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Models in the Practice of Survey Sampling (Revisited)

Graham Kalton'

Although design-based inference is the standard form of inference with large-scale sample
surveys, in practice some reliance on model-dependent inference is necessary. This article
considers issues of model-assisted inference, the population of inference, conditional infer-
ence, the effect of measurement errors, and analytic uses of survey data, under the design-
based mode of inference. It then discusses the need for model-dependent inference for small
area estimation and for handling missing data (unit nonresponse, item nonresponse, and non-
coverage). The article also discusses the use of models in variance estimation.
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1. Introduction

Since the time of Neyman’s classic paper (Neyman 1934), the standard mode of inference
used by survey practitioners has been design-based inference based on the randomization
induced by the sample design. The essence of this form of inference is the use of survey
weights in producing survey estimates that are unbiased, or more usually approximately
unbiased, and consistent in expectation over the distribution of all possible samples that
could be selected with the given sample design. The variances of these estimates are
also determined in relation to that distribution. This mode of inference does not depend
on statistical models, unlike the situation in other fields of statistics.

The design-based mode of inference has been challenged from time to time. In the
1970’s in particular, there were strong challenges from, for example, Royall (1970),
Royall and Cumberland (1981), and Smith (1976). Hansen, Madow, and Tepping
(1983) provided a major response to these challenges. As a discussant of Smith’s paper,
I responded to his question: ‘“The basic question to ask is why should finite population
inference be different from inferences made in the rest of statistics?’’ (Smith 1976,
p- 193). Subsequently, I expanded on that discussion in a paper entitled ‘‘Models in the
practice of survey sampling’’ (Kalton 1983a). This explains the parenthetical
“‘revisited’’ in the current title.

In the first Morris Hansen lecture, Smith (1994) returned to the subject of inference from
survey samples from a theoretical perspective. In this lecture, I am also revisiting the sub-
ject, but my perspective is that of a practitioner. My experience has mainly been with
large-scale household surveys, and in recent years particularly with U.S. federal govern-
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ment surveys, for which a prime objective is the production of descriptive statistics. In this
context, I find the combination of probability sampling and the design-based mode of
inference generally appropriate, although there are some limitations of the design-based
approach that should be noted (see Section 2)>. The importance of large samples for
both probability sampling and design-based inference should be made clear here. As
Kish (1965, p.29) notes, ‘‘Probability sampling for randomization is not a dogma, but a
strategy, especially for large numbers.”” This statement also applies for design-based infer-
ence, as discussed later.

Most large-scale surveys are characterized by both large numbers of sampled cases and
large numbers of estimates to be produced from the survey data. This latter feature is an
important justification for the use of design-based inference. Survey reports often contain
thousands of estimates. The development of model-dependent methods to produce good
estimates for all of them is not feasible, whereas design-based methods can be applied uni-
versally. However, when there is a key estimate that is of paramount importance, then the
rigorous development and thorough testing of a model-dependent estimator may be justi-
fied by the increased precision that it might have. The general approach of using methods
that have widespread applicability at the cost of some loss of optimal properties for spe-
cific estimates is applied in other areas of survey sampling practice as well. For instance,
the methods of weighting adjustment and imputation for handling missing data are gen-
eral-purpose strategies, that may be suboptimal for a particular analysis (Kalton 1983b,
pp. 17-18).

Although design-based inference may serve well for descriptive statistics from large-
scale surveys, even in this case model-dependent methods are generally needed to some
degree. In fact, many of the developments in survey sampling in the past quarter century
have been concerned with the application of model-dependent methods to address such
problems as missing data and small area estimation. These applications are reviewed in
Section 3. Another area where model-dependent approaches are needed is that of the
““analytic’’ uses of survey data, that is survey analyses that seek to identify and measure
causal mechanisms. Some remarks on this complex subject are given in Section 2.5.

It is axiomatic that all models are false. The attraction of the design-based approach to
survey inference for most descriptive estimation from large-scale surveys is its avoidance
of reliance on models. Nevertheless, as well expressed in the popular quotation from Box
(1979), “*‘All models are wrong, but some are useful.”” Models are indeed useful, and
needed, for some problems in survey analysis. My general approach to the use of
model-dependent methods for descriptive estimation is to treat the model as a crutch, to
be used only to the extent that the survey data cannot fully support the desired estimates.
If the sample is strong enough, and if there is no weakness from missing data, then design-
based inferences alone will serve well. In practice, however, there are virtually always
some missing data, and the sample sizes for subdomains may sometimes be too small

2The situation is somewhat different for establishment surveys because of the highly skewed distributions of
many of the variables of interest, leading to small numbers of establishments dominating the survey estimates.
Furthermore, the sampling frames for establishment surveys often contain auxiliary variables related to the sizes
of the establishments that can play an important role in design and estimation. Although design-based inference is
still the generally preferred mode for establishment surveys, the case for model-dependent methods is stronger in
this area. See, for example, the predictive approach to inference advocated by Valliant, Dorfman, and Royall
(2000).
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to support subdomain estimates of adequate reliability. In consequence, it is necessary to
rely on model-dependent methods to some extent. It should be noted that the reference
here is to ‘‘model-dependent’’ inference, not to ‘‘model-assisted’’ inference. Models
are widely used within the design-based mode of inference, both in sample design and
in estimation, but in a ‘‘model-assisted’’ manner so that the validity of the survey esti-
mates does not depend on the validity of the model assumptions (see Section 2.1).

Most of the issues discussed in this article have a long history and the arguments
advanced by the early researchers still hold. To demonstrate this point, some of the early
references are cited.

2. Issues in Design-Based Inference

Design-based inference (also known as randomization inference) is concerned with infer-
ences about a finite population of size N, with fixed values for element i (¥}, X;, Z;, etc.),
based on data collected from a probability sample. Inferences are made about finite popu-
lation parameters on the basis of the random selection process (e.g., about ¥ = LY,/N or
Cov (X;,Y;) = Z(X; — X)(Y; — Y)/N). This section considers some issues that arise in
applying the design-based paradigm in practice.

2.1. Model-assisted versus model-dependent inference

From the early days, models have been widely used in the design and analysis of survey
samples. Models are used in designing samples in a variety of ways, such as modeling stra-
tum variances in establishment surveys to determine strata sampling fractions, modeling
cluster homogeneity for area samples to determine effective methods of clustering, and
modeling variances for use in determining sample sizes. The suitability of the model cho-
sen affects the efficiency of the sample design and hence the precision of the survey esti-
mates but, when probability sampling is used, the models do not affect the validity of
design-based inferences. The use of models for sample design will not be treated further
here.

In the analysis of survey data either model-assisted or model-dependent methods may
be used, using the terminology of Sédrndal, Swensson, and Wretman (1992). To illustrate
the difference, consider the estimation of a population total Y based on a probability sam-
ple of size n in which element i is selected with probability ;. The Horvitz-Thompson
estimator ¥ = L y,/; is a consistent design-unbiased estimate of ¥ that makes no use
of a model. Suppose now that a vector of auxiliary variables X; = (Xy;, Xp;, ..., Xp;) 18
known for all population elements (i = 1,2,...,N), and that the relationship between Y;
and X, can be modeled by Y; = f(X,) + ¢;, with ¥ = ZV f(X;) + E" ¢;. For simplicity
we assume that f(X;) does not include unknown parameters that need to be estimated
from the sample. Then, without any modeling assumptions, Y may be estimated by
Ve =ZVf(X,) + L"/m;. Like ¥, ¥x is a consistent design-unbiased estimator of Y.
Whether the model-assisted estimator ¥ has a lower variance than ¥ depends on the suit-
ability of the model.

The difference estimator is a simple example of the above model-assisted estimator.
Here f(X;) = kX;, with k a predetermined constant, often set at 1. Then ¥ =
kX + Xe,/m;, where e; = y; — kx;, which may alternatively be expressed in the more usual
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form as ¥ = ¥ 4 k(X — X). The optimum value for k that minimizes V(¥), the variance
of Yg,is B = ZV(Y; — V)(X; — X)/ZV(X; — X)>. When k is estimated from the sample by b,
the estimator of B, then ¥ becomes the regression estimator. Model-assisted estimators of
this type have a long history. See, for example, Hansen, Hurwitz, and Madow (1953,
Vol. 1, p. 457). For recent developments, see Sdrndal, Swensson, and Wretman (1992,
Chapter 6).

The difference estimator and the other estimators of this type are model-assisted but not
model-dependent because their design unbiasedness does not depend on any model
assumptions. However, if assumptions are made about the ¢;, then an alternative estimator
may be used. For example, if the ¢; are assumed to be iid variables with a mean of zero,
then the model-dependent estimator ¥,, = X"y, + Z" " f(X,) may be used to estimate Y.
In the case of the model corresponding to the difference estimator, ¥,, reduces to
I"y; + LV 7"kX;. These estimators are design unbiased if £V ¢; = 0, and model-design
unbiased if E;E,(e;) = 0, where E; and E,, denote expectation with respect to the model
and the sample design, respectively.

2.2.  Population of inference

Design-based inference is concerned with inferences about parameters of the finite popu-
lation from which the sample was drawn. The restrictive nature of this inference needs to
be acknowledged. One important area of concern relates to the analysis of survey data to
measure causal influences, often called the ‘‘analytic uses’’ of survey data. That area is
treated subsequently. For the present, the discussion is confined to the descriptive uses
of survey data that simply aim to measure characteristics of the population, such as the
proportion of children in poverty, the number of public schools with Internet access,
and the national crop acreage for cotton. Even here the design-based mode of inference
may be restrictive because of its failure to account for the dynamic nature of populations
over time.

Most surveys are cross-sectional and relate, in principle at least, to a specific point in
time (although in practice data collection may be spread over several months). After
data collection, the production of survey estimates may take a year or more, by which
time the composition and characteristics of the population will have changed to some
degree. Although there are cases where the specific population at the time of data collec-
tion is of direct analytic interest (for example, a survey of a store’s inventory as of
December 30, 2001 may be of accounting interest), analysts generally use the survey
data to infer the characteristics of the current population. To make estimates for the current
population, they often make the assumption that negligible change has occurred since the
data collection. Thus they employ an implicit model for change over time. For many popu-
lations and survey subjects, this model may be a reasonable one, but not necessarily for all.
Some examples of the complications caused by the time dimension are given below.

First, consider inferences from educational assessment surveys, such as the U.S.
National Assessment of Educational Progress (NAEP) or the Third International Mathe-
matics and Science Study (TIMSS), for, say, mathematics proficiency at 8th grade. Sup-
pose that the survey was conducted in 2001, and that the results are published in
2002. Consider a small state in which most schools and 8th graders are sampled. For
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design-based inferences about the achievement levels of the population of 8th graders in
2001, the standard errors incorporate finite population corrections (fpc’s). Ignoring
measurement errors (see below), if all students were surveyed in the state, the standard
errors would in fact be zero. When this standard approach to variance estimation is
adopted, analysts are left to attach their own subjective degrees of uncertainty to the
2001 estimates when using these estimates to describe achievement levels in 2002.

Note that the population of 8th graders in 2002 has changed almost completely from that
in 2001. For inferences about the 2002 population, a model is therefore needed. One way
to construct this model is to assume a superpopulation model, from which the 2001 and
2002 student populations are drawn as random realizations. The schools and environments
may be modeled as fixed, as constant features of the superpopulation. This form of model
results in fpcterms being used for the sampling of schools but not being used for the
students within schools. Chromy (1998) presents a motivation that supports this practice.

A special feature of the above example is that the composition of the population changes
almost completely between the date of the survey and the date for inference. In most cases,
this feature does not hold: there is, for example, a substantial overlap in the memberships
of the adult populations of last year and of this year. It is mainly the characteristics of the
population members that may change between the years. As a result, the procedure out-
lined above is not generally applicable.

As a second example, consider continuing surveys, such as the U.S. National Health
Interview Survey (NHIS) that has been collecting data from nationally representative sam-
ples of individuals each week for many years, the proposed U.S. American Community
Survey (ACS) that will collect data from national representative samples of households
each month starting in 2003, and the U.S. Continuing Survey of Food Intakes by Indivi-
duals (CSFII) that collected data from nationally representative samples of individuals for
each quarter in the three-year period 1994-96. These surveys are designed so that their data
can be aggregated over time to provide larger sample sizes and, in the case of NHIS and
CSHFII, to provide annual estimates that average over seasonal variations. When data are
aggregated in this way, what is the relevant population of inference? One approach is
to incorporate the time dimension into the population definition, so that, for example,
mean food intakes from three years of the CSFII refer to averages over individuals and
over the three years. In this case, the survey weights are determined to produce represen-
tations of the population X time matrix. Hence, if the CSFII third year sample had been
much larger than the samples for the first and second years (as had been contemplated
but was not implemented), its sampled individuals would have been assigned lower
weights in the analysis in order to produce the right annual balance of roughly one-third
weight to each year. An alternative approach would be to employ a modeling assumption
that food intakes do not vary across the time period for the survey. In this case the data can
be pooled without the need for rebalancing to give roughly equal annual representation.
From the perspective of using the survey data to estimate current food intakes, the latter
approach has the attraction in this particular case of placing larger weight on the third,
most recent, year, as well as producing estimates with lower sampling errors. Indeed,
from this perspective, it might anyway be desirable to place larger weight on the most
recent data (see also Kish 1999).

As a third example, consider the U.S. Current Population Survey (CPS) that collects
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labor force data each month, primarily to produce monthly estimates. The data collected
relate to a specific reference week in each month (the 7-day period including the 12th of
the month). A problem with this procedure is that there are a fair number of occasions
when the reference week is unusual because of the weather, holidays, etc., so that the sur-
vey estimates do not accurately reflect the population of interest to analysts.

Another feature of the CPS is that it is a repeated survey with a long time series of esti-
mates available. Time series methods may be used with repeated surveys of this type to
identify trends and seasonal components, to improve the precision of current estimates,
and to seasonally adjust those current estimates (see, for example, Bell and Hillmer
1990; Scott, Smith, and Jones 1977). The use of time series models provides a means
of forecasting current (and future) parameters, without making the assumption of no
change across short time periods.

Finally, consider panel surveys such as the U.S. Survey of Income and Program Parti-
cipation (SIPP) and the U.S. National Education Longitudinal Study of 1988 (NELS: 88).
The unique value of panel surveys is that they provide measures of gross change, that is,
change — or lack of change — at the individual level. Thus, for example, the 1996 SIPP
panel can produce an estimate of the proportion of individuals who were continuously in
poverty between 1996 and 1999. Such estimates have important policy implications, yet
they are historical data by the time they are available, when generally the measure of
main interest is the proportion of individuals in poverty in 2001 who will still be in poverty
in 2004. The model assumption of no change in this proportion between the 1996-99 and
2001-04 periods is a tenuous one given the length of time in between, and particularly so if
economic conditions are changing. As a check on the constancy of the proportion remain-
ing in poverty over any 3-year period over time, a rotating panel design could usefully be
employed, say starting a new panel every year. A finding that the estimates for different 3-
year periods produced from the different panels are similar supports the ‘‘no change’’
assumption. A finding that the estimates for different periods differ markedly highlights
the difficulty in forecasting the future. Even when the estimates for different time periods
are very different, any understanding that can be obtained of the reasons for the differences
may be useful in making predictions for a later period.

2.3. Conditional inference

In applying the design-based approach in analyzing survey data, an issue that arises in a
number of different contexts is whether inferences should be made conditional on some
aspects of the realized sample or whether the inferences should be unconditional, that is
based on the full set of possible samples that the sample design could have generated.
For example, for a sample design in which the sample size is a random variable, should
the variances of the survey estimates be computed conditional on the realized sample
size or should they be computed unconditionally over the distribution of all possible sam-
ple sizes?

To examine this issue from a design-based perspective, consider an estimator z for a
population parameter Z. The design-based approach seeks estimators that are design
unbiased, or more commonly approximately so, for the finite population parameter given
the sample design employed. Let z be unbiased for Z, denoted by E(z) = Z, where the
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expectation is over all possible samples. Let the variance of z be V(z) = E(z — Z)*. Now
consider a feature of the realized sample, a condition C, that has the property that
E(z|C) =Z, i.e., z is conditionally unbiased for Z, and let V(z|C) = E(z — Z | C)%. The
issue is whether the precision of z should be measured by the unconditional variance
V(z) or by the conditional variance V(z| C). (In passing, it is interesting to note that if
V(z) is an unbiased estimate of V(z| C) from the realized sample, v(z) is also unbiased
for V(z). This result holds because V(z) = E.V(z| C) + V.E(z|C) and V.E(z|C) =0,
where E, and V, denote expectation and variance over the possible outcomes of the
condition.)

In my view, if a subset of the sampling distribution in which z is conditionally approxi-
mately unbiased for Z can be identified, then a conditional analysis should be employed in
analyzing an actual sample. Under some outcomes of the condition, the conditional
approach will yield smaller variance estimates than the unconditional approach, whereas
under other outcomes the reverse will hold. Using the conditional approach, the analyst
should employ the conditional variance in either case. It is invalid to use the smaller of
the conditional and unconditional variances as has sometimes seemed to be suggested.
A number of survey statisticians support the conditional approach. However, Smith
(1994, p.18) argues for the unconditional approach on the grounds that: ‘‘Once one level
of conditioning has been accepted, it opens the Pandora’s box of all other possible condi-
tions.”” In his discussion of Smith’s paper, Royall (1994) presents a counter-argument (see
also Valliant, Dorfman, and Royall 2000).

Often the condition that is considered is the set of achieved sample sizes in various sub-
classes. In this case, the issue is whether the precision of the survey estimates should be
assessed conditional on the realized subclass sample sizes (see Rao 1985). Two common
examples are the estimation of a subclass mean, when the subclass sample size is a random
variable, and the application of poststratification, when the sample sizes in the poststrata
are random variables. Consider first the case of estimating a subclass mean or a post-
stratified mean from a simple random sample. In both these cases, the sample mean is
unbiased for the population mean conditional on the realized subclass sample sizes
(assuming that there is at least one sampled element in each poststratum).

In the case of the subclass mean, at the design stage the subclass sample size that will be
realized is not known. Hence, for design purposes the unconditional variance may be used
for determining the overall sample size (however, see below). When the sample has been
selected, should the inference be based on the realized sample size or not? Suppose that a
sample of 1,000 persons is selected, and that the subclass represents ten percent of the
population. The expected subclass sample size is thus 100, but the realized sample size
may be smaller or larger than that. If the realized sample size is 85, then the estimate
of the subclass mean is clearly less precise than if the sample size were 115. Thus, I believe
that correct inference about the subclass population mean should be based on the achieved
sample size.

As noted above, at the design stage the realized subclass sample size will not be known.
Thus, it is natural to consider the use of the unconditional variance in planning the overall
sample size to yield a subclass mean of desired precision. However, if this is done, the
realized precision will fall short of the level desired almost half the time (and will other-
wise generally exceed it). To guard against this outcome, it may be appropriate to increase
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the overall sample size, with the increase being based on the distribution of the conditional
variances (a procedure adopted in the CSFII for producing estimates for subclasses defined
in terms of age, sex, and poverty status).

The case for the use of conditional inference for the analysis of poststratified simple
random samples (conditioning on the realized samples in the poststrata) has been well
made by Holt and Smith (1979). They also provide references to indicate that many other
statisticians also support this position. One early statement is that by Williams (1964,
p- 1060): “‘After the sample has been selected, the conditional estimator, given the realized
distribution of the sample, is frequently the most relevant.”’

The discussion above applies only for simple random sampling. The situation is differ-
ent for complex sample designs (Rao 1985). Consider, for example, a two-stage sample in
which the PSUs are selected with probabilities proportional to estimated sizes, and the
sample sizes in the PSUs are allowed to vary in order to produce an overall equal prob-
ability sample of elements. The sample mean for the total sample or for a subclass is esti-
mated by r = Xy,/Xx,, where y, is the total of the y-values and x, is the sample size in
sampled PSU «. Standard practice treats r as a ratio mean, with a random sample size (see,
for example, Kish 1965) and the variance of r is computed unconditionally. The uncondi-
tional approach is applied in this case because in general, when conditioning on the sample
size x, E(r | x) # Y, thus not satisfying the conditional unbiasedness requirement of the
conditional approach.

Failure to satisfy the requirement of conditional unbiasedness (or rather conditional
approximate unbiasedness) also applies to poststratified estimates from complex designs,
when conditioned on realized sample sizes (Rao 1985; Zhang 2000). For this reason,
variance estimates of poststratified estimates from complex designs should be computed
unconditionally. The required variance estimates can be produced by recomputing the
poststratified weights for each replicate with replication methods of variance estimation
or by the use of an appropriate procedure with the Taylor Series linearization approach.

Another issue arises with poststratification. With the design-based approach the sam-
pling distribution of a survey estimator is generally established under a design and estima-
tion scheme that is prespecified. Thus, the theory treats the poststrata as predetermined;
they are not affected by the realized sample. However, as Alexander (1994) notes, in prac-
tice the choice of poststrata is sometimes affected by the sample outcome. There are dan-
gers here since the sampling distribution is altered in ways that can be determined only by
considering the poststratification adjustments that would be chosen for each possible sam-
ple outcome, and this is impossible. Determining poststrata based on sample outcomes can
lead to biased estimates with variances that differ from the textbook formulae.

2.4. Measurement errors

Standard design-based theory, like most statistical theory, ignores the problem of measure-
ment error. Thus, there is a true value for each element in the population and that is the
value reported if that element is sampled. In practice, there are of course measurement
errors that could arise, for instance, because the respondent provides an inaccurate answer,
the interviewer records the answer incorrectly, the answer is coded incorrectly, or another
type of processing error occurs.
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A seminal paper on measurement errors in surveys is that of Hansen, Hurwitz, and
Bershad (1961). Their model separates the measurement error for each individual into
bias and variable error components. Variable errors occur when the individual gives dif-
ferent responses to a survey question over conceptually repeated trials of the survey under
the same essential survey conditions. Let y;, be the response of an individual on trial #, and
yi = i + d;; where E,(d;,) = 0, with the expectation being taken over trials. The indivi-
dual response bias is then 8; = u; — p;, where y; is that individual’s true value. The indi-
vidual response variance is oiz = Et(dizt .

Under this model, the sample mean for a particular trial from an equal probability sam-
pleisy, = n'Ty, =i +d, =p+B+d, where the averages are for the n elements in
the sample. The overall expectation of y, is taken over both samples (s) and trials (). Thus
E(3,) = E,E(y,|s) = p+ B, where p is the true population mean and 3 is the population
average of the individual response biases. The standard computations of the accuracy of
survey estimates make no allowance for bias.

The variance of y, is similarly given by V.E,(¥;|s) + E,V,(J, | s). The first term here is
V() that conforms to standard design-based theory for the sample design employed, but
that relates to the y; rather than the true p;. The second term reflects the individual
response variances and possibly covariances. Assuming that d;, and dj, are uncorrelated,
this second term reduces to n~ '3 where 3° = NflEo,-z.

Measurement error variance is sometimes reflected in standard variance estimates, but
this is not always so. If measurement errors are uncorrelated and the finite population cor-
rection (fpc) is negligible, then measurement error variance is automatically included.
However, if the fpc is non-negligible, measurement error variance is not fully covered.
In the limit, with a complete census with n = N, the standard variance estimate for a sample
mean is zero, whereas the response error gives a variance of N ~152.

In practice, measurement errors are often correlated for sets of sampled elements as, for
instance, when they occur from interviewer effects leading to interviewer variance. In this
case, correlated measurement variance is generally not covered by standard variance esti-
mates. However, even here there are exceptions. For instance, interviewer variance is cov-
ered in a multistage design with a negligible fpc at the first stage if each interviewer
collects data in only one PSU.

In summary, standard design-based theory does not adequately address measurement
errors. It does not deal with the effect of measurement bias on survey estimates or their
measures of accuracy and it often does not properly reflect measurement variance in asses-
sing the precision of survey estimates.

2.5. Analytic uses of survey data

Much of the literature on design-based inference relates to the estimation of descriptive
measures for the finite population. However, survey data are also widely used for analytic
purposes. Deming (1950, 1953) identified the importance of the distinction between ‘enu-
merative’’ and ‘‘analytic’’ studies both for design and analysis, where enumerative studies
— here termed descriptive studies — deal with questions of ‘“‘How many?’’ and analytic
studies deal with questions of ‘“Why?”’

As a simple example of an analytic inference, consider a test of significance of the
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difference between the means of two subgroups. The null hypothesis for such a test is that
the population subgroup means are equal, but that hypothesis is clearly always false for the
finite subgroup populations sampled; if a complete census were taken, the two subgroup
means would not be identical (except in exceptional cases). In general, such a test is mean-
ingless for the finite population. A solution to this problem is to view the finite population
as a random realization of a process that generates the population, or as a random sample
from a superpopulation (Deming and Stephan 1941). The inference then is made to the
superpopulation.

With the superpopulation approach, the sample can be viewed as a two-phase sample, a
first-phase sample that produces the finite population and a second-phase sample that pro-
duces the survey sample. If the survey produces an estimate of the difference in sample
means of d that is unbiased for the finite population difference D, it follows that d is
also unbiased for 6, the difference in the means in the superpopulation since
E(d) = E\E,(d) = E|(D) = 6. The variance of d is:

V(d) = E;|Vy(d) + V Ex(d) = E| Vo (d) + V(D)

As discussed above, if v(d) is an unbiased estimator of V,(d), the variance of d in the
finite population, it is also unbiased for E;V,(d). Under the superpopulation model,
V,(D) may be estimated by v,(d) = Ny ls% + Ny ls%, where N, and N, are the estimated
finite population subgroup population sizes and s7 and s3 are the estimated element
variances in these two subgroups.

As a simple case, consider the estimate y of the superpopulation mean u from a simple
random sample of size n. From above, its variance is:

Ve =Eln' =N DS 1+ N0

where S* and o are the element variances in the finite population and the superpopulation,
respectively. Since E; (8%) = 0%, V() reduces to n~' ¢, without the finite population cor-
rection. See Korn and Graubard (1994) for superpopulation inference with complex
designs.

A further extension of the above line of reasoning occurs when survey data are used to
try to identify causal mechanisms and the magnitude of causal effects. The inferential
issues can be demonstrated by considering multiple regression models, models that are
widely used for this purpose. Since the extensive literature on this topic is too complex
to be thoroughly reviewed, only a few general observations will be made. See Pfeffermann
(1996) for a more detailed treatment.

Consider a multiple regression equation developed to assess the effect of x; on y after
controlling for a set of confounding variables (x,, ..., x,). The superpopulation regression
coefficient §; measures this effect under the assumption that all the relevant confounding
variables are incorporated in the model. Many, probably most, social scientists carry out
regression analyses of this type with survey data without regard to the survey weights or
the complex sample design. They rely on the model assumptions for their analyses, includ-
ing the assumption that any differences in selection probabilities and response propensities
do not give rise to selection bias. Assuming homoskedasticity, the regression analysis is
performed unweighted to yield estimates of the regression coefficients (B), and the
variance of @ is computed using standard least squares theory.
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In contrast, under the design-based approach the regression coefficients are estimated
using survey weights and the complex sample design is taken into account in estimating
the variances of these estimates. With this approach, the sample regression coefficients (b)
estimate the finite population parameters (B) that would be obtained had a complete cen-
sus been taken. Given the chosen form of the regression equation (that is, given the chosen
set of predictors), the finite population parameters B are defined as the quantities that mini-
mize the average squared residuals for that specific finite population (see, for example,
Kish and Frankel 1974). As DuMouchel and Duncan (1983) note, this representation
involves no model assumptions. It is simply a definition of the descriptive finite population
parameters B given the chosen form of equation. Whether B is of interest, of course,
depends on a sensible choice of predictors for the regression equation.

If the standard regression modeling assumptions are valid, then the census value B esti-
mates (31, the causal influence of x; in the superpopulation. Thus b, is a consistent estimate
of 3,. This raises the issue of whether 31 or b, should be used to estimate (3;. If the model
assumptions hold, b; will be less precise than 31, and hence 31 is preferred. However, b;
provides some protection against a misspecified model in a particular sense. As noted
above, the regression equation estimated with regression coefficients b provides the best
predictive equation of the specific form for the given finite population. Note, however,
that this protection does not hold if the regression equation is to be applied to a different
population (for example, the protection does not hold if the survey is conducted in Mary-
land and generalization to the U.S. is sought). No matter whether b or B is used to estimate
B, the regression model needs to be carefully developed and evaluated if the focus of the
analysis is on the interpretation of the regression coefficients (this is somewhat less crucial
if the regression is to be used only for predictions).

The protection afforded by the design-based approach to regression analysis seems to be
valuable in many cases. However, if it leads to estimated regression coefficients of inade-
quate precision, it may be necessary to rely fully on the model and its assumptions and use
the estimates 3 (see Korn and Graubard 1999 for further discussion). An alternative
strategy, in line with the reasoning for small area estimates, would be to use a composite
estimate that is a weighted combination of b and 3 Note, however, that any sizeable dif-
ference between b and @ is problematic since it suggests model misspecification (see the
example in DuMouchel and Duncan 1983).

A final comment in this section concerns the use of surveys for the evaluation of an
intervention. For example, health care interventions may be introduced in several pur-
posively chosen underserved areas with the aim of improving the health status of the popu-
lations of those areas. Evaluation of the interventions may be conducted by means of a
before-after design in which the health statuses of the populations are established by sur-
veys conducted in each area before and after the interventions. The change in health status
of an area’s population is then used to measure the effect of the intervention, usually after
taking into account the corresponding change in a control population. Frequently the same
sample size is used in all areas, irrespective of their population sizes, so that the effect can
be ascertained with the same level of precision in each area. However, analysts often also
want to combine the results obtained in different areas to increase the power of the
analyses. One approach that is sometimes suggested is to pool the survey data for the dif-
ferent areas, using the survey weights in the combined analysis. This approach produces
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valid results for the population that consists of the union of the area populations. However,
that population is seldom of interest. Instead, a meta-analytic approach that analyses the
individual surveys separately and then combines the results appears preferable for the
intended inference to all such areas.

3. Model-Dependent Methods

Even though the design-based approach is generally applied for descriptive analyses of
large-scale surveys, it cannot fully address all problems of making inferences from survey
samples. This section considers the need for model-dependent methods in the areas of
small area estimation, missing data, and variance estimation.

3.1. Small area estimation

As stated above, design-based inference is applicable for large-scale surveys with esti-
mates based on large samples. However, even with large-scale surveys, the sample sizes
for small domains may be too small to support design-based estimates of adequate preci-
sion. The increasing demand for estimates for small domains in recent years, particularly
for small geographical domains, has led to substantial research on methods to produce
model-dependent methods to satisfy that demand (see, for example, Ghosh and Rao
1994; Rao 1999, 2000, 2002). A common terminology is to describe model-dependent
estimators as indirect estimators, in contrast to design-based direct estimators (Schaible
1996).

What is interpreted as a ‘‘small area’ depends on sample size. Estimates are often
wanted for states in the U.S., yet sample sizes are generally too small to produce direct
estimates of adequate precision for most, if not all, states. Thus, states are often treated
as small areas for which indirect estimates are produced. When county estimates are
required from national surveys, they are almost always produced by indirect small area
estimation methods. Indirect estimates are, in fact, produced for states and/or counties
by a number of U.S. federal statistical agencies. See Schaible (1996) for an excellent
description of the estimates at the time that report was written, the U.S. Census Bureau’s
web site http://www.census.gov/hhes/www/saipe/overview/html for a description of the
Bureau’s Small Area Income and Poverty Estimates (SAIPE) program, and Folsom and
Judkins (1997) for a description of the methods used to make small area estimates of sub-
stance abuse. Hansen, Hurwitz, and Madow (1953, Vol. 1, pp. 483-486) describe an early
application of model-dependent small area estimation methods to produce estimates of
radio listening in more than 500 county areas from an interview survey conducted in 85
areas.

The distinction that is widely made to distinguish between direct and indirect estimators
is that the former rely on sample data only for the small area and the time period in ques-
tion whereas the latter ‘‘borrow strength’’ from data for other areas and/or time periods.
Although this phraseology is appealing, I think that it fails to fully capture the essence of
the distinction. Indirect estimators borrow strength through statistical models that make
use of predictive auxiliary data at the small area level. The key to the ability to produce
good indirect estimators is the availability of such auxiliary data, and this point needs
to be emphasized. Another concern that I have with the above distinction is that it is

3
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closely related to, but not identical to, the distinction between design-based and model-
dependent estimators. For example, along the lines of the discussion in Section 2.1, the
model-assisted design consistent regression estimator for a small area Yy, =
EN”ijji + L™e;/m; is classified as an indirect estimator if the regression coefficients b;
are estimated using some sample data that come from outside the area. Singh, Gambino,
and Mantel (1994) term this type of estimator a modified indirect estimator. My preference
is to equate direct estimators with design-based estimators and indirect estimators with
model-dependent estimators, and these terms are so used in what follows.

From the design-based perspective, the approach to estimation for small areas is first to
seek direct estimators of adequate precision, making full use of auxiliary information in a
model-assisted way. When that approach fails, it becomes necessary to resort to indirect
estimators that depend on statistical models. No attempt is made here to review the exten-
sive literature on models for indirect estimation. Instead, this discussion is confined to
some general observations about the subject, using the U.S. Census Bureau’s SAIPE pro-
gram for illustrative purposes.

The SAIPE program was introduced in the early 1990s to produce updated estimates of
median household income and numbers of poor people in various age ranges for U.S.
states (annually) and for counties (biennially). The focus here is on the estimates of the
numbers of poor related children aged 5—17, which are needed for the distribution of about
7 billion USD each year for programs for educationally disadvantaged children under Title
I of the Elementary and Secondary Education Act. Reauthorization of that act in 1994 also
required the U.S. Census Bureau to produce these estimates for school districts. Given the
importance of the county and school district estimates of poor school-age children, the
1994 act authorized a National Research Council panel to review the estimates to assess
their suitability as the basis for the Title I allocations. The U.S. Census Bureau and that
panel have conducted extensive evaluations of the SAIPE program’s estimates of poor
school-age children (see, for example, National Research Council 2000a,b). These evalua-
tions bring out some of the requirements for producing good small area estimates, as dis-
cussed below.

The procedures used to produce the SAIPE state, county, and school district estimates
are highly complex, but for present purposes a simplified account that ignores many of the
complexities will suffice. In essence, the SAIPE state and county estimates are based on
regression models in which the dependent variable is a direct estimate from the Current
Population Survey (available for all states, but only for counties that have some CPS
sampled households) and in which the independent variables are obtained from 1990 Cen-
sus data, tax data, and food stamp data. The regression models have two error components:
a model error that would occur had the model been fitted with the population value rather
than the direct estimate as the dependent variable, and the sampling error in the direct esti-
mate. The estimate for a given state from the regression model is then combined with the
direct estimate for that state as a weighted average, with weights that are inversely propor-
tional to estimates of model error and sampling error, respectively. The same procedure is
applied to produce the county estimates from the county regression model and, where
available, the county direct estimates. These composite estimates are the empirical best
linear unbiased prediction (EBLUP) estimates. The school district estimates are obtained
by a ‘‘shares approach’’ that partitions the county estimates of numbers of poor school-age
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children between the school districts in proportion to the numbers of poor school-age
children that the districts had in the 1990 Census.

The SAIPE estimates of poor school-age children illustrate well the importance of aux-
iliary data. The state and county models make use of Internal Revenue Service tax return
data on child exemptions reported by families in poverty and on people receiving food
stamps, both of which are available at state and county levels and are predictive of the
dependent variables in the regressions. However, these variables cannot be used in a model
for school districts because they cannot currently be geocoded sufficiently well at that
level. The simplistic shares model for school districts is in fact used because of the lack
of suitable auxiliary variables at the school district level. Data on free and reduced-price
lunches under the National School Lunch Program are compiled at the school and school
district levels, but they are not currently nationally available and there are concerns about
the comparability of the data across the country.

In considering potential predictor variables for the regression models, comparability
across areas is an important concern that needs careful examination. For example, the
income and allowable deductions for food stamp eligibility are higher in Alaska and
Hawaii, thus affecting comparability. In the more recent estimates, the U.S. Census
Bureau has made adjustments to compensate for this fact.

In general, the literature on small area estimation methodology pays too little attention
to the development of appropriate predictor variables from the available data sources.
Careful construction of predictor variables can improve the effectiveness of small area
models and avoid the distortion of the estimates for some areas. Thus, for example, the
U.S. Census Bureau conducted research on how best to use the food stamp data in the state
poverty models, and as a result modified the predictor variable to be a monthly average
over a 12-month period centered on January 1 of the following year, to subtract those
who received food stamps due to specific natural disasters, and to smooth outliers from
a time-series analysis, in addition to the adjustments in Alaska and Hawaii noted above.
As another example, the predictor variable ‘‘Estimated population under age 21’ that
was used in the county model for the first round of estimates was changed to the ‘‘Esti-
mated population under age 18’ in subsequent rounds as a result of evaluations conducted
on the first round model. Efforts to develop and refine predictor variables should be an
important component of any small area estimation program.

When small area estimates are to be used for such consequential purposes as fund allo-
cation, the importance of thorough evaluation cannot be overstressed. These evaluations
should include internal evaluations using a range of regression diagnostics at each round
of production of estimates and, to the extent possible, external evaluations that compare
the estimates with estimates or values obtained from other sources and likely from other
time periods. See National Research Council (2000b) for a description of the extensive
evaluations of the SAIPE estimates of poor school-age children that the U.S. Census
Bureau and the panel conducted. Such evaluations need to be repeated at each round of
production to check that the predictor variables still operate as they have in the past
and that the regression model still works well. (There is, for example, the possibility
that, as a result of welfare reform, food stamp data may operate differently in the future.)

It should be noted that small area estimation methods are not a panacea. Even after care-
ful modeling efforts, the resulting estimates are often still likely to be subject to substantial
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levels of error. This is, for example, the case with the county estimates of poor school-age
children, even with the use of predictor variables that appear better than those available in
some other applications of small area estimation methods. Also, in common with direct
survey estimates, small area estimates are out-of-date to some degree. Indeed, they will
be less timely than direct estimates if the auxiliary data take a long time to compile,
and time also has to be allowed for the small area modeling and evaluation work.
Finally, I note an issue about the composite estimator that is used to combine the model
estimate and the direct estimate. As noted above, in the SAIPE program, as in most small
area applications, the weights assigned to the two estimates are chosen to maximize the
precision of the composite estimator under the assumption that the model holds. The
weights are based on estimates of sampling error variance and model error variance,
and the serious difficulties in estimating these variances can lead to problems. In the
SAIPE state model for poor school-age children, for example, the model error was esti-
mated as zero for six of the first seven years for which the model was estimated. As a
result, in these years the composite estimate reduces to total reliance on the model estimate
for all states, even though many states have direct estimates of reasonable precision (see
Bell 1999 for some ways that this problem may be addressed). As a more general issue, the
use of the EBLUP estimates appears to be logically inconsistent with the design-based per-
spective on the use of models that I proposed earlier. From that perspective, models are
used only to the extent necessary. If this perspective were applied rigorously, the model
estimates would be assigned the minimum weights needed to produce the required levels
of precision for the composite estimates. Even if this perspective is not fully applied, in
view of the uncertainty about the model errors, it may still be appropriate to reduce the
weights assigned to the model estimates below those employed in the EBLUP estimates.

3.2. Missing data

Missing data present an increasingly serious problem in survey research. Missing data may
be usefully divided into four main categories: noncoverage, which occurs when elements
in the target population are not included on the sampling frame and hence have no chance
of selection for the sample; total, or unit nonresponse, when sampled elements fail to pro-
vide any survey responses; partial nonresponse, when sampled elements respond to an
appreciable number of items but also fail to respond to many others (as occurs in panel
and multi-phase surveys when sample elements respond at early waves, but not at later
waves, of data collection); and item nonresponse, when respondents fail to provide accep-
table answers for some items.

Whenever there are missing data, models are needed in the survey analysis. Even when
the missing data are ignored and the analysis is simply applied to the respondents, there is
an implicit model involved. That model employs a missing completely at random (MCAR)
assumption that is generally untenable. The adjustment procedures that are widely used in
an attempt to compensate for the various forms of missing data listed above employ alter-
native, hopefully more plausible, assumptions. Compensation for noncoverage is made by
weighting adjustments to make weighted sample totals conform to population control
totals. Compensation for total nonresponse and often for partial nonresponse is made by
nonresponse weighting adjustments that make weighted respondent sample totals conform



144 Journal of Official Statistics

to full sample totals. Compensation for item nonresponse, and sometimes partial nonre-
sponse, is made by imputation, that is, by assigning values for the missing responses
(see, for example, Brick and Kalton 1996). An important feature to note about all these
compensation procedures is that they are general-purpose strategies, intended to enable
analysts to perform any form of analysis. The models underlying these compensation pro-
cedures are developed to this end; a different model for missing data may be more suitable
for a specific analysis. The following subsections briefly review the models used for non-
coverage adjustments, nonresponse adjustments, and imputation.

3.2.1. Noncoverage adjustments

In its basic form, a noncoverage adjustment is a population weighting adjustment that uses
the same procedures as poststratification. An external source is used to produce a cross-
classified table of a set of auxiliary variables with population totals in the cells. Sample
estimates of these totals — incorporating weights for unequal selection probabilities
and adjustments to those weights for total nonresponse — are generated, and the weights
of respondents within each cell are then inflated or deflated to make the resultant sample
totals conform to the external control totals. Although discussed here primarily as a non-
coverage adjustment, this form of adjustment can also compensate for total nonresponse
by taking account of auxiliary variables not already covered by the nonresponse adjust-
ments, and can serve to improve the precision of survey estimates associated with the
auxiliary variables.

Absent problems of missing data, poststratification is used to improve the precision of the
survey estimates. No modeling assumptions are needed. With noncoverage, this form of
adjustment invokes the assumption that those noncovered are missing at random (MAR)
within the cells. Thus, for example, in the U.S. Current Population Survey, weighted sample
totals by age, race, and sex are made to conform to current population estimates. The most
substantial adjustment required is for young black males: for instance, the coverage ratio —
the inverse of the weighting adjustment — for the cell of black males aged 20—29 was 0.66
in early 1996 (U.S. Bureau of Labor Statistics and U.S. Census Bureau 2000). The adjust-
ment makes the assumption that the sample in this cell can represent those missed. This
assumption is clearly a dubious one, but it is probably preferable to the alternative assump-
tion that those missed are represented by the total population (as is implied by not making
the adjustment). An obvious course of action to produce a more realistic assumption is to
seek to control for more auxiliary variables. However, the opportunities are generally
severely limited by the shortage of matching control totals from auxiliary data. Also sample
sizes in cells can become too small to produce sufficiently stable adjustments.

A variety of alternative calibration methods have been developed to address the small
cell sample size problem and also the problem that sometimes the full population joint dis-
tribution of the auxiliary variables is not known (see, for example, Deville and Sdrndal
1992; Deville, Siarndal, and Sautory 1993). These methods provide a means to control
for more auxiliary variables, but in doing so employ additional assumptions. Thus, for
example, a two-way raking of sample marginal totals to population marginal totals
assumes that the missing data rate in a cell of the two-way table is the product of a row
and column effect (Kalton and Maligalig 1991). This assumption is untestable without
knowledge of the population joint distribution.
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A general concern in making weighting adjustments for missing data is that the resultant
weights may become highly variable, thus potentially reducing bias in some estimates at a
cost of a large increase in variance. With the cell-by-cell reweighting approach, this pro-
blem is often handled by collapsing cells and/or trimming weights. When cell collapsing is
used, the operation is usually done by a visual inspection to determine which cells should
be combined based on their likely similarity in terms of the survey variables. With some
calibration methods, restrictions can be placed on the upper and lower limits of the
weights, thus automatically avoiding this problem. However, this automatic solution
also involves a redistribution of the weighting adjustments that deserves examination to
assess how well it works for the particular survey (Kalton and Flores-Cervantes 1998).

Calibration methods and automatically constrained weights are important developments
that extend the possibilities for compensating for missing data and facilitate the applica-
tion of such adjustments. However, they do involve modeling assumptions that, where
possible, should be examined.

3.2.2. Nonresponse adjustments

Two different modeling approaches are used for total nonresponse. One approach treats
the population as composed of two strata, one of respondents and the other of nonrespon-
dents. Over conceptually repeated trials of the survey, this deterministic approach assumes
that respondents always respond and nonrespondents never do so (see, for example,
Cochran 1977). The other approach, known as the quasi-randomization approach, assumes
that every population element has a probability of responding if sampled, say ¢;
(i=1,2,...,N) (Oh and Scheuren 1983). Furthermore, this approach assumes that
¢; > 0 for all elements in the population, a necessary but doubtful assumption. The two
procedures lead to broadly similar prescriptions for developing weighting adjustments
for total nonresponse. An attraction of the quasi-randomization approach is that it enables
responding to be treated as another phase of sampling, albeit one with unknown selection
probabilities that need to be estimated from models.

Failure to make nonresponse adjustments implicitly assumes that the nonrespondents
are MCAR (¢; = ¢, a constant). Nonresponse adjustment procedures aim to improve on
this assumption. The basic nonresponse adjustment method is similar to the cell-by-cell
noncoverage adjustment method described above. The difference is that noncoverage
adjustments need external control totals, whereas nonresponse adjustments are generally
based on internal data in the sample. The requirement for an auxiliary variable to be used
for nonresponse adjustments is that its value be known for both respondents and nonre-
spondents. Within each cell defined in terms of a set of such auxiliary variables, the non-
response adjustment consists of inflating the weights of responding sample members by
the inverse of the base-weighted response rate in the cell. By inflating the weights in
this way, the respondents in a cell represent the nonrespondents in that cell.

Consider an estimate of the population mean incorporating this form of nonresponse
adjustment, y,,. Under the quasi-randomization approach, the bias of y,, is approximately

B(3,) = N'LLé. (Y — V) (¢ei — b0)

where ci indexes element i in adjustment cell ¢ and ¢, is the average response probability
in cell ¢ (Brick and Kalton 1996). Inspection of this equation shows that y,, is
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approximately unbiased if Y,; and ¢, are uncorrelated, and in particular if the nonrespon-
dents are MAR within each cell, i.e., when ¢, = ¢,... Indeed, when the MAR assumption
holds, weighted estimates corresponding to unbiased sample estimates with complete
response are approximately unbiased for their population parameters. This result holds
for all survey estimates. Since surveys are generally multi-purpose, collecting data on
many variables and producing numerous estimates, the strategy of seeking nonresponse
adjustment cells for which the MAR assumption is plausible is usually the primary one
adopted.

When a survey is designed to produce estimates from only one variable, or only a few
highly related variables, an alternative strategy is to form adjustment cells that are homo-
geneous in the variable or variables. This strategy has the attraction of producing estimates
that have lower variance than when the cells are formed on the basis of the MAR assump-
tion (Little 1986). It seldom occurs, however, that a survey is concerned with only one
variable or a few related variables. Thus this strategy is rarely applied in dealing with total
nonresponse (but see below for its use with item nonresponse).

In the case of total nonresponse — as distinct from partial nonresponse — there are
usually very few auxiliary variables for which information is available for the nonrespon-
dents. For area samples, generally all that is known about the nonrespondents is the area
where they are located (stratum, primary sampling unit, and segment), and the character-
istics of the area (e.g., urban/rural). For random digit dialing telephone surveys, all that is
known for many nonrespondents is their telephone exchange and the characteristics of that
exchange. In this situation, weighting adjustments may be based on all the limited infor-
mation available, thus obviating the need to make a choice of which auxiliary variables to
use. The resulting adjustments may be useful in reducing nonresponse bias, but the
assumption that they will eliminate bias in the survey estimates is a heroic one.

In contrast to the dearth of information available for total nonrespondents, there is often
a wealth of information available for partial nonrespondents from the responses they did
provide. For example, information about partial nonrespondents who drop out of a panel
survey at the second wave is available from their responses at the first wave. The challenge
here is to make the most effective use of all this auxiliary information in developing
weighting adjustments for the partial nonrespondents. To meet this challenge, models
may be developed to predict partial response status from the auxiliary variables using
such techniques as logistic regression or classification trees (see, for example, Rizzo,
Kalton, and Brick 1996).

Suppose that a logistic regression model is developed for this purpose. Then the pre-
dicted probability of being a respondent (versus being a partial nonrespondent) can be
computed from the regression for each respondent, and the inverse of that probability
— with minor adjustments — can be used as a weighting adjustment. As a simple exam-
ple, consider the case with only two categorical auxiliary variables in the model (each
represented by a set of indicator variables) and assume that no interaction terms are
included because none were significant. In this case, the weights could be computed
from the model as indicated or, alternatively, they could be computed for each cell of
the two-way table. Even if the model were a valid one, these two procedures will yield
somewhat different adjustments. How should a choice be made between them? The adjust-
ments produced from the model are likely to be less variable and, as such, they will cause
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less inflation to the variance of the survey estimates. However, the model provides a gen-
eral prediction rather than reflecting the outcome in the specific sample. In line with the
discussion of conditional inference in Section 2.3, I favor matching the adjustment to
the specific sample. This position argues in principle for the cell-by-cell adjustment pro-
cedure, although the variance inflation effect needs to be considered.

3.2.3. Imputation

Nonresponse weighting adjustments and imputation are closely related, and indeed in
many cases one can be converted into the other. Yet, there is also a major difference
between the two procedures that affects the modeling assumptions that need to be made.

Consider first the similarities. With cell weighting, each nonrespondent’s record in a
cell could be divided into a set of records equal in number to the number of respondents
in that cell, and each subrecord could be assigned the full record of responses from one of
the respondents. The nonrespondents’ weight would be allocated across the subrecords in
proportion to the respondent’s weights (Kalton 1983b). This imputation procedure is iden-
tical in its effect to a nonresponse weighting adjustment. In a number of imputation
schemes — including the widely used hot deck method — a missing response to an
item for one element (the recipient) is assigned the value from another element (the
donor). Recipients and donors are matched in some way in terms of a set of auxiliary vari-
ables that are responses to other survey items. For univariate analyses of an item for which
imputations have been performed, such imputation schemes are equivalent to adding the
weight of the recipient to that of the donor and dropping the recipient from the analysis.

The major difference between a nonresponse weighting adjustment and imputation is
that the former compensates for nonresponse to all the survey items in a single operation
whereas the latter is item specific. With weighting adjustments, the full set of responses of
selected respondents is substituted for the full set of missing responses for the total non-
respondents. With imputation, a value is assigned for an item nonresponse in a respon-
dent’s record, with the responses to other items in the record being those provided by
that respondent. Weighting adjustments thus maintain the associations between the survey
variables that are present in the respondents’ records, but imputation may distort the
associations.

Imputation procedures use auxiliary variables to try to satisfy two objectives: to satisfy
the MAR assumption and to preserve the associations between all the variables in the data
set. The latter objective is of key concern because imputation is intended to be a multi-
purpose solution that will enable analysts to conduct whatever analyses they choose,
and most analyses involve interrelationships between variables.

All imputation procedures use a model of some type and hot deck imputation is no
exception. In many cases that model may be represented by a multiple regression equation
that predicts the values of the variable to be imputed, y, from a set of auxiliary variables
formed from responses to other survey items, x (Kalton and Kasprzyk 1986). The value
imputed for a missing response is generally obtained by adding a residual to the regression
prediction in order to preserve the variability in the distribution of y. Hot deck imputation
is of this form. It employs a regression equation in which the predictors x are indicator
variables that index the hot deck cells and the residuals are taken from respondents in those
cells. The outcome of this process is simply to assign the value from a donor to the
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recipient in a cell. A special case of imputation occurs when the regression model provides
a perfect fit to the respondent data (e.g., all the y-values are the same within each hot deck
cell). If the MAR assumption holds, the imputation becomes a deductive one that could be
treated as an edit, with the missing responses being deduced from other responses.

Corresponding to the two approaches for forming cells for weighting adjustments, there
are two possible approaches to forming imputation cells for matching donors and recipi-
ents for hot deck imputation. One approach is to attempt to construct cells in terms of the
auxiliary variables such that the item nonresponses are MAR, as is generally done in form-
ing weighting adjustment cells. The other is to form cells such that the y-values are homo-
geneous within cells. The latter approach is of primary importance with imputation
because it addresses the objective of maintaining the associations in the data set.

In general, the association between y and x is preserved if x is used as an auxiliary vari-
able in making imputations for y, but the association is attenuated towards zero if x is not
so used. In the context of a hot deck imputation scheme in which x is always reported and y
is randomly assigned from donors within a cell, the expectation of the conditional covari-
ance between x and y in a cell (i.e., the ‘‘within covariance’’) is zero, where the expecta-
tion is over the random assignment of donors. As a result, for the imputed cases, the only
contribution to the total covariance of x and y comes from the ‘between covariance’’ term
in the analysis of covariance decomposition, that is, from the covariance of the cell means
of x and y. Thus the covariance of x and y is incorrectly estimated unless x and y have a true
conditional covariance of zero within imputation cells. A conditional covariance of zero is
achieved by using x as an auxiliary variable to form the imputation cells such that x = k., a
constant in each cell. Thus, a major consideration in forming imputation cells is to pre-
serve covariances by choosing auxiliary variables that are associated with y, or equiva-
lently by choosing auxiliary variables to form cells that are homogeneous in y.

Imputation focuses on incorporating all the major predictors of y in the imputation
model in order to give effective imputations that maintain associations. In practice, of
course, there are limits on the number of variables that can be included and on the efforts
that can be devoted to developing imputation models. As a result, some associations will
be attenuated. The magnitude of the attenuation may not be of serious concern if the level
of missing data is low or if the association itself is low and hence probably of little sub-
stantive interest. However, analysts need to recognize that imputation models are imper-
fect and that they should conduct their analyses of imputed data sets with this in mind. In
addition to concerns about the effects of imputation on associations, its effect on the var-
iances of the survey estimates also needs to be taken into account. A considerable amount
of research is underway on methods for estimating variances from imputed data sets, and
here also it needs to be recognized that these methods depend on models (Kim 2001).

A particular application of imputation occurs in statistical matching, as is widely used in
microsimulation modeling. With statistical matching, there are two (or more) data sets,
with one containing variables (X, Y) and the other (X, Z), and interest centers on analyzing
(X, Y, Z) and particularly (Y, Z). In one version of statistical matching, the Z variables are
imputed to the (X, Y) data set using the X variables as the auxiliary variables. In general
statistical matching employs the assumption that ¥ and Z are conditionally independent
given X, as discussed above (see, for example, Rodgers 1984). With X often not providing
powerful predictors of Z (or Y) and with 100 percent of the Z values being imputed, there
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is a very real danger that statistical matching will produce seriously biased estimates of the
(Y, Z) associations.

3.4. Variance estimation

In addition to their use in forming survey estimates, models are also often used for estimat-
ing the standard errors of those estimates. These models are usually in the form of general-
ized variance functions (GVFs) relating the relvariance (R;) of an estimate of a proportion
or total (x;) to the estimate itself in the form R; = « + Bx; ' (Wolter 1985, Ch. 5) or in
terms of a model based on design effects (Kish 1965, Ch. 14). Such models are used
for four main purposes: (1) they provide standard error estimates for which direct compu-
tations have not been made; (2) they give a concise presentation of sampling errors for
survey reports; (3) the model standard errors may be preferable to those computed directly
in that they have lower standard errors; and (4) the models can help in planning future
sample designs (Kalton 1977).

The last of these four purposes fits in the category of the use of models for planning
future surveys, as referred to earlier. The other three relate to the use of models in analysis,
the focus here. Until recently, Purpose (1) was the main thrust for modeling sampling
errors. Computations of sampling errors for estimates based on complex sample designs
are complicated and were difficult to perform without the computing power and sampling
error software that are now available. For this reason, sampling errors were calculated for
only a few estimates. Based on results of these calculations, models were developed to pre-
dict sampling errors for other survey estimates. Although sampling errors can now be com-
puted readily for many estimates, this reasoning still appears to be prevalent with a number
of surveys. I believe that current computing capabilities should be used to calculate direct
estimates of sampling errors for many survey estimates in all surveys, even if models are to
be used for Purposes (2) and (3).

Concise presentation of sampling errors in survey reports is a challenge, and providing
sampling error models from which the analyst can derive sampling errors is one solution.
However, this approach has the unattractive feature that the analyst has to perform calcu-
lations to obtain the sampling errors for the estimates of interest. Also, the model estimates
of sampling errors are often reasonable for some estimates, but poor for others. With the
move towards presenting estimates from federal surveys on CD-ROMs and the Internet,
other approaches may replace the need for models for presentation purposes. For instance,
a link may be incorporated with each estimate in a table to enable the analyst to readily
obtain the estimate’s sampling error from a pop-up window.

Links that provide direct sampling error estimates for entries in table cells may replace
model estimators. However, these links still do not fully satisfy all user needs. As a simple
example, an analyst may want to obtain the sampling error of the difference between two
cell entries (say, means or percentages), which is not readily available from links or most
sampling error models. For some survey data sets available on the Internet, in the near
future it is likely that users will be able to request both specific estimates and their asso-
ciated sampling errors, thus considerably enhancing the provision of direct estimates of
sampling errors to users.

The future should see a shift away from the use of sampling error for Purposes (1) and
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(2), but Purpose (3) will remain. Like the survey estimates themselves, their variances are
sample estimates that are subject to sampling error. This feature should be taken into
account in the analysis. Thus, for example, if the number of degrees of freedom for the
variance estimate of a sample mean is small, the confidence interval for the population
mean should be obtained from the ¢ distribution rather than the normal distribution.
With multi-stage samples, the number of degrees of freedom for a variance estimate
depends on the number of primary sampling units (PSUs) and the stratification. Some sur-
veys have few PSUs, in which case the variance estimates will be imprecise even for
national estimates (Kalton 1995). For other surveys, national variance estimates may be
reasonably precise, but analyses relating to subsets of PSUs, such as regional analyses
or analyses of rural populations, will likely be based on few PSUs and hence have impre-
cise variance estimates, even when the direct survey estimates themselves have adequate
precision. Particularly in this latter case, model-based variance estimates may be prefer-
able to direct variance estimates.

Finally, mention should be made of the need for models in variance estimation with
nonmeasurable probability sample designs. Model-based methods are required for designs
with a single primary selection per stratum and for designs using controlled selection. The
collapsed strata technique is often used in these cases; it leads to an overestimation of
variance unless a model of equal means in the collapsed strata holds. Collapsing can be
beneficial even with measurable designs if they have few primary selections. In this
case, the more precise variance estimates that come with the use of collapsed strata can
sometimes outweigh the bias associated with collapsing (Rust and Kalton 1987).

4. Concluding Remarks

As indicated in the introduction, I find the design-based approach to inference generally
suitable for most large-scale surveys, and particularly for household surveys for which
the distributions of survey variables are generally well behaved. This is not to argue
that other schools of thought are not also acceptable. In some cases, a different approach
may yield an alternative and informative insight, with the possibility of some improve-
ment in current methods. However, the design-based approach has been practiced by
many thoughtful survey statisticians for many years and it has withstood the test of
time. Thus, if a different approach produces results that are markedly at variance with
the current ones, it probably makes sense to critically question the validity of the new
results.

As detailed throughout the article the design-based approach has its limitations. One
aspect is its focus on a clearly defined population that generally does not correspond to
the population of concern to analysts. In this case, analysts are left to make their own sub-
jective inferences from the surveyed population to the population of interest to them.

Another limitation of the design-based approach is that it does not handle the imperfec-
tions in the sample caused by missing data. Necessarily, models are required for this pur-
pose. With the levels of noncoverage and total nonresponse that are now common, this
limitation is a significant one, affecting a substantial proportion of the sample. The models
that are employed to handle noncoverage and total nonresponse require suitable external
data and data on the nonrespondents, respectively. With the limited amount of such data
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available, these models may be beneficial, but they cannot be expected to compensate fully
for the missing data.

Design-based methods are also limited in their ability to produce small area estimates of
adequate precision, even with the use of auxiliary information in model-assisted estima-
tion procedures. Model-dependent methods are therefore often required in such situations.
Here, again, the effectiveness of the model-dependent approach depends on the availabil-
ity of effective auxiliary data. Also, careful attention needs to be paid to the development
of an appropriate model and its evaluation.
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