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This article concerns item nonresponse adjustment for two-stage cluster samples, where
nonresponse depends on covariates and underlying cluster characteristics, or on covariates
and the missing outcome. In these circumstances, standard weighting and imputation
adjustments are liable to be biased. To obtain consistent estimates, we propose extensions of
the standard random-effects model for clustered data to model these two types of missing data
mechanisms. These new methods are compared with existing approaches by simulation
studies, and illustrated on data on household income from the Behavioral Risk Factor
Surveillance System.
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1. Introduction

This article concerns item nonresponse adjustment for two-stage cluster samples under

two types of nonignorable item nonresponse: (i) nonresponse depends on covariates and

underlying cluster characteristics, and (ii) nonresponse depends on covariates and missing

outcomes. These two types of nonignorable item nonresponse occur in practice, as the

survey variable and nonresponse often share a common unobserved cause (Groves and

Couper 1998). An example of this might be a two-stage cluster sample with counties as

primary sampling units (PSU’s) and households as secondary sampling units (SSU’s).

If nonresponse of households is deemed to be related to (unmeasured) county-level

characteristics (e.g., geographic location, financial situation or goodness of adminis-

tration) that are also associated with survey variables of interest, then the first type of

nonresponse occurs. On the other hand, if the nonresponse of a household depends on the

(unobserved or uncollected) household’s characteristics such as lifestyle or genetic

characteristics, which also affect the survey variables, then the resulted nonresponse is of

the second type. The second type of nonignorable item nonresponse also arises when

the cause of the nonresponse is the value of the survey variable itself. For example,

households with high income may be less willing to divulge their income.

It is well-known that the standard weighting or regression methods generally lead to

biased estimates when nonresponse is nonignorable (Groves and Couper 1998; Little and
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Rubin 2002). To deal with above two types of nonignorable nonresponse, Yuan and Little

(2007a) propose model-based approaches to adjust unit nonresponse. This article extends

their approaches to address item nonresponse.

Consider a finite population of size M consisting of N clusters with Mi elements in

the ith cluster, let Yij denote the value of a survey outcome Y, and Xij ¼ ðX1ij; : : : ;XPijÞ

denote values of P covariates X ¼ ðX1; : : : ;XPÞ for unit j in the cluster i, for

i ¼ 1; : : : ;N; j ¼ 1; : : : ;Mi. Let T ¼
PN

i¼1

PMi

j¼1Yij and �Y ¼ T=M denote the

population total and mean, respectively. At the first stage, a sample of n of the N

clusters (PSU’s) is selected. At the second stage, mi of the Mi units (SSU’s) are selected

in the ith sampled cluster, but only ri of the mi sampled units respond. We observe

values of Y for ri respondents, and values of X for both respondents and

nonrespondents. This occurs in particular when the outcome variable Y is a sensitive

question and has item nonresponse. We assume that nonresponse depends on X and

underlying cluster characteristics, or on X and the missing value of Y. The estimator of

interest is the finite population mean �Y or total T.

A common practical approach to estimating �Y is to use the covariate information to

impute the missing values of Y, and then apply standard design-based methods to the

filled-in data, such as the Horvitz-Thompson estimator (Horvitz and Thompson 1952)

^�Y ¼
Xn
i¼1

Xri
j¼1

yij

pij

þ
Xmi

j¼riþ1

ŷij

pij

 !
=
Xn
i¼1

Xmi

j¼1

p21
ij ð1Þ

where pij is the selection probability of unit j in cluster i, determined by the survey design,

and ŷij is the imputed value of yij. For this single imputation approach, the variance of
^�Y

can be obtained by the adjusted jackknife variance estimation method (Rao and Shao

1992). Alternatively, multiple sets of draws can be imputed from the predictive

distribution of yij under a model, and imputation uncertainty assessed using multiple

imputation (MI). See, for example Rubin (1987) and Little and Rubin (2002).

The above method requires a model for predicting the missing values of Y. In particular

for regression (REG) imputation, the value of yij for a nonrespondent is imputed by

ŷij ¼ b̂0 þ
XP
p¼1

b̂Pxpij ð2Þ

where

ðb̂0; b̂1; : : : ; b̂PÞ
T ¼

Xn
i¼1

Xri
j¼1

p21
ij x T

ij xij

 !21Xn
i¼1

Xri
j¼1

p21
ij x T

ijyij

with

xij ¼ ð1; x1ij; x2ij; : : : ; xPijÞ

By substituting (2) into (1), we obtain the regression estimate
^�YREG. This

imputation is based on a regression model that ignores the clustering of the sample, and

as a consequence
^�YREG is biased when nonresponse depends on underlying cluster

characteristics. One way to correct the bias is to perform regression imputation separately
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for each cluster. In this case, the value of yij for a nonrespondent in the cluster i is

imputed by

ŷij ¼ b̂i0 þ
XP
p¼1

b̂ipxpij ð3Þ

where

b̂i ¼ ðb̂i0; b̂i1; : : : ; b̂iPÞ
T ¼

Xri
j¼1

p21
ij xTijxij

 !21Xri
j¼1

p21
ij x T

ijyij

A drawback of this approach is that if ri, the number of respondents in the cluster i, is

small, b̂i is not reliable. In the extreme case that ri is less than the number of covariates P,

b̂i is not defined. In addition, if nonresponse directly depends on the missing value of Y,

the resulting nonresponse is nonignorable and the regression imputation methods based

on (2) or (3) are biased. In this article, we propose random-effects model-based approaches

to address these problems.

Various approaches have been proposed in survey sampling literature to deal with

nonignorable nonresponse. These approaches can be roughly divided into likelihood-

based methods and weighting methods. For the likelihood-based approach, Little and

Rubin (2002) further distinguish between selection models and pattern-mixture models,

according to the way in which the joint distribution of the survey variables and missing

data indicators is factorized. Greenlees, Reece, and Zieschang (1982) discuss a selection

model for survey data with nonignorable nonresponse in which the probability of response

depends on the missing value by a logistic regression model. Qin, Leung, and Shao (2002)

study a semiparametric likelihood-based approach in which the response mechanism is

modeled parametrically and the survey variable is modeled nonparametrically. Rubin and

Zanutto (2002) propose a method using matched substitutes to adjust for nonignorable

nonresponse through multiple imputations. Nandram and Choi (2002, 2005a) and

Nandram, Cox, and Choi (2005b) propose hierarchical Bayesian selection models for

categorical data with nonignorable nonresponse. Comparatively, weighting methods are

more in line with conventional design-based approaches. The simple inverse-probability-

weighting method weights the observed values of respondents by estimated response rates

based on a response model. The resulting estimates are less efficient than those obtained

from likelihood-based analysis and sensitive to the choice of weighting model (Clayton,

Spiegelhalter, Dunn, and Pickels 1998). Robins, Rotnitzky, and Zhao (1995), Rotnitzky

and Robins (1997), and Scharfstein, Rotnitzky, and Robins (1999) propose improved

inverse-probability-weighted estimators, namely doubly robust estimators, to deal with

ignorable and nonignorable nonresponse. Carpenter, Kenward, and Vansteelandt (2006)

compare pros and cons of multiple imputation and inverse-probability-weighted methods.

The article is organized as follows. Section 2 presents our models for estimating the

finite population mean when nonresponse depends on underlying cluster characteristics or

missing outcome values. Section 3 describes estimation of the proposed models. Section 4

presents a simulation study comparing these methods with the existing methods described
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above. Section 5 illustrates the methods with the Behavioral Risk Factor Surveillance

System data. Section 6 discusses our findings and conclusions.

2. Models

A natural way of addressing the lack of cluster effects in REG is to include covariates in

the random-effects model (RE) first proposed for complete cluster samples by Scott and

Smith (1969), as follows:

½ yijjai;b0;bp;s
2� ¼ N ai þ b0 þ

XP
p¼1

bpxpij;s
2

 !
; ½aijt

2� ¼ Nð0; t2Þ ð4Þ

where N(·) denotes normal distribution. Under this model, inference for the finite

population mean �Y can be obtained by MI. Specifically, we first form K imputed datasets

by filling in missing values of y with K independent draws from their posterior distribution

based on Model (4). For the kth imputed dataset, �Y is estimated by

^�Yk ¼
Xn
i¼1

Xmi

j¼1

yðkÞij

pij

=
Xn
i¼1

Xmi

j¼1

1

pij

where yðkÞij is the observed or imputed value of yij. Then, a consistent estimator of �Y is

given by

^�Y ¼
1

K

XK
k¼1

^�Yk

and its variance is

Varð
^�YÞ ¼

1

K

XK
k¼1

Vk þ
1

K 2 1

XK
k¼1

ð
^�Yk 2

^�YÞ2

where Vk is the variance of
^�Yk calculated for the kth imputed dataset.

It is well-known that RE yields a consistent estimator of �Y when nonresponse is missing

at random (MAR), providing the regression equation is correctly specified. Since the

clusters are explicitly modeled via random effects, one might assume that RE is also valid

when the missing-data mechanism depends on the clusters. However, that is not the case.

When the nonresponse probability of yij depends on the cluster-specific random effect ai,

the missing-data mechanism is not MAR, since the random effects that characterize the

clusters are not observed (Little and Rubin 2002, Example 6.24; Yuan and Little 2007a).

A consequence of nonignorability is that RE leads to biased estimates. As in the latter article

for the case of unit nonresponse with no covariates, we use the term cluster-specific

nonignorable (CNI) nonresponse to describe the mechanism where the probability of response

depends on underlying cluster effectsai, and observed covariates, but not on survey outcomes

within clusters. Furthermore, we use the term outcome-specific nonresponse (ONI) for the

case where missingness depends directly on the value of the outcome variable Y.

We first consider nonresponse adjustment for CNI nonresponse. As noted above, RE

leads to biased estimators in this case. To correct the bias, an informal approach is to
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modify the RE model to allow the cluster mean to depend on the estimated cluster

response rate f̂i ¼ ri=mi. Assuming for simplicity a linear relationship yields the

approximate model

½ yijjxij;ai; d;b0;bp;s
2� ¼ N ai þ df̂i þ b0 þ

XP
p¼1

bpxpij;s
2

 !

½aijt
2� ¼ Nð0; t2Þ

ð5Þ

which is easily fitted by including the estimated response rate in each cluster as a covariate

in the RE model. We label estimates for this model RERR, for the random-effects model

with response rate as covariate. RERR is approximate in that the sampling error in

estimating the response rate is not taken into account.

A more rigorous approach is to model the CNI missing data mechanism directly,

yielding the following parametric cluster-specific nonignorable model (PCNI):

½ yijjai; xi; d;b0;bp;s
2� ¼ N ai þ dxi þ b0 þ

XP
p¼1

bpxpij;s
2

 !

½zijjxi; g0; gp� ¼ N xi þ g0 þ
XP
p¼1

gpxpij; 1

 !
; rij ¼

1 if zij . 0

0 if zij , 0

(

½aijt
2� ¼ Nð0; t2Þ; ½xijv

2� ¼ Nð0;v2Þ

ð6Þ

where rij is the response indicator. rij ¼ 1 for respondents and rij ¼ 0 for nonrespondents.

zij is a latent variable that determines the response status of the subject j in the cluster i.

If the value of zij is larger than the threshold 0, the subject responds; otherwise, the subject

does not respond. Random effects ai and xi model within-cluster correlations. Note that

different covariates can be used to model yij and zij, by setting some of the regression

coefficients {bp} or {gp} equal to zero. We propose to estimate �Y by MI based on

predictions of the missing values from the PCNI model.

The above models assume a CNI mechanism where rij and yij are unrelated within

clusters after conditioning on covariates and xi. A missing data mechanism is outcome-

specific nonignorable (ONI) if the missingness of yij depends directly on the value of yij
and observed covariates. Such a mechanism is modeled by changing PCNI so that yij has a

linear regression on zij rather than the random effect xi, that is:

½ yijjai; d;b0;bp;s
2� ¼ N ai þ dzij þ b0 þ

XP
p¼1

bpxpij;s
2

 !

½zijjxi; g0; gp� ¼ N xi þ g0 þ
XP
p¼1

gpxpij; 1

 !
; rij ¼

1 if zij . 0

0 if zij , 0

(

½aijt
2� ¼ Nð0; t2Þ; ½xijv

2� ¼ Nð0;v2Þ

ð7Þ

We label this model PONI. Again, the finite population mean �Y can be estimated by MI.
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All models discussed so far assume constant regression slopes across clusters. A more

flexible approach is to allow each cluster to have an individual slope, which is analogous

to performing the regression imputation separately for each cluster as (3). However,

again, one potential problem is that estimates of slopes are not reliable for clusters with

sparse observations. To address this problem, we assume that these cluster-level

individual slopes are exchangeable, in particular come from a normal distribution, to

borrow strength across clusters. For example, RE with cluster-specific random slopes can

be expressed as follows:

½yijjxij;ai; bpi;b0;bp;s
2� ¼ N ai þ b0 þ

XP
p¼1

bpxpij þ
XP
p¼1

bpixpij;s
2

 !

½aijt
2� ¼ Nð0; t2Þ; ½bpijh

2
p� ¼ Nð0;h2

pÞ

ð8Þ

where bpi are cluster-specific random slopes. Of course, if some slopes are fixed across

clusters a priori, we can simply set the corresponding bpi as 0. We label this model RE2.

The similar extension is readily applied to other models. In particular, for ONI

nonresponse, the random slopes extension of PONI is given by

½yijjxij; zij;ai;bpi;d;b0;bp;s
2� ¼ N ai þ dzij þb0 þ

XP
p¼1

bpxpij þ
XP
p¼1

bpixpij;s
2

 !

½zijjxij;xi;g0;gp� ¼ N xi þ g0 þ
XP
p¼1

gpxpij;1

 !
rij ¼

1 if zij . 0

0 if zij , 0

(

½aijt
2� ¼ Nð0;t2Þ; ½xijv

2� ¼ Nð0;v2Þ; ½bpijh
2
p� ¼ Nð0;h2

pÞ

ð9Þ

3. Estimation of Models

A convenient approach to fitting the models described in Section 2 is to add

noninformative or diffuse priors for the fixed parameters and simulate draws from the

posterior distribution of the parameters. For recent reviews of the Bayesian approach to

sample surveys, see, for example Little (2003, 2004). Estimates for RE are easily obtained

by the Gibbs sampler discussed in Gelfand, Hills, Racine-Poon, and Smith (1990), and

PCNI and PONI can also be fitted by the Gibbs sampler if we treat the latent variable Z as

missing data. The convergence of the Gibbs chains is monitored by graphical inspection,

and by the method of Gelman and Rubin (1992). We here use Model (9) as an example to

illustrate this approach.

We first define priors for the fixed parameters of the form

½d;b0; : : : ;bP; g0; : : : ; gP;s
2; t2;v2�

/ ðs2Þ2ðAþ1Þe2B=s 2

ðt2Þ2ðAþ1Þe2B=t 2

ðv2Þ2ðAþ1Þe2B=v 2

½h2
p� / ðh2

pÞ
2ðAþ1Þe2B=h2

p ; p ¼ 1; : : : ;P
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where A ¼ B ¼ 0:1, a value small enough that the information in the data strongly

dominates the information in the prior distribution. Let yobs, ymis denote values of the

survey outcome Y for respondents and nonrespondents. The first step of the iteration

is “data augmentation” (Tanner and Wong 1987), in which the missing yij and the

latent variable zij are generated from their full conditional distributions. When rij ¼ 1, that

is, yij is observed, zij is drawn from the following left truncated normal distribution (TN):

½zijjyobs; xij; u� ¼ TN½zij.0�ðmzij
;s 2

zij
Þ

where

mzij
¼

d yij 2ai 2b0 2
XP

p¼1
bpxpij 2

XP

p¼1
bpixpij

� �
þs2 xi þ g0 þ

XP

p¼1
gpxpij

� �
s2 þ d2

s 2
zij
¼

s2

s2 þ d2
; u ¼ {ai;b0;bp; bpi; d; xi; g0; gp;s

2}

When rij ¼ 0, ( yij, zij) are drawn from the following conditional distributions:

½zijjxi; g0; gp� ¼ TN½zij#0� xi þ g0 þ
XP
p¼1

gpxpij; 1

 !

½ yijjzij;ai; bpi; d;b0;bp;s
2� ¼ N ai þ dzij þ b0 þ

XP
p¼1

bpxpij þ
XP
p¼1

bpixpij;s
2

 !

Let 1n denote a vector of 1 with length n, 0n denote an n £ n matrix with all elements of

0, and In denote an n £ n identity matrix. We define the design matrix X ¼ ð1; x1; : : : ; xPÞ

where xp ¼ ðxp11; : : : ; xp1m1
; : : : ; xpn1; : : : ; xpnmn

ÞT for p ¼ 1; : : : ;P, and block

diagonal matrix E ¼ blockdiagð1m1
; : : : ; 1mi

; : : : ; 1mn
Þ. Then, with augmented complete

data, parameters are drawn as follows:

(1) draw ðg0; g1; : : : ; gP; x1; : : : ;xnÞ from

½g0; g1; : : : ;gP; x1; : : : ; xnjz; x;v
2� ¼ NððCTC þ DÞ21CTz; ðCTC þ DÞ21Þ

where C ¼ ðX;EÞ, D ¼ blockdiagð0Pþ1;v
22InÞ and z ¼ ðz11; : : : ; z1m1

; : : : ;

zn1; : : : ; znmn
ÞT

(2) draw v 2 from

½v2jx1; : : : ; xn� ¼ IG Aþ
1

2
n;Bþ

1

2

Xn
i¼1

x2
i

 !

where IG (a,b) denotes an inverse-gamma distribution with a shape parameter a and a

scale parameter b.

(3) letting b ¼ ðb0;b1; : : : ;bP; dÞ denote parameters of fixed effects, and

b ¼ ðai; : : : ;an; b11; : : : ; b1n; : : : ; bP1; : : : ; bPnÞ denote random effects, draw

(b,b) from

½b; bjy; t2;h2
p� ¼ NððC *TC * þ s2D*Þ21C *Ty;s2ðC *TC * þ s2D*Þ21Þ
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where

C * ¼ ðX; z;E;X*
1; : : : ;X

*
PÞ

D* ¼ blockdiagð0Pþ2; t
22In;h

22
1 In; : : : ;h

22
P InÞ

X*
p ¼ blockdiagððxp11; : : : ; xp1mi

ÞT ; : : : ; ðxpn1; : : : ; xpnmn
ÞT Þ; p ¼ 1; : : : ;P

y ¼ ð y11; : : : ; y1m1
; : : : ; yn1; : : : ; ynmn

ÞT

(4) draw t 2 from

½t2jai� ¼ IG Aþ
1

2
n;Bþ

1

2

Xn
i¼1

a2
i

 !

(5) for p ¼ 1; : : : ;P, draw h2
p from

½h2
pjbpi� ¼ IG Aþ

1

2
n;Bþ

1

2

Xn
i¼1

b2
pi

 !

4. Simulation Study

4.1. Description of Simulation Study

We conducted a simulation study to compare the performance of various methods under

different missing data mechanisms (missing completely at random (MCAR), missing at

random (MAR), CNI, ONI, and mixture of CNI and ONI), mean models (linear fixed-

slope, linear random-slope and cubic), and propensity models (linear and cubic). Thirty

populations of M ¼
PN

i¼1M1 ¼ 40; 492 values of a variable Y were constructed in 200

clusters. Cluster sizes {Mi} were randomly generated from a uniform distribution with a

minimum size of 20 and a maximum size of 400. The populations were generated

according to the model:

½ yijjxij; zij;ai; l; d;s
2� ¼ Nðai þ ldðzij 2 xiÞ þ dxi þ g1ðx1ij; : : : ; xpijÞ;s

2Þ

½zijjxij; xi� ¼ Nðxi þ g2ðx1ij; : : : ; xpijÞ; 1Þ; rij ¼
1 if zij . 0

0 if zij , 0

(

½aijt
2� ¼ Nð0; t2Þ; ½xijv

2� ¼ Nð0;v2Þ

ð10Þ

where g1(·) is a function that determines how the mean of Y depends on the covariates, and

g2(·) is a function that determines how the mean of the latent variable Z, and hence the

probability of nonresponse, depends on the covariates. We varied g1(·) and g2(·) to

simulate data with different mean models and propensity models. For convenience, we

assumed one covariate x1, which was sampled independently from N(2,1). The values of x1

were observed for both respondents and nonrespondents. Specifically, we let g1(·) take (1)

a linear form of g1ðx1ijÞ ¼ b0 þ b1x1ij with either constant slopes b1 ¼ 5 or random

slopes b1 sampled from N(5,4), or (2) a cubic form of g1ðx1ijÞ ¼ b*
0 þ x3

1ij, where b0 and

b*
0 were chosen so that the superpopulation mean is 15. We let g2(·) take (1) a linear
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form of g2ðx1ijÞ ¼ g0 þ g1x1ij with g0 ¼ 0:5, g1 ¼ 0 or g0 ¼ 22:2, g1 ¼ 1 to

generate nonresponse independent or dependent of covariates; (2) a cubic form of

g2ðx1ijÞ ¼ 1:85 2 0:1x3
1ij. In all cases, the expected response rate was 60%. The parameter

d in (10) determines the degree of nonignorability of the missing-data mechanism.

If d ¼ 0, the missing data are ignorable. Specifically, if d ¼ 0 and g2ðx1ijÞ is a constant

(e.g., g1 ¼ 0), missing data are MCAR; if d ¼ 0 and g2ðx1ijÞ depends on x1ij (e.g., g1 – 0),

missing data are MAR. Nonzero values of d specify nonignorable missing-data

mechanisms, and larger values correspond to stronger degrees of nonignorability. We

simulated populations with two values of d, d ¼ 0 and 5. The parameter l determines the

extent to which the missing-data mechanism depends on the cluster-level random effects

xi and the value of yij itself. If l ¼ 1, the missingness of yij depends entirely on yij and x1ij

(e.g., ONI nonresponse); if l ¼ 0, the missingness of yij only depends on xi and x1ij (e.g.,

CNI nonresponse); if 0 , l , 1, the missing mechanism lies somewhere between these

two extremes (e.g., mixture of ONI and CNI nonresponse). We simulated data with three

values of l, l ¼ 0; 0:5 and 1. For the other parameters, we set s2 ¼ 1, t2 ¼ 1 and v2 ¼ 4.

A two-stage equal selection probability design was applied to these populations. A first-

stage sample of n ¼ 20 PSUs (or clusters) was chosen by PPS, and a second-stage sample

of m ¼ 10 SSUs (or elements) was selected from each sampled PSU, yielding a total

sample size of 200. The sampling scheme was repeated 500 times for each population.

We chose K ¼ 30 multiple imputations for model-based approaches. The estimates of �Y

from the following ten methods were computed:

(REG) regression estimator (2)

(REG2) regression estimator where regression imputation is performed separately for

each cluster as (3)

(RE) random-effects model (4)

(RE2) random-effects model with random slopes (8)

(RERR) random-effects model with estimated response rate as covariate (5)

(RERR2) RERR with random slopes

(PCNI) parametric cluster-specific nonignorable model (6)

(PCNI2) parametric cluster-specific nonignorable model with random slopes

(PONI) parametric outcome-specific nonignorable model (7)

(PONI2) parametric outcome-specific nonignorable model with random slopes (9)

For the purpose of comparison, we also calculated the sample mean before deletion

(BD) of the missing-data, and the widely used simple weighted estimator. The simple

weighted estimator ignores covariates information and weights the value of respondents

by the product of the sampling weight and the cluster-specific response weight, i.e.,

wij ¼ ðpijf̂iÞ
21.

4.2. Simulation Results

Table 1 shows the empirical bias, root mean squared error (RMSE) and 95% confidence

interval coverage rate of each method over the 500 samples for the population with the

linear (fixed-slopes) mean model and the linear propensity model, under various missing-

data mechanisms. Table 2 shows the same summary statistics for the population with
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Table 1. Empirical bias ( £ 100), RMSE ( £ 100) and coverage rate ( £ 100) of 95% confidence intervals for the population with constant slopes across clusters and the linear

propensity model

Missing mechanism Methods

BD WT REG REG2 RE RE2 RERR RERR2 PCNI PCNI2 PONI PONI2

MCAR Bias 23 22 2 21 23 24 29 215 29 29 215 213
RMSE 41 66 44 52 44 44 47 59 48 48 59 60
Coverage 95.0 93.8 94.8 95.4 95.6 95.2 94.6 94.4 94.8 94.6 94.8 93.8

MAR Bias 23 209 1 21 23 2 25 26 25 25 27 26
RMSE 41 220 44 76 42 42 43 49 44 44 51 51
Coverage 95.0 9.2 94.8 95.6 95.6 95.4 96.4 95.8 96.2 96.4 95.6 96.6

CNI Bias 26 367 512 246 139 138 14 13 213 216 99 98
RMSE 214 395 537 311 231 229 201 205 229 240 214 216
Coverage 95.4 37.8 18.2 73.4 90.4 90.0 93.8 93.8 95.2 94.6 93.0 92.4

CNI & ONI Bias 27 579 592 385 299 319 163 172 145 154 47 57
RMSE 219 592 610 430 338 353 238 242 242 249 214 212
Coverage 95.2 0.0 3.4 36.8 63.0 56.8 86.8 85.6 88.4 87.8 94.2 94.0

ONI Bias 28 791 671 529 466 512 308 322 295 313 9 15
RMSE 226 799 686 567 486 529 345 356 342 355 241 238
Coverage 95.2 0.0 0.2 15.0 12.8 3.8 56.0 51.6 62.6 58.0 95.0 95.2
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Table 2. Empirical bias ( £ 100), RMSE ( £ 100) and coverage rate ( £ 100) of 95% confidence intervals for the population with random slopes across clusters and the linear

propensity model

Missing mechanism Methods

BD WT REG REG2 RE RE2 RERR RERR2 PCNI PCNI2 PONI PONI2

MCAR Bias 25 13 217 3 4 210 22 227 30 8 38 3
RMSE 90 114 112 108 101 102 114 116 121 105 206 121
Coverage 94.6 94.6 92.2 93.2 93.2 94.0 94.2 93.8 94.8 93.8 93.6 93.2

MAR Bias 25 248 212 19 12 21 23 215 27 3 45 2
RMSE 90 278 106 127 97 96 114 107 119 99 198 108
Coverage 94.6 53.8 93.0 94.4 96.6 93.4 96.0 93.8 95.8 94.8 93.8 94.6

CNI Bias 218 401 566 289 167 150 20 210 216 219 60 92
RMSE 242 448 604 366 282 266 235 235 262 256 266 244
Coverage 93.8 50.8 29.0 77.0 87.6 88.8 93.8 93.4 94.4 94.2 91.2 91.8

CNI & ONI Bias 219 631 647 426 322 366 182 187 148 173 16 57
RMSE 247 655 677 478 379 411 277 278 272 274 248 241
Coverage 94.2 4.8 11.2 44.4 70.6 57.0 86.4 84.8 88.8 88.4 94.0 92.8

ONI Bias 20 861 728 570 487 545 341 360 306 335 215 1
RMSE 254 877 753 612 518 570 392 406 368 387 279 263
Coverage 94.8 0 1.4 18.8 32.4 12.0 64.4 57.4 73.2 68.2 95.0 94.8
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the linear (random-slopes) mean model and the linear propensity model. To save space, we

omit detailed results for the populations when the mean model or/and the propensity model

are misspecified, but show plots of empirical bias for the cubic mean and linear propensity

in Figure 1, the linear fixed-slope mean and cubic propensity in Figure 2, and the cubic

mean and cubic propensity in Figure 3.

4.2.1. MCAR Nonresponse ðd ¼ l ¼ g1 ¼ 0Þ

When nonresponse is MCAR, all methods are valid, yielding unbiased estimates and

reasonable coverage rates, given that both the mean model and the propensity model are

linear. RE is the most efficient, due to borrowing strength across clusters and the

parsimonious model specification.

4.2.2. MAR Nonresponse ðd ¼ l ¼ 0Þ

The missingness of yij only depends on the observed xij, and the missing-data mechanism

is MAR. When both the mean model and the propensity model are linear, all methods

except WT yield unbiased estimates and close to nominal coverage rates. WT is subject to

bias because it does not account for covariates. When slopes are constant across clusters in

the population, as shown in Table 1, REG2 is less efficient than REG, but models with

random slopes, such as RE2, RERR2, PCNI2, and PONI2, do not suffer a substantial

efficiency loss compared to the counterparts with fixed slopes, reflecting the advantage of

borrowing strength across clusters. When slopes vary across clusters, as shown in Table 2,

methods assuming constant slopes, like RE, RERR, PCNI and PONI, still yield unbiased

estimates, but have a larger RMSE than the counterparts with random slopes. Figure 2

suggests that if the mean model is correctly specified, the misspecification of the

propensity model has little effect on the performance of any of the methods when

nonresponse is MAR. In contrast, all the methods are sensitive to the assumption that

Fig. 1. Empirical bias ( £ 100) for eleven methods under various missing mechanisms for the population with

the cubic mean structure and the linear propensity model. The dashed line denotes the value of 0. As shown by

labels on the top of the panel, these methods are grouped into four categories: Design-based methods, methods

assuming MAR, methods assuming CNI and methods assuming ONI
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Eð yijjxijÞ is a linear function of xij, and lead to biased estimates when the assumption does

not hold (Figure 1). As expected, when both the mean model and the propensity model are

misspecified as in Figure 3, all the methods lead to biased estimates.

4.2.3. CNI Nonresponse ðd ¼ 5; l ¼ 0Þ

In this case, nonresponse is associated with unobserved cluster characteristics. As

displayed by Table 1, WT, REG, RE, and RE2 yield biased estimates due to the lack of

Fig. 2. Empirical bias ( £ 100) for eleven methods under various missing mechanisms for the population with

the linear mean structure and the cubic propensity model. The dashed line denotes the value of 0. As shown by

labels on the top of the panel, these methods are grouped into four categories: Design-based methods, methods

assuming MAR, methods assuming CNI and methods assuming ONI

Fig. 3. Empirical bias ( £ 100) for eleven methods under various missing mechanisms for the population with

the cubic structure and the cubic propensity model. The dashed line denotes the value of 0. As shown by labels on

the top of the panel, these methods are grouped into four categories: Design-based methods, methods assuming

MAR, methods assuming CNI and methods assuming ONI
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CNI nonresponse adjustment. REG2 is biased because the model drops clusters with one

or zero observation. Nevertheless, the bias is smaller than that of REG. RERR corrects the

bias of RE, but the confidence intervals slightly undercover the population mean since this

method ignores the uncertainty of estimated response rates. PCNI and PCNI2 take account

of CNI nonresponse and yield unbiased estimates and sound coverage rates. PCNI has a

slightly smaller RMSE when slopes are constant across clusters, while PCNI2 has a

slightly smaller RMSE as slopes vary across clusters. Figure 2 suggests that PCNI and

PCNI2 are robust to the misspecification of the propensity model, but sensitive to the

misspecification of the mean model as illustrated by Figure 1. They lead to biased

estimates when yij is not linearly associated with xij. PONI and PONI2 are slightly biased

due to the misspecification of nonignorable missing-data mechanism.

4.2.4. ONI Nonresponse ðd ¼ 5; l ¼ 1Þ

In this situation, nonresponse is related to individual outcomes within clusters, and PONI

and PONI2 are the only methods that correctly specify the ONI mechanism. As a result,

PONI and PONI2 are the best methods in terms of RMSE and coverage, and the other

methods all perform poorly. Unfortunately, PONI and PONI2 are sensitive to

misspecification of the mean model (Figure 1), the propensity model (Figure 2) or both

(Figure 3).

4.2.5. Mixed CNI and ONI Nonresponse ðd ¼ 5; l ¼ 0:5Þ

This nonignorable missing data mechanism is a mixture of CNI and ONI nonresponse.

None of the methods are satisfactory in terms of bias, RMSE and coverage in this case.

Thus there is no single method that dominates the others consistently over the simulation

conditions.

5. Application

The Behavioral Risk Factor Surveillance System (BRFSS) is a collaborative project of the

Centers for Disease Control and Prevention (CDC) and U.S. states and territories. The

objective of the BRFSS is to collect uniform, state-specific data on preventive health

practices and risk behaviors that are linked to chronic diseases, injuries, and preventable

infectious diseases in the adult population. Most states (including Tennessee) in BRFSS

used a disproportionate stratified sample design. In this design, telephone numbers are

divided into high-density or medium-density strata, and are sampled separately to obtain a

probability sample of all households with telephones.

We consider here estimating mean annual household income (from all sources) in

Tennessee based on BRFSS public-use data collected in 2003. In this data set, household

income is the variable with the largest percentage of missing values, about 22%

nonresponse. Other good predictors of income, namely age, education, gender, race,

employment status and number of adults in household, have nonresponse rates of less than

1%, and are used as covariates to predict the missing values of income. Linear and

quadratic effects of age are included, and all other covariates are treated as categorical.

Income is in principle continuous, but is here reported in eight categories because of

confidentiality concerns. We treated it as continuous with values given by the medians in
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each category. We applied a cube root transformation to improve normality, as in

Schenker et al. (2005) and Paulin and Sweet (1996). Although Tennessee does not use a

two-stage cluster sampling design, sample subjects are clustered naturally by counties, and

these are modeled by random effects in our methods.

As an empirical analysis of the missing-data mechanism of nonresponse, we compared

distributions of covariates between respondents and nonrespondents. The analysis shows that

characteristics of nonrespondents are significantly different from those of respondents.

The mean ages of respondents and nonrespondents are 53.4 and 46.8, respectively,

corresponding to a p-value of less than 0.0001. Respondents and nonrespondents are

also significantly different in terms of gender, education, and employment status (the x 2 test

yielded p-values of 0.008, 0.004, and ,0.0001, respectively). For example, 37.7% of

respondents versus 31.6% of nonrespondents are men, and 25.2% respondents versus 19.3%

of nonrespondents are college graduates. These results suggest that the nonresponse in

BRFSS is not MCAR. To further assess the missing-data mechanism, we fit the RE model

and plotted the average of the resulting regression residuals within counties against the

response rate of the counties. In this plot, a systematic pattern suggests that nonresponse

may be related to cluster-specific characteristics, that is, CNI nonresponse. For this particular

data, we did not observe any systematic pattern, providing certain empirical evidence that

the nonresponse here may not be CNI. From a statistical point of view, however, there is no

information to distinguish between MAR, CNI, and ONI. In this case, other published

studies may provide some prior information about the missing-data mechanism. Greenlees,

Reece, and Zieschang (1982), Lillard, Smith, and Welch (1986), and Neukirch (2002)

reported that individuals with higher income tend to have smaller probabilities of response,

i.e., the nonresponse is nonignorable.

Table 3 shows estimates of the finite population mean of household income in

Tennessee and associated standard errors under different models. The weighting estimate

WT is not recommended, since the nonresponse is not MCAR. Methods other than WT

and the outcome-specific nonignorable models PONI and PONI2 yielded similar estimates

of the average income of about $41,000. The estimates of PONI and PONI2 are slightly

larger than those of other models, yielding an average income of about $42,800. The

random-slopes models produce results very similar to those produced by their fixed-slopes

counterparts, suggesting homogeneous slopes across clusters. Since the observed data do

not contain any empirical evidence to distinguish the ignorable and nonignorable missing-

data mechanism, given that some prior studies (Greenlees, Reece, and Zieschang 1982;

Lillard, Smith, and Welch 1986; Neukirch 2002) suggest that income nonresponse tends

to be ONI, it might be reasonable to assume the nonresponse in BRFSS as ONI and report

the estimate of the average household income in Tennessee as $42,800. Alternatively,

the comparison among ignorable CNI and ONI models provides a form of sensitivity

analysis for the missing-data mechanisms of nonresponse. For this particular data set,

we might report that the average household income in Tennessee is in the range of $41,000

to $42,800.

In this example, the estimates from ONI models are not substantially different from

the estimates based on other ignorable models. This may be because the nonignorability

of nonresponse is considerably weakened by conditioning on variables that are good

predictors of income.
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Table 3. Estimates of the finite population mean of household income in Tennessee by different methods.
^�Y is the estimate of the household income, and SEð

^�YÞ is the estimate of the

associated standard error

Estimates Methods

WT REG REG2 RE RE2 RERR RERR2 PCNI PCNI2 PONI PONI2

^�Y 42,151 40,846 40,962 41,013 41,017 41,022 41,026 40,967 41,021 42,796 42,833
SEð

^�YÞ 645 633 673 586 574 562 566 580 578 687 672
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6. Conclusion

We have described some new methods for handling item nonresponse adjustment for two-

stage cluster samples that take into account covariate and cluster information, and allow

for nonignorable nonresponse depending on the cluster, as in the PCNI and PCNI2 models,

or the outcome itself, as in the PONI and PONI2 models. For cluster-specific nonignorable

nonresponse, misspecification of the mean model has much more effect on the

performance of PCNI and PCNI2 than the misspecification of the propensity model; also

PONI and PONI2 were generally biased, due to the misspecification of the nonignorable

missing-data mechanism. When nonresponse was ONI, all methods except PONI and

PONI2 were biased and had a poor coverage rate, but PONI and PONI2 were sensitive to

misspecification of the mean model or the propensity model. The methods based on

models with random slopes (PCNI2, PONI2) did not show much advantage over methods

based on models with fixed slopes (PCNI, PONI) in the simulation study. However, the

random slopes models may be more beneficial if we are also interested in estimating the

mean within clusters, as in small area estimation.

A natural question given these findings is whether we can determine whether

nonresponse is CNI or ONI, and which model should be used. Unfortunately, these two

types of nonignorable nonresponse are not easily distinguished on the bases of the

observed data. If auxiliary variables for nonrespondents and respondents are available, for

example from census data, then we can compare the residual distribution of auxiliary

variables, obtained by regressing on appropriate covariates, for nonrespondents with that

of respondents within a cluster. If there is no systematic difference, we might assume that

nonresponse is more likely to depend on underlying cluster-specific characteristics and

apply PCNI or PCNI2; otherwise, we may consider PONI or PONI2. If we do not have

external information to distinguish between alternative nonignorable missing mechan-

isms, it may be more appropriate to apply more than one method and compare the results.

Cognitive and social-psychological theory of survey participation provides a framework

for understanding alternative nonignorable nonresponse mechanisms (Groves and Couper

1998; Tourangeau, Rips, and Rasinski 2000). Nonignorable nonresponse is most likely in self-

administered questionnaire surveys, since the householder has the opportunity to review the

entire questionnaire before making the participation decision. If the underlying cause of

refusal to participate is the psychological threat posed by the topic in the survey, then the

resulting nonresponse is most likely to be ONI since the sample subjects’ attributes on the

survey variables are determining the probability of their participating. In contrast,

nonresponse in many interview-administrated surveys may be less directly related to the

survey variables because the respondent has only a general idea about the topic of the survey.

One limitation of the proposed methods is that the multiple imputations are potentially

sensitive to violations of the model assumptions. To relax the parametric assumptions

about the mean structure of yij as a function of covariates, one might model Eð yijjxijÞ

nonparametrically, for example using a spline on the estimated propensity to respond

(Yuan and Little 2007b). The normality assumption may be improved by a judicious

choice of transformation, as in the example. Alternatively, other choices of the error

distribution may be chosen; for example with a binary outcome, the proposed mean

structure could be incorporated with a binomial error structure with a logistic function of

the covariates.
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This article focuses on item nonresponse and assumes the covariates are completely

observed. However, in practice, covariates are often partially observed. In this case, if

nonresponse follows a monotone pattern of missing values, the regression models discussed

here could be applied sequentially, filling in the missing values from the most observed to

the least observed variables, and conditioning on previously imputed variables in the

sequence. For nonresponse with a general pattern of missing values, the sequential imputation

approach (Raghunathan et al. 2001) could be used in conjunction with the proposed models.
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