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By deriving an invertible linear relation between stock and flow trading day regression
coefficients, we show how flow day-of-week effect constraints can be imposed upon the
day-of-week-effect component of the stock trading day model of Bell used in X-12-ARIMA.
As an application, a new one-coefficient stock trading day model is derived from the
constraints that give rise to the one-coefficient weekday-weekend-contrast flow trading day
model of TRAMO and X-12-ARIMA.We present summary results and some details of a quite
successful application of the new model to the manufacturers’ inventory series of the U.S.
Census Bureau’s M3 Survey. (JEL C87, C82).
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1. Introduction

Monthly economic time series usually measure accumulations of daily economic activity,

for example monthly sales or inventories at month’s end. Within the daily activity, there

can be a pattern of within-week variations that causes the monthly values to change with

the day-of-week composition of the month, e.g., the days that occur five times or the day

on which the month ends. If this pattern is stable enough over time and strong enough, it

leads to statistically significant effects on the monthly data that can and should be

accounted for when interpreting or modeling the data. These day-of-week effects,

sometimes together with effects related to month-length, are called trading day or working

day effects. Proper modeling of trading day effects generally leads to better ARIMA

models and better preadjusted series for the seasonal factor identification procedures of

TRAMO-SEATS (Gómez and Maravall 1997, 2003) and of X-12-ARIMA (Findley,

Monsell, Bell, Otto, and Chen 1998 and U.S. Census Bureau 2007).

The trading day effect regressors of Bell and Hillmer (1983) for flow series, i.e.,

monthly accumulations such as total monthly sales, are available in TRAMO-SEATS and

X-12-ARIMA as optional components of regARIMA models (regression models with

ARIMA disturbances). For modeling end-of-month stock series, such as end-of-month
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inventories, trading day regressors were derived in Cleveland and Grupe (1983) and in the

research reports of Bell (1984, 1995) by treating the stock series as an accumulation of

consecutive monthly flows.

As will be seen below, the basic day-of-week effect models are specified by six

independent coefficients. For flow series, known or inferred properties of individual series

sometimes suggest relations among the coefficients that lead to more parsimonious

models. The most important example, reviewed in Section 3.1, is the one in which the days

Monday through Friday are assumed to contribute equally to the economic activity, and

Saturday’s contribution is assumed equal to Sunday’s. Imposed upon the day-of-week

coefficients, these constraints gave rise to the one-coefficient flow trading day model of

TRAMO-SEATS and, later, of X-12-ARIMA.

In the next section, we derive an invertible linear relation between flow and stock day-

of-week-effect regression coefficients that enables us to show, in Section 3, how flow

coefficient constraints transfer to stock coefficients. As an application, in Section 3.1 a

new one-coefficient trading day regression model for stock series is derived from the

constraints that give rise to the one-coefficient flow series model mentioned above.

Section 5 describes how this new model was applied with considerable success to the

manufacturers’ inventory series of the U.S. Census Bureau’s M3 Survey. Section 6

considers other regressors that are applicable when no data transformation is needed for

regARIMA modeling and shows how, in this situation, more general flow-coefficient

constraints can be implemented using Cleveland and Grupe’s stock trading day regressors.

A final section presents some conclusions. Until Section 6, the term trading day effects is

used as a synonym for day-of-week effects.

2. Formulas Relating Flow and Stock Coefficients

2.1. The Basic Flow Day-of-Week Effect Model

With i ¼ 1; : : : ; 7 indexing Monday through Sunday and t ¼ 1; 2; : : : ; T indexing the

successive months of the time series, let Xt(i ) be the number of times the i-th weekday

occurs in month t. Then
P7

i¼1biXtði Þ is the basic formula for flow series trading day

effects underlying the regression model components of regARIMA models used to

estimate such effects; see Bell and Hillmer (1983) and Findley et al. (1998). To derive

specialized models for differing situations,
P7

i¼1biXtði Þ is decomposed into day-of-week

and length-of-month effects. Setting �b ¼ 1=7
P7

i¼1bi, ~b ¼ bi 2 �b and mt ¼
P7

i¼1Xtði Þ

(the length of month t), we have bi ¼ ~bi þ �bi and

X7
i¼1

biXtði Þ ¼
X7
i¼1

~biXtði Þ þ �bmt ð1Þ

Due to

X7
i¼1

~bi ¼ 0 ð2Þ
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setting X*
t ði Þ ¼ Xtði Þ2 Xtð7Þ; 1 # i # 6 and X*

t ¼ X*
t ð1ÞX

*
t ð2Þ: : :X

*
t ð6Þ

� �
, we also have

X7
i¼1

~biXtðiÞ ¼
X6
i¼1

~biX
*
t ðiÞ ¼ X*

t
~b ð3Þ

where

~b ¼ ~b1
~b2: : : ~b6

� � 0

ð4Þ

Our focus in this article is the effect of constraints for ~b on the coefficients of the

associated stock series analogue of
P6

i¼1
~biX*

t ði Þ, which is derived in the next section.

A key property of
P6

i¼1
~biX*

t ði Þ arises from the repetition of the day-of-week calendar,

every 28 years if rare corrections to the Gregorian calendar are ignored. This causes the

seven long-term means lim T!1T
21
PT

t¼1Xtði Þ; i ¼ 1; : : : ; 7 to have the same value,

effectively the common value of the mean for T ¼ 12 £ 28 ¼ 336. Consequently,

T!1
lim T 21

X6
i¼1

~biX
*
t ði Þ ¼

X6
i¼1

~bi
T!1
lim T 21X*

t ði Þ

� �
¼

X6
i¼1

~bi·0 ¼ 0 ð5Þ

That is, the day-of-week component
P7

i¼1
~biXtði Þ of (1) has the important property for

trading day adjustment of being level neutral in the sense that its long-term mean is zero.

See Bell (1984, 1995) for a more general and detailed discussion.

2.2. The Basic Stock Day-of-Week Effect Model

Bell (1984, 1995) obtained stock-series trading day regression models by accumulating

the monthly flow effects (1):

Xt

j¼1

X7
i¼1

biXjði Þ ¼
Xt

j¼1

X7
i¼1

~biXjði Þ þ �b
Xt

j¼1

mj ð6Þ

To present Bell’s day-of-week-effect formula, for 1 # k # 7 let ItðkÞ ¼ 1 if month t ends

on the k-th day of the week. Otherwise let ItðkÞ ¼ 0. Suppose that the k0-th day of the week

immediately precedes the first day of month t ¼ 1. We define

g7 ¼ 2
Xk0
i¼1

~bi ð7Þ

gk ¼
Xk
i¼1

~bi þ g7; 1 # k # 6 ð8Þ

Then, with �g ¼ 1=7
P7

k¼1gk and ~gk ¼ gk 2 �g; 1 # k # 7, the derivation on pp. 5–7 of

Bell (1984) establishes that

Xt

j¼1

X7
i¼1

~biXjði Þ ¼
X7
k¼1

gkItðkÞ ¼
X7
k¼1

~gkItðkÞ þ �g ð9Þ
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Due to

X7
k¼1

~gk ¼ 0 ð10Þ

with I*t ðkÞ ¼ ItðkÞ2 Itð7Þ; 1 # k # 6, we have

X7
k¼1

~gkItðkÞ ¼
X6
k¼1

~gkI
*
t ðkÞ ¼ I*t ~g ð11Þ

for

~g ¼ ~g1 ~g2: : : ~g6
� �

ð12Þ

and

I*t ¼ I*t ð1Þ I
*
t ð2Þ: : :I

*
t ð6Þ

� �
ð13Þ

The expression I*t ~g is Bell’s stock day-of-week-effect formula. The linear relations

between ~g and ~b will be derived below.

As with the flow trading day regressors, the repetition of the day-of-week calendar

results in the regressors It(k) having long-term means that do not depend on k, from which

it follows that the stock day-of-week effects given by (11) are level-neutral,

T!1
lim T 21

X6
k¼1

~gkI
*
t ðkÞ ¼

X6
k¼1

~gk
T!1
lim T 21I*t ðkÞ

� �
¼

X6
k¼1

~gk·0 ¼ 0 ð14Þ

in analogy with (5). The same is true for �w-th day-of-month stocks defined as follows: for a

specified 1 # �w # 31, the stock is for the last day of the month if the month-length is less

than �w; otherwise it is for the �w-th day of the month. (Thus, the choice �w ¼ 31 specifies

end-of-month stocks). The validity of (9) and (14) for �w , 31 can be obtained by

redefining months in Bell’s derivation to refer to the intervals between consecutive stock

measurements. The stock regressors I*t available in X-12-ARIMA are for �w-th day of

month stocks for any 1 # �w # 31. The same regression models have been implemented in

TRAMO-SEATS for its next release (Maravall 2008).

2.3. Relations Between the Basic Flow and Stock Coefficients

We now derive the following invertible linear relations between ~g and ~b.

~b ¼ N ~g ð15Þ
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with

N ¼

2 1 1 1 1 1

21 1 0 0 0 0

021 1 0 0 0

0 021 1 0 0

0 0 021 1 0

0 0 0 02121

2
66666666664

3
77777777775

so

~g ¼ N21 ~b ð16Þ

with

N21 ¼
1

7

12524232221

1 224232221

1 2 3232221

1 2 3 42221

1 2 3 4 521

1 2 3 4 5 6

2
66666666664

3
77777777775

ð17Þ

To obtain (15), we note first that with

L ¼

1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

1 1 1 1 1 1

2
66666666664

3
77777777775

(8) is equivalent to L ~b ¼ g1 2 g7 g2 2 g7: : :g6 2 g7
� � 0

. Next, using (10), observe for

k ¼ 1; : : : ; 6 that gk 2 g7 ¼ ~gk 2 ~g7 ¼ ~gk þ
P6

j¼1 ~gj ¼ 2 ~gk þ
P

j–k ~gj. Thus, with

M ¼ Lþ L 0 ¼

2 1 1 1 1 1

1 2 1 1 1 1

1 1 2 1 1 1

1 1 1 2 1 1

1 1 1 1 2 1

1 1 1 1 1 2

2
66666666664

3
77777777775
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we have L ~b ¼ M ~g. From

L21 ¼

1 0 0 0 0 0

21 1 0 0 0 0

021 1 0 0 0

0 021 1 0 0

0 0 021 1 0

0 0 0 021 1

2
66666666664

3
77777777775

we obtain N ¼ L21M and (15). Next, noting that M is sum of the identity matrix and 101,

with 1 ¼ ½1; : : : ; 1�, a standard inverse formula, see Noble (1969, p. 148) for example,

yields

M21 ¼
1

7

62121212121

21 621212121

2121 6212121

212121 62121

21212121 621

2121212121 6

2
66666666664

3
77777777775

and therefore (17) and (16) from N21 ¼ M21L.

3. The Effect of Flow-Coefficient Constraints on Stock Coefficients

With stock series, there can be information about the associated flow series that

suggests one or more linear constraints on the day-of-week-effect regression coefficients
~bj; 1 # j # 6 in (3) of the form

X6
i¼1

hi ~bi ¼ 0 ð18Þ

With ~b as in (4), a set of such constraints can be expressed as

H ~b ¼ 0 ð19Þ

for some matrix H of full rank (less than six). From (15) and (16), the constraint (19) on ~b

is equivalent to the constraint on ~g given by

HN ~g ¼ 0 ð20Þ

As the familiar constrained flow model considered below will illustrate, a natural source of

constraints (18) are contrasts on the coefficients bi; 1 # i # 7 of (1), i.e., constraints of

the form
P7

i¼1cibi ¼ 0 with
P7

i¼1ci ¼ 0. Indeed, for these, the ~bi ¼ bi 2 �b satisfy

0 ¼
X7
i¼1

ci ~bi ¼
X6
i¼1

ci ~bi 2 c7
X7
i¼1

~bi ¼
X6
i¼1

ðci 2 c7Þ ~bi
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which yields (18) with hi ¼ ci 2 c7; 1 # i # 6. (Conversely, a constraint
P6

i¼1hi
~bi ¼ 0

on ~b yields the contrast
P7

i¼1cibi ¼ 0 with c7 ¼ 21=7
P6

j¼1hj and ci ¼ hi þ c7;

1 # i # 6).

Silvey (1975, p. 60) outlines a general approach to obtaining the regressors and

regression models implied by linear constraints. For (20), this involves adding r ¼ 6 2

rank (H) rows to HN that are chosen to obtain an invertible 6 £ 6 matrix J. The

decomposition

I*t ~g ¼ I*t J
21

� �
J ~g ð21Þ

then reveals the constrained regressor and its coefficients in the last r rows of I*t J
21 and

J ~g, as we illustrate below. But often the constrained form of ~b is known or easily

derived. Then the constrained form of ~g follows from (16), and this leads via (11)

to the constrained stock trading day regression model without matrix inversion, as we

illustrate first with a fundamental example.

3.1. A New Class of One-Coefficient Stock TD Models

We consider the one-coefficient weekday-weekend-contrast flow day-of-week-effect

model of TRAMO and X-12-ARIMA. This arises from equality constraints between the

weekday coefficients b1; : : : ;b5 and between b6 and b7,

b1 ¼ b2 ¼ · · · ¼ b5;b6 ¼ b7 ð22Þ

which can be expressed as five contrasts bi 2 biþ1 ¼ 0; i ¼ 1; 2; 3; 4; 6. The constraints

(22) and (2) immediately yield

~b ¼ 1 1 1 1 1 2
5

2

� � 0

~b5 ð23Þ

Thus, from (16) and (17),

~g ¼
1

7

12524232221

1 224232221

1 2 3232221

1 2 3 42221

1 2 3 4 521

1 2 3 4 5 6

2
66666666664

3
77777777775

1

1

1

1

1

2
5

2

2
6666666666664

3
7777777777775

~b5 ¼
1

2

23

21

1

3

5

0

2
66666666664

3
77777777775
~b5

which yields ~g5 ¼ 5=2 ~b5 as well as the constrained form of ~g,

~g ¼ 2
3

5
2

1

5

1

5

3

5
1 0

� � 0

~g5 ð24Þ
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From this, defining

Dt ¼ I*t 2
3

5
2

1

5

1

5

3

5
1 0

� � 0

¼ 2
3

5
I*t ð1Þ2

1

5
I*t ð2Þ þ

1

5
I*t ð3Þ þ

3

5
I*t ð4Þ þ I*t ð5Þ ð25Þ

we have I*t ~g ¼ ~g5Dt, which shows that ~g5Dt is the constrained regression function. From

(24), we obtain ~g6 ¼ 0 (so Saturday is an average day, g6 ¼ �g); and from (10),

~g7 ¼ 2
P6

i¼1 ~g1 ¼ 2 ~g5.

We now re-derive (25) without using (23) to illustrate the application of (21). The

constraints (22) for b are equivalent to (19) for ~b, with

H ¼

121 0 0 0 0

0 121 0 0 0

0 0 121 0 0

0 0 0 121 0

1 1 1 1 1 2

2
66666664

3
77777775

To obtain (21), we require an invertible matrix J constructed by adding a sixth row to HN,

for example

J ¼

3 0 1 1 1 1

21 221 0 0 0

021 221 0 0

0 021 221 0

1 1 1 1 0 3

0 0 0 0 1 0

2
66666666664

3
77777777775

(The nonzero value in the added sixth row could have been placed in any column but the

sixth to achieve an invertible J). The most cumbersome step with (21) is the calculation of

J 21, but this can be done easily and exactly by various programs. (We used Scientific

Workplacee). The result is

J21 ¼
1

35

1223 21029 24 221

9 24 10 2 23 27

6 16 30 1322 7

3 8 15 2421 21

0 0 0 0 0 35

210215215210 15 0

2
66666666664

3
77777777775

Due to (20), J ~g ¼ 0 0 0 0 0 ~g5
h i 0

Thus, using (21), (25) is obtained from the

product of I*t with the sixth column of J 21.
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Software is available from the authors that generates an X-12-ARIMA input file of

constrained regressor values (25) for end-of-month and general �w-th day of month stocks.

These regressors have been implemented in the not yet released program X-13A-S

discussed in Findley (2005) and Monsell (2007).

4. RegARIMA Modeling Considerations

4.1. Reinterpretation With the Log Transformation

In the next section, results are presented from applying the regressors I*t and Dt with

�w ¼ 31 to detect and estimate trading day effects in the inventory series of an important

U.S. Census Bureau survey. These series, like most economic time series considered for

seasonal adjustment, must be log transformed in order to achieve data that can be

successfully modeled with a regARIMA model. When the log transformation is used, the

stock trading day regression function (11) must be reinterpreted.

We are treating stock series Zt, t $ 1, as accumulations Zt ¼
Pt

j¼1Yj of the values of a

flow series Yt, t $ 1. In the log transformation situation, the day-of-week effectP7
i¼1

~biXtði Þ ¼
P6

i¼1
~biX*

t ði Þ of log Yt is estimated within a regARIMA model for this

transformed series and then exponentiated to obtain day-of-week-effect factors

exp
P7

i¼1
~biXtði Þ

	 

for Yt; see Bell and Hillmer (1983) and Subsections 1.4 and 3.3 of

Findley et al. (1998). From our analysis in Sections 2.2 and 2.3 above, the expressionP7
k¼1 ~gkItðkÞ with coefficients given by (16) and ~g7 ¼ 2

P6
i¼1 ~gi now describes the

level-neutral day-of-week effect of the series
Pt

j¼1 log Yj ¼ log
Qt

j¼1Yj

	 

, rather than

that of log Zt ¼ log
Pt

j¼1Yj

	 

. Therefore the estimation of I*t ~g ¼

P7
k¼1 ~gkItðkÞ within a

regARIMA model component for log Zt requires a new rationale. Observe that, with k(t)

denoting the index of the day of week on which the stock is measured in month t, we haveP7
k¼1 ~gkItðkÞ ¼ ~gkðtÞ. Hence, estimation of this component in log Zt provides stock-day

effect factors for Zt of the simple, intelligible form exp ~gkðtÞ
� �

¼ 1þ ~gkðtÞ. The motivation

for using the constrained regressor Dt in a regARIMA model for log Zt is not as clear.

Nevertheless, it will be shown that Dt is an important alternative to I*t when the log

transformation is used.

4.2. Log Likelihood-Ratio Tests for the Model Comparisons

The estimation of regARIMA models in X-12-ARIMA and TRAMO-SEATS is done by

maximizing log-likelihood functions of Gaussian form. To test whether or not a stock day-

of-week regressor should be included in the regARIMA model for a series and, if so,

whether or not Dt is to be preferred over the unconstrained regressor I*t , we use tests based

on differences of the calculated maximum Gaussian log-likelihood values. These

likelihood-ratio (LR) tests do not require the modeled time series to be Gaussian.

Specifically, given the maximum Gaussian log-likelihood value for an unconstrained

stationary time series model and for a model nested within it having d fewer independent

parameters, let DL denote the difference between the latter value and the former. For the

null hypothesis that the nested model is correct, Taniguchi and Kakizawa (2000, p. 61)

show, under general data assumptions specified in their Lemma 3.1.1 and Theorem 3.1.2

(for the appropriately differenced data in the case of ARIMA models), that the asymptotic
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distribution of 22DL is chi-square with d degrees of freedom,

22DL , x2d ð26Þ

Let L, L D, and L I* denote the respective maximum log-likelihood values of the model

without day-of-week regressors, the model with Dt, and the model with I*t . Then, for

DL ¼ L2 LD, respectively DL ¼ L2 LI * , the null hypothesis of no day-of-week effect is

tested using (26) with d ¼ 1, respectively d ¼ 6. If this null hypothesis is rejected by both

tests, then d ¼ 5 is used in (26) with DL ¼ LD 2 LI * to test the null hypothesis that the

model with Dt is correct in preference to the model with I*t . In the study described next,

these hypothesis tests were performed with significance level a ¼ :05.

5. The Empirical Study

5.1. The Series Considered

The testing procedure just described was applied to the 91 inventory series of the U.S.

Census Bureau’s monthly U.S. Manufacturers’ Shipments, Inventories and Orders Survey

(the M3 Survey) starting from the regARIMA models used in seasonal adjustment

production in 2006. These production models have outlier regressors but no trading day

regressors. The data used ended in October, 2006. The starting dates varied from January

1992 to January 1995 according to the choice made for regARIMA modeling of each

series. These are end-of-month inventory series, with the qualification that adjustments are

made to produce approximate end-of-calendar-month values for reporters to the M3

Survey who provide end-of-report-period values for four- or five-week periods instead of

for calendar months. For details, see M3 (2008).

Table 1 shows the Industry categories indicated by the initial number and letter of the

identification codes of the series to which direct reference is made in this section. The final

two code letters are to be interpreted as follows: TI – Total Inventories; MI – Materials

Table 1. Some M3 Series Category Codes

11S Food Products
11A Grain and Oilseed Milling
21S Wood Products
22S Paper Products
22A Pulp, Paper and Paperboard Mills
23S Printing
26S Plastics and Rubber Products
27S Nonmetallic Mineral Products
31S Primary Metals
31C Ferrous Metal Foundries
33S Machinery
34S Computer and Electronic Products
34K Electromedical, Measuring and Control Instrument Manufacturing
35A Electric Light Equipment Manufacturing
36A Automobile Manufacturing
36C Heavy Duty Truck Manufacturing
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and Supplies Inventories; WI – Work in Process Inventories; FI – Finished Goods

Inventories. The latter three are components of the TI series of the same category.

Among the 91 series, there were 21 for which the starting model, with no trading day

regressor, was rejected by a test in favor of an enhanced model with I*t or Dt. However, for

one of these 21 series, we rejected the only alternative model accepted, withDt, because an

X-12-ARIMA warning message showed that its trading day adjustment led to “visually

significant” (v.s.) trading day peaks in the autoregressive spectrum estimates of the last

eight years of both the differenced log seasonally adjusted series and the irregular

component of the seasonal decomposition. Such peaks did not occur when no trading day

modeling and adjustment were done for this series. See Soukup and Findley (1999) and

Section 6.1 of U.S. Census Bureau (2007) for background on the spectrum diagnostic and

the v.s. criterion. An example spectrum plot is shown in the next subsection. For another

series too, we rejected the only alternative model accepted, the model with Dt, based on

forecast performance (see Section 5.2.1).

5.2. Analysis of the Trading Day Regressor Selection

Here is the breakdown of accepted trading day regressors among the remaining 19 series

for which the model with no trading day regressor was rejected in favor of a model with I*t
or Dt. For three of these series only the unconstrained regressor I*t was accepted and for 8

series only the constrained regressor Dt. This left eight series for which both trading day

regressors were preferred over none. For these, Dt was always accepted in preference to I*t
by the LR test with DL ¼ LD 2 LI * .

However, for two of these last eight series, we preferred I*t over Dt because its use

removed all v.s. trading day spectral peaks found when no trading day regressor was used,

whereas use of Dt left a v.s. peak of reduced height in the spectrum of the regARIMA

model residuals of one series (26SFI) and in the differenced log seasonal adjustments of

the other (22SFI). Even with these reclassifications the new one-coefficient regressor is

very successful: it is preferred for 14 of the 19 series for which modeling with either I*t or

Dt was justified by the LR tests without strong contradiction from another diagnostic.

Further, as we detail next, for 13 of these 14 series, at least one other modeling

diagnostic gave additional support to the use of Dt rather than no trading day regressor.

We will subsequently present similar support for use of I*t with the five series for which it

was preferred.

5.2.1. Further Results For Dt

Spectrum Diagnostics. With no trading day modeling, 6 of the 14 series for which Dt was

chosen had v.s. trading day peaks in the spectrum estimates of the last eight years of

regARIMA model residuals, the differenced log seasonally adjusted series, and/or the

irregulars. Use of Dt eliminated all of the v.s. peaks for these series (11ATI, 22ATI,

23SMI, 27SFI, 31SFI, 36CTI). For example, with no trading day regressor in its model, all

three spectra of the series 31SFI had strong v.s. peaks at the primary trading day frequency

(.348 cycles/month) and the secondary trading day frequency (.432 cycles/month). This is

illustrated in Figure 1, an overlay plot of the decibel spectrum graphs of two differenced

log seasonally adjusted series from X-12-ARIMA, one obtained without trading day
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adjustment (two v.s. trading day peaks) and the other obtained with adjustment from the

preferred trading day regressor Dt (no trading day peaks).

Goodness of Fit. For 8 of these 14 series, the models with no trading day regressor had

residuals with one or more Ljung-Box goodness-of-fit Q statistics through lag 24 with a

p-value less than .05. Table 3 shows the impact on the p-values of previously significant Q

statistics of these series when Dt was added to the regARIMA model. With one exception,

use of Dt always reduced the number of significant Qs – to zero for 5 of the 8 series

including the three series with improved spectra as well as improved Qs (22ATI, 27FSI,

31FSI). The exceptional series (34SMI) had a single significant Q statistic, at lag 6, that

remained significant when Dt was used.

Forecasting. For four of these 14 series, the model without Dt had no significant Q

statistics and yielded no v.s. trading day spectral peaks. For the models of these four series

with and without Dt, we compared the sample means of the squared errors of lead l out-

of-sample forecasts for l ¼ 1; 12 using forecast origins from January 2004, onward. To be

precise, for a log-transformed time series Zt, 1 # t # T and forecast lead l $ 1 and forecast

origin 1 # t # T, let Ztþljt denote the forecast of Ztþl obtained from Zt, 1 # t # t via the

regARIMA model without trading day regressor and with parameters estimated from Zt,

1 # t # t. With t0 denoting the index of the initial forecast origin (January 2004 in our

case), define MSEl ¼ ðT 2 l2 t0 þ 1Þ21
PT2l

t¼t0
ðZtþl 2 ZtþljtÞ

2. Let MSED
l and MSEI *

l

denote the corresponding sample means for the models with Dt and I*t respectively.

Such sample means are available from X-13A-S. The first four rows of Table 2 give

the values of

MSEl=MSED
l ; l ¼ 1; 12 ð27Þ

Fig. 1. Spectra of the differenced log seasonal adjustments obtained without and with the trading day

adjustment provided by Dt. Use of Dt eliminates both v.s. trading day peaks
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for the four series from 33 forecasts with l ¼ 1 and 22 with l ¼ 12. With one negligible

exception for l ¼ 12, the values of (27) are all larger than one, showing that use of Dt

generally led to at least slightly smaller sample mean squared errors for these four series at

leads 1 and 12, thereby providing modest additional support for use of Dt. The measures

(27) also led us to discover the second series eliminated from the initial 21 series obtained

via the LR tests, 11SFI. For this series, the model with Dt had a substantially larger sample

mean squared forecast error at lead 1 than the model without Dt (see the final row of

Table 2). Neither model had a significant Q or gave rise to a v.s. peak.

For perspective, the values in Table 2 can be compared to the values of (27) and

MSEl=MSEI *

l ; l ¼ 1; 12 ð28Þ

in Table 3 for the 15 series having either a v.s. peak or a significant Q or both when no

trading day regressor was used. The comparison shows that, often for l ¼ 1 and

occasionally for l ¼ 12, the benefit to forecasting performance of using a preferred trading

Table 3. p-Value data (NoTD/TD) and values of the ratio (27) or (28) for l ¼ 1; 12 for the 15 series with one or

more significant Qs or v.s. spectrum peaks

Series TD choice No. pk # 0.05 p24 if # .05 minkpk
if # .05

l ¼ 1 l ¼ 12

11ATI Dt –/– –/– –/– 1.0061 0.9930
22ATI Dt 1/– –/– .049/– 1.1717 1.0057
22SFI I*t 5/– .046/– .030/– 1.4981 1.0970
23SMI Dt –/– –/– –/– 0.9621 1.0155
26SFI I*T –/– –/– –/– 1.1946 1.2588
27SFI Dt 10/– .049/– .013/– 1.4967 1.0052
27SMI Dt 7/6 .004/.009 .004/.009 1.0109 0.9947
31ATI Dt 18/15 .000/.009 .000/.007 1.0124 1.0513
31CTI I*T 7/– .009/– .009/– 1.1041 1.0574
31SFI Dt 2/– .018/– .013/– 1.1937 1.0159
33SFI Dt 2/1 –/– .040/.044 1.0424 1.0007
34SMI Dt 1/1 –/– .046/.026 1.0550 0.9870
34KTI I*T –/– –/– –/– 1.1085 1.0032
36ATI I*T 22/3 .018/– .000/.012 1.0497 1.0281
36CTI Dt –/– –/– –/– 1.0442 0.9960

Table 2. Values of MSEl=MSED
l

Series l ¼ 1 l ¼ 12

21SFI 1.0006 1.0056
26SMI 1.0425 1.0021
31SMI 1.0318 0.9981
35ATI 1.0858 1.0072
11SFI 0.8801 1.0141
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day regressor is more substantial when the model with no trading day regressors has

significant Qs and/or gives rise to v.s. peaks.

Turning to the sizes of the trading day percent adjustment factors,

100 exp ðDt ~g5Þ; 1 # t # T , among the 14 series for which Dt was preferred, the factors

had the largest range, from 99.28 to 100.73, for the Materials and Supplies Inventories of

Printing (23SMI), a series whose seasonal factors (from X-12-ARIMA output table D 10)

ranged from 95.90 to 105.00. The trading day factors had the smallest range, from 99.78 to

100.22, for Total Inventories of Pulp, Paper, and Paperboard Mills (22ATI), whose

seasonal factors ranged from 98.32 to 101.47.

5.3. Further Results for I*t

With the 5 among the 19 series for which the unconstrained regressor I*t was preferred, its

use always reduced the number of Ljung-Box Qs with p-values less than .05 for the three

series that had such Qs, 22SFI, 31CTI and 36ATI (see Table 3). It also reduced the number

of v.s. spectral peaks at trading day frequencies among the spectra of the three series that

had such peaks, 22SFI, 26SFI and 34KTI, eliminating the only such peak in the case of

26SFI. The largest range of percent adjustment factors 100 exp I*t ~g
� �

; 1 # t # T , from

98.60 to 101.76, occurred for Total Inventories of Automobiles (36ATI), whose seasonal

factors ranged from 90.04 to 106.88. The smallest range, from 99.52 to 100.23, occurred

for Finished Goods Inventories of Plastics and Rubber Products (26SFI), whose seasonal

factors ranged from 97.44 to 102.38.

The fact that the latter series is one of the two series, among these five, for which the LR

test preferredDt over I*t raises the question whether series withDt preferred by the test tend

to have smaller trading day factor ranges than series with I*t preferred. Evidence against

this hypothesis comes from the other series, 22SFI, whose range with I*t , from 99.54 to

100.51, was the second largest among the five series, and whose range with Dt is still

larger, from 99.47 to 100.53. (The seasonal factor range of 26SFI becomes shorter withDt,

from 99.69 to 100.31).

In Table 3, pk is the p-value of the Q statistic at lag k.

6. Additional Regressor Options for Untransformed Series

Although day-of-week effect regressors are the main focus of this article, for completeness

we now mention other stock trading day regressor and constraint options that are

applicable to series that do not require a transformation for RegARIMA modeling. These

options have not been empirically evaluated.

6.1. Regressors Related to Month-Length

In the situation in which Zt is not transformed, (6) suggests that, in addition to the level-

neutral day-of-week effect, the accumulating month-lengths
Pt

j¼1mj, or an appropriate

component thereof, should be considered as an additional stock trading regressor.

Bell (1995) considers decompositions of
Pt

j¼1mj, revising those presented in Bell

(1984). For the seasonal adjustment situation, in which seasonal, trend and level effects

can be identified by the seasonal adjustment decomposition, only the level-neutral
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accumulating-leap-year component of
Pt

j¼1mj, given as the third component of the

decomposition (6) of Bell (1995), is a natural candidate regressor. However, this regressor

is not implemented in X-12-ARIMA or in the forthcoming release of TRAMO-SEATS.

In the case of X-12-ARIMA, the main reasons for its omission are the paucity of series that

are not transformed and the lack of a complementary way of expressing and estimating

leap-year-related effects in the log transformation situation.

6.2. Regressors for General Linear Constraints

We now consider the case in which the linear constraints on b are not contrasts. If the

observed series is end-of-month stocks and if it can be well modeled without

transformation, then the identity
Pt

j¼1

P7
i¼1biXjði Þ ¼

P7
i¼1bi

Pt
j¼1Xjði Þ

n o
reveals that its

trading day effects (6) can be estimated by estimating the flow trading coefficients bi using

as regressors Wtði Þ ¼
Pt

j¼1Xjði Þ; 1 # i # 7, as Cleveland and Grupe (1983) observed

to define their end-of-month stock model. Let the constraints on b ¼ ½b1b2: : :b7�
0 be

Gb ¼ 0, with G of full rank. If G is enlarged by addition of rows to become an invertible

matrix K, then the decompositionWtb ¼ ðWtK
21ÞKb withWt ¼ ½Wtð1Þ: : :Wtð7Þ� can be

used to obtain the constrained regression model by a procedure analogous to that

illustrated for (21) in Section 3.1. But, as we just noted, Bell (1995) identifies components

of (6) which should be included in the trend and seasonal components of the data instead of

in the trading day component if seasonal adjustment is done, and it might not be possible to

extract these unwanted components from WtK
21. This is not a concern if forecasting, not

adjustment, is the goal.

7. Conclusions

We expect the results reported in this article for the inventory series of the U.S. Census

Bureau’s M3 Survey to be broadly typical. For any comparable set of macroeconomic

stock time series, usually a substantial percentage will have statistically significant day-of-

week effects. The use of a one-coefficient regressor like Dt of (25) is likely to significantly

increase the number of series in which such effects are identified by the log likelihood ratio

test of Section 4.2. As we have shown, test decisions made concerning the use of I*t or Dt

can be usefully refined with the aid of goodness-of-fit and spectral diagnostics. Also,

measures of out-of-sample forecast performance of the competing models like (27) and

(28) above (or the more comprehensive graphical diagnostics presented in Sections 3 and 4

of Findley et al. 1998) can provide further refinement and insight.
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