y’) as

disty ((x, X)), (y,¥)) = dist(x, y) + dist(x, y) + dist(x’, y) + dist(x’, y")

where dist() is given in (4). With this distance function dist,() between two pairs we
applied the approximate optimization. This time a complete matching of pairs was
achieved with k = k* = 4 neighbors. The quadruples of Table 13 show the result of local
recoding based on this pairing of pairs.
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