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Nearest neighbor imputation is a popular nonparametric hot deck imputation method used to
compensate for nonresponse in sample surveys. Although the nearest neighbor imputation
method has a long history of application, no asymptotically consistent nonparametric variance
estimator for a survey estimator (such as the sample mean) based on data with nonrespondents
imputed by nearest neighbor was available until the proposal of the adjusted jackknife
variance estimator by Chen and Shao (2001). However, the adjusted jackknife method
involves a somewhat artificial adjustment and is computationally complex because every
jackknife pseudo-replicate has to be adjusted. We propose a consistent nonparametric
variance estimator that is much easier to compute than the jackknife estimator. Some
simulation results are provided to examine finite sample properties of the proposed variance
estimator.
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1. Introduction

The nearest neighbor imputation (NNI) method is often applied to compensate for

nonresponse in many surveys such as the U.S. Census 2000 and the Current Population

Survey conducted by the U.S. Census Bureau (Farber and Griffin 1998; Fay 1999), the Job

Openings and Labor Turnover Survey and the Employee Benefits Survey conducted by the

U.S. Bureau of Labor Statistics (Montaquila and Ponikowski 1993), and the Unified

Enterprise Survey, the Survey of Household Spending, and the Financial Farm Survey

conducted by Statistics Canada (Rancourt 1999). This trend will continue because of the

availability of computer software, the Generalized Edit and Imputation System, which

provides a simple way of performing NNI (Rancourt, Särndal and Lee 1994). It is shown in

Chen and Shao (2000) that the NNI method provides asymptotically unbiased and

consistent estimators for population means as well as quantiles, although these estimators

are not exactly unbiased. The NNI method may be more efficient than the mean imputation

and random hot deck imputation methods that do not make use of auxiliary information

provided by covariates. On the other hand, the NNI method uses covariate information

through nonparametric regression, instead of parametric regression (used in ratio or
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regression imputation) that is sensitive to the choice of parametric models (see the

simulation results in Shao and Wang 2008).

In this article we focus on variance estimation for estimators based on data imputed by

NNI. We cannot treat the imputed values as observed data and use the standard variance

formula for the case of no nonresponse, because the resulting variance estimator

underestimates the true variance of the estimator based on NNI. Some variance estimation

methods that take nonresponse and NNI into account are studied in Rancourt, Särndal, and

Lee (1994) and in Chen and Shao (2000). However, these methods are based on parametric

models. Since the NNI method is nonparametric, it is desired to have a nonparametric

variance estimation method as well. Chen and Shao (2001) proposed an adjusted jackknife

method for variance estimation. However, the adjusted jackknife involves a somewhat

artificial adjustment to every jackknife pseudo-replicate, which increases computation

complexity.

After introducing some notation, assumptions, and preliminary results in Section 2, we

derive a variance estimator for NNI in Section 3. Our variance estimator is nonparametric

and is computationally simple. The consistency of the proposed variance estimator is also

established in Section 3. Some simulation results are presented in Section 4. The last

section contains some conclusions.

2. Preliminaries

Let P be a finite population containing indices 1; : : : ;N. Assume that P is stratified into H

strata with Nh units in the hth stratum and that nh $ 2 units are selected from stratum

h according to some probability sampling plan, independently across the strata. Let S
denote the sample. According to the sampling plan, survey weights wi, i [ S, are

constructed so that for any set of values {zi : i [ P},

Es

i[S

X
wizi

0
@

1
A ¼

1

N

XN
i¼1

zi

where Es is the expectation with respect to S. This sampling design is commonly used in

many business surveys (U.S. Census Bureau 1987).

Let y be a variable of interest and x be an auxiliary variable (covariate). Let d be the

response indicator for y (i.e., for the ith unit, di ¼ 1 if yi is a respondent and di ¼ 0

otherwise). The validity of NNI is based on the following model assumption.

Assumption A. (xi; yi; di), i ¼ 1; : : : ;N, are independently from a superpopulation.

The finite population P is divided into K imputation classes such that, within each

imputation class, (xi; yi; di)’s are identically distributed (with respect to the super-

population) and Pðdi ¼ 1jxi; yiÞ ¼ Pðdi ¼ 1jxiÞ.

NNI is carried out within each imputation class. We assume that the sample size in each

imputation class is large. This is necessary for the asymptotic consistency of estimators

based on NNI. The number of imputation classes, K, is fixed. Imputation classes are often

formed according to the value of an auxiliary variable that is observed for all sampled

units. For example, in many business surveys, imputation classes are the same as strata or

unions of strata. When there are many strata of small nh’s, imputation classes are often
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obtained through poststratification (Valliant 1993) and/or combining small strata.

In applications, we may determine sample sizes and K by conducting a pilot or simulation

study.

Let Sk be the set of indices of sampled units in imputation class k, Rk be the set of

indices of y-respondents in imputation class k, and Nk be the set of indices of y-

nonrespondents in imputation class k (Sk ¼ Rk <N k), k ¼ 1; : : : ;K. Under Assumption

A, conditional on Sk, {ð yi; xiÞ; i [ Rk} and {ð yi; xiÞ; i [ N k} are independent sets of iid

random vectors from two possibly different distributions.

For j [ N k, let yj*
denote imputed y-value by NNI, where j* is selected according to

jxj* 2 xij ¼
i[Rk

minjxj 2 xij

We focus on the case where the superpopulation distribution of x is continuous so that

there are no tied x-values. The NNI sample mean is

�yNNI ¼
XK
k¼1 i[Rk

X
wiyi þ

j[N k
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where

dij ¼
1 i is the nearest neighbor of j

0 otherwise

(

and

dðkÞi ¼
j[N k

Xwj

wi

dij

When wi ¼ wt for all i and t in a given Sk, d
ðkÞ
i is the number of times i [ Rk is used as

the nearest neighbor for nonrespondents j [ N k.

The NNI sample mean �yNNI is not exactly unbiased as an estimator of the population

mean of y values. Under some regularity conditions (Assumption B stated in the

Appendix), it is established in Chen and Shao (2000) and Shao and Wang (2008) that �yNNI

is asymptotically unbiased and asymptotically normal with the following asymptotic

variance:

Vn ¼ E
XK
k¼1 i[Rk

X
1 þ dðkÞi

� �2
w2
i s

2
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2
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2
4

3
5 ð1Þ

where ckðxÞ ¼ Eð yjxÞ and s2
kðxÞ ¼ Vð yjxÞ in the kth imputation class. Throughout the

article, Eð yjxÞ and Vð yjxÞ denote the conditional expectation and conditional variance,

respectively, under the superpopulation model in Assumption A, and E and V denote the
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unconditional expectation and variance, respectively, with respect to the superpopulation

and sampling.

3. Variance Estimation

If ckðxÞ and s2
kðxÞ in (1) have parametric forms, then we can estimate the variance in (1) by

substitution. However, we may not need NNI if ckðxÞ and s2
kðxÞ have parametric forms.

Since NNI is nonparametric, a nonparametric variance estimation method without

parametric models on ckðxÞ and s2
kðxÞ is preferred.

We propose a nonparametric estimator of Vn that is simple to compute. It follows from

Lemma 1 in Shao and Wang (2008) that, for each k,
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as the sample size n ¼
PH

h¼1nh !1. By conditioning, we have
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It follows from (1)–(3) that
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The first term on the right-hand side of (4) is the variance of the unbiased estimator

of the population mean when there is no nonresponse. It can be estimated as follows:

Let vn be the standard variance estimator for
P

i[S wiyi when there is no nonresponse.

For example, if the sampling design is stratified sampling, then

vn ¼
XH
h¼1

nh

nh 2 1
i[Sh

X
wiyi 2

1

nh j[Sh

X
wjyj

0
@

1
A

2

where Sh is the sample in the hth stratum, h ¼ 1; : : : ;H. Let ~vn be the same as vn but with

yj replaced by the imputed value yj* for any j [ N k. That is, ~vn is the naive variance

estimator obtained by treating imputed values as observed data. It was shown by Chen and

Shao (2001) that ~vn is a consistent estimator of the first term on the right-hand side of (4).

It remains to find a consistent estimator of the second term on the right-hand side of (4).

For i [ Rk, let i* be the nearest neighbor of i in the set Rk 2 {i}, i.e.,

jxi* 2 xij ¼
l[Rk ;l–i

min jxl 2 xij

Note that yi* is the NNI value of yi if yi is treated as a nonrespondent. Then yi 2 yi* can

be viewed as an imputation residual and a simple estimator of s2
kðxiÞ is ŝ2

ik ¼ ð yi 2 yi* Þ
2=2,
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Table 1. Simulation estimates (10,000 runs)

Parameters Simulation estimates

g1 g2 p RB(%) V=104 ~vn=104 V̂n=104 CV(%) CP(%) CPl(%) CPu(%) L/102

0.5 21 0.607 0.45 24.65 14.83 23.95 20.44 91.82 99.19 92.63 19.10
0.5 1 0.610 0.47 26.28 13.81 25.52 26.19 90.62 99.34 91.28 19.66
0.5 0 0.628 0.13 21.44 14.75 22.01 14.19 94.64 98.49 96.15 18.35
1 21 0.700 0.35 20.60 14.88 21.00 16.59 93.10 99.10 94.40 17.91
1 1 0.703 0.26 21.82 14.28 21.68 20.06 92.92 98.79 94.23 18.17
1 0 0.735 0.09 18.80 14.85 19.52 11.72 95.03 98.35 96.68 17.29
2 21 0.846 0.17 17.64 14.93 17.73 10.81 94.09 98.62 95.47 16.48
2 1 0.848 0.08 17.39 14.80 17.90 12.59 94.99 98.43 96.56 16.55
2 0 0.883 0.02 16.69 14.98 17.07 9.73 95.02 98.02 97.00 16.18
1 0 1.000 20.01 14.84 15.59 15.05 8.65 95.46 98.05 97.41 15.46

RB: relative bias of �yNNI, V: variance of �yNNI.

~vn: the naive estimator of V.

V̂n: the proposed estimator of V.

CV: standard error of V̂n/the mean of V̂n.

CP: coverage probability of confidence interval �yNNI ^ 1:96
ffiffiffiffiffi
V̂n

p
.

CPl: coverage probability of confidence bound �yNNI 2 1:96
ffiffiffiffiffi
V̂n

p
.

CPu: coverage probability of confidence bound �yNNI þ 1:96
ffiffiffiffiffi
V̂n

p
.

L: Length of confidence interval �yNNI ^ 1:96
ffiffiffiffiffi
V̂n

p
.
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i [ Rk. This leads to the following estimator of Vn in (1):

V̂n ¼ ~vn þ
XK
k¼1 i[Rk

X
dðkÞi ð1 þ dðkÞi Þw2

i ŝ
2
ik ð5Þ

Let X k ¼ {xi; i [ Rk} and Eð�jRk;X kÞ be the conditional expectation with respect to

the superpopulation, given ðRk;X kÞ. Then

E ŝ2
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� �
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Under Assumption B (in the Appendix), ckðxÞ and s2
kðxÞ are Lipschitz continuous.

Hence, the last two terms in the previous expression are bounded in absolute value by

An ¼ C
i[Rk

X
dðkÞi ð1 þ dðkÞi Þw2

i jxi 2 xi* j

where C . 0 is a constant. It follows from the result in Shao and Wang (2008) that nAn

converges to 0 in probability. Thus, under Assumptions A-B, we have established the

consistency of V̂n as an estimator of Vn.

4. Simulation Results

A simulation study was carried out using a population similar to that in Chen and Shao

(2001), which matches the main characteristics of an aggregated data set from the

Financial Farm Survey (FFS) of 1998 published by Statistics Canada. The FFS is a

biannual survey collecting information on agriculture operations in Canada. The survey

collects information on revenues, expenses, assets, investments, and liabilities for the

reference year. The results are mainly used by the Canadian System of National Accounts

and by Agriculture and Agri-Food Canada. The FFS is based on stratified simple random

sampling and NNI is used to impute nonrespondents for some variables. More details

about FFS can be found in Rancourt (1999).

We considered dairy farms only. Strata were created using farm size (3 classes) and

province (5 provinces and one group of small provinces, ALT). These 18 strata were also

used as imputation classes. Two variables, the net assets (x) and the cash income ( y), were

considered. Information about population size, sample size, mean, and standard deviation
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of the variables under consideration is given in Table 1 in Chen and Shao (2001). In

particular, the total sample size is 16,989 and the true population mean of y is 52,351.47.

To study the effect of response pattern, we generated the y-respondents according to the

response probability function similar to that in Chen and Shao (2001). For each pair (x, y),

a y-respondent was generated according to

Pðy is a respondentjxÞ ¼
expðg1 þ g2ðx2 mxÞs

21
x Þ

1 þ expðg1 þ g2ðx2 mxÞs21
x Þ

with some g1 and g2, where mx and sx are the mean and variance of x within an imputation

class. When g2 ¼ 0, the response mechanism is uniform; when g2 – 0, the response

mechanism depends on the value of x. Values of g1 and g2 and the average response

probability p ¼ E½Pða ¼ 1jxÞ� are given in Table 1.

Table 1 shows 10,000 Monte Carlo simulation estimates of the relative bias of the

sample mean based on NNI, �yNNI, the variance of �yNNI, the naive variance estimator ~vn, the

proposed variance estimator V̂n defined in (5), the CV of V̂n defined as the standard error of

V̂n divided by V̂n, the coverage probabilities of the lower confidence bound, of the upper

confidence bound, and of the two-sided confidence interval for the true population mean of

the cash income ( y) based on �yNNI ^ 1:96
ffiffiffiffiffi
V̂n

p
, and the length of the two-sided confidence

interval. The confidence bounds and interval are based on the asymptotic normality of �yNNI

established by Shao and Wang (2008) and the consistency of V̂n.

The results in Table 1 can be summarized as follows. The relative bias of �yNNI is below

0.5% in all cases under consideration, although the bias is larger when the response rate is

lower. The naive variance estimator ~vn, which is obtained by treating imputed values as

observed data and applying the standard variance formula, has a serious negative bias. The

proposed variance estimator V̂n has a negligible bias in all cases under consideration. The

CV of V̂n depends on the response mechanism. The coverage probability of the two-sided

confidence interval is close to the nominal level 95% except for cases where the response

rate is low and nonresponse depends on x (g2 – 0). The performance of the one-sided

confidence bounds is not as good as that of the two-sided confidence interval

(asymptotically, the two-sided confidence interval is second-order accurate but the one-

sided confidence bounds are only first-order accurate). The coverage probability of the

lower confidence bound is always larger than the nominal level 97.5% whereas the

coverage probability of the upper confidence bound is always smaller than 97.5%, which

indicates the skewness of the population under consideration.

5. Conclusion

We focus on variance estimation for the sample mean based on survey data with

nonrespondents imputed by the nearest neighbor imputation. The proposed variance

estimator does not require any parametric assumption on the conditional expectation

Eð yjxÞ and the conditional variance Vð yjxÞ. It is asymptotically consistent when Eð yjxÞ

and Vð yjxÞ are smooth functions of x, under some regularity conditions. The finite sample

performance of the proposed variance estimator is adequate. The advantage of our

proposed variance estimator over the adjusted jackknife variance estimator in Chen and

Shao (2001) is its simplicity: the jackknife method involves a somewhat artificial
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adjustment and requires a large amount of computation, since every jackknife pseudo-

replicate has to be adjusted.

Appendix

Assumption B

(i) The total number of sampled units n!1 and m21
k ¼ Oðn21Þ, k ¼ 1; : : : ;K, where

mk is the number of sampled units in imputation class k.

(ii) The survey weights satisfy maxiwi ¼ Oðn21Þ and Vsð
P

i[S wiÞ ¼ Oðn21Þ.

(iii) The marginal distribution of the covariate x has a density, Ejxj
3
, 1,

EjckðxÞj
6
, 1, and Ejyij

8
, 1.

(iv) The response probability Pða ¼ 1jxÞ satisfies inf x[DPða ¼ 1jxÞ . 0, where D is the

support of the marginal distribution of x.

(v) ckðxÞ and s2
kðxÞ are Lipschitz continuous on D.
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