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Systematic sampling is a widely used technique in survey sampling. It is easy to execute,
whether the units are to be selected with equal probability or with probabilities proportional to
auxiliary sizes. It can be very efficient if one manages to achieve favourable stratification
effects through the listing of units. The main disadvantages are that there is no unbiased
method for estimating the sampling variance, and that systematic sampling may be poor when
the ordering of the population is based on inaccurate knowledge. In this article we examine
an aspect of the systematic sampling that previously has not received much attention. It is
shown that in a number of common situations, where the systematic sampling has on average
the same efficiency as the corresponding random sampling alternatives under an assumed
model for the population, the sampling variance fluctuates much more with the systematic
sampling. The use of systematic sampling is associated with a risk that in general increases
with the sampling fraction. This can be highly damaging for large samples from small
populations in the case of single-stage sampling, or large subsamples from small
subpopulations in the case of multi-stage sampling.
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1. Introduction

Systematic sampling has a long tradition in survey sampling (e.g., Madow and Madow

1944, Madow 1949, 1953). When applied to a list of units it is known as the “every kth

rule”, where k refers to the sampling interval. Where the ordering of the units is

conceivably uncorrelated with the survey variable of interest, or contains at most a mild

stratification effect, the systematic sampling is generally considered as a convenient

substitute for simple random sampling “with little expectation of a gain in precision”

(Cochran 1977, p. 229). The same holds for sampling within strata or subsampling under a

multi-stage sampling design. By a modification (Madow 1949) where the sampling

interval is calculated in terms of an accumulated auxiliary total, the systematic sampling

can be used to select a pps sample with great ease.

In situations where auxiliary information is available for partial ordering of the

population, it is more natural to compare systematic sampling with stratified random

sampling. The systematic sampling is more convenient especially because it is not

subjected to restrictions either on the number of auxiliary variables or on the number of

levels each of them may take. So there is less need for variable selection than may be the
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case when it comes to stratified random sampling. By using many auxiliary variables the

systematic sampling can introduce greater balance into the sample, although a more

parsimonious stratified sampling design may well be just as efficient.

It is important to be clear that when speaking above of the efficiency of systematic

sampling, we are referring to its sampling variance in expectation. Take for instance the

case where systematic sampling is applied to a fixed, conceivably random ordering of a

given population. The sampling variance, denoted by Vsys, is based on only k possible

systematic samples, and is either larger or smaller than that of simple random sampling for

the given population, denoted by Vsrs. There are two results which show that Vsys may be

equal to Vsrs in expectation. In the first case, considering the fixed ordering to be randomly

chosen from all N! possible permutations of the N units of a finite population, Madow and

Madow (1944) showed that EðVsysÞ ¼ Vsrs, where the expectation is taken over all

permutations. Notice that Vsrs is a constant of the permutations. Example 3.4.2 of Särndal

et al. (1992) provides a simple illustration of how greatly Vsys may vary for different

population orderings. In the second case, we regard the ordering of the population as fixed,

and the associated values of interest as realizations of independent random variables with

constant mean (Cochran 1977, Theorem 8.5). It can then be shown that EðVsysÞ ¼ EðVsrsÞ,

with the expectation being over all possible finite populations under the assumed model.

To clarify the choice between systematic and simple random sampling in the situation

above, we rephrase it as a decision problem. Let u ¼ ð y1; : : : ; yNÞ
T be the vector of

variables of interest, where U ¼ ð1; : : : ;NÞ is a particular ordering of the units prepared

for the systematic sampling. Given u and U, we can choose to draw a systematic sample

that depends on U, or we can choose to draw a simple random sample that does not depend

on U. These are the two decision rules, or actions, available to us, denoted by d ¼ SYS

and d ¼ SRS, respectively. Let the sampling variance of the sample mean be our loss

function, denoted by Lðu; dÞ ¼ Vdð�ysÞ, where s denotes the selected sample and �ys the

sample mean. Notice that this is a no-data problem, so that the frequentist risk of d is equal

to the loss function (Berger 1985), denoted by Rðu; dÞ ; Lðu; dÞ. Now, depending on the

actual u andU, Rðu; SYSÞ ¼ Vsys may be greater or less than Rðu; SRSÞ ¼ Vsrs, i.e., neither

of them is R-better than the other for all u. Indeed, R(u,d) can be arbitrarily large as long as

there is no limit on how much variation u can have, such that e.g., the minimax principle is

not applicable without further restrictions.

It is possible to invoke other decision principles. For instance, denote by rðp; dÞ ¼

EuðVdð�ysÞÞ the Bayes risk of d with respect to some assumed distribution of u, denoted by

p(u), which is the expected sampling variance induced by d in this case. Then, according

to the Bayes risk principle, the decision rule SYS may be preferred to SRS if

rðp; SYSÞ , rðp; SRSÞ. As we have seen, rðp; SYSÞ ¼ rðp; SRSÞ under the two models of

u above, so the choice between the two actions cannot be settled based on the Bayes risk

principle alone.

Additional criteria of cost or easiness in execution can be used to motivate the choice of

SYS in practice. Now, due to developments in computational power and alternative

random sampling techniques, easiness in sample selection is no longer a valid argument in

favour of systematic sampling. Using a computer one can draw a simple random sample as

easily as a systematic sample. The same goes for pps sampling. For instance, sequential

Poisson sampling (SPS, Ohlsson 1998) is easy to implement, yielding an approximate pps
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sample with a fixed sample size. Yet one needs to keep in mind the difference between

ease of sample selection and ease of sample collection. For instance, in forestry surveys it

is still easier to count every tenth tree than to consult a list of random numbers in the field.

Meanwhile, easiness in execution counts only if there are no other, more important

decision principles that can be used to distinguish between the two actions. So we

need to ask the following question: Is there any other reasonable decision principle

that we may follow in this case, apart from e.g., the minimax principle and the Bayes

risk principle?

The situation we are considering here has an analogy in Utility theory. Suppose that one

is offered a 50–50 lottery between 0 and 100 pounds. The expected utility is 50 pounds.

It is unlikely, however, that one is entirely indifferent between accepting the lottery and

accepting 50 pounds for sure. One is risk averse if one prefers to accept the 50 pounds for

sure than to enter the lottery; whereas one is risk prone if one prefers to enter the lottery

instead (French 1986). For statistical decisions, however, we can motivate the same kind

of distinction without reference to the lottery scenario. Let

dðp; dÞ ¼ VuðRðu; dÞÞ ð1Þ

be the second-order Bayes risk of a decision rule d with regard to p(u). While the

(first-order) Bayes risk is the expectation of the risk with regard to p(u), the second-order

Bayes risk is its variance. It is nonnegative by definition. In the case of zero second-order

Bayes risk, the risk of a decision rule is the same regardless of the value of u. The smaller

the second-order Bayes risk, the more robust a decision rule is as u varies. A decision rule

d is preferred to another d0 according to the robust Bayes decision principle if

rðp; dÞ ¼ rðp; d 0Þ and dðp; dÞ , dðp; d 0Þ ð2Þ

That is, provided two rules have the same expected risk, we will choose the one that has

less variation around the expected risk, on the ground of its robustness towards u.

In the situation above, we have two sampling designs to choose from, which have the

same Bayes risk under the assumed p(u). The second-order Bayes risk is

dðp; dÞ ¼ VuðVdð�ysÞÞ. It follows that if we choose between SYS and SRS according to

the robust Bayes decision principle, we will have tighter control over the actual sampling

variance over all possible u. Notice that the second-order Bayes risk is a measure of

robustness given p(u). It is different from robustness towards misspecification of p(u),

which is a standard robustness concept in statistical decision theory. A decision rule dmay

be preferred to another d0 according to the robust Bayes decision principle provided the

conditions in (2) hold based on the assumed p(u). Whereas what happens to the choice as

p(u) varies is another robustness concern, i.e., robustness towards misspecification of

p(u). A numerical illustration will be provided in Section 4 where both types of robustness

are brought into consideration at the same time.

In the rest of the article we will be dealing with two issues. Firstly, we will show

theoretically as well as by simulations that systematic sampling has greater second-order

Bayes risk than the corresponding random sampling alternatives in all the situations

mentioned at the beginning of this introduction. We believe that this is due to the fact that

systematic sampling with a fixed list is cluster sampling, whereas clustering is removed

Zhang: Common Practices of Systematic Sampling 559



under the random sampling alternatives. Our approach is based on population models,

where we fix the ordering of the population and consider the values of interest as realized

random variables under some assumed population model. This seems to be more in

accordance with the practice of systematic sampling where the ordering is typically given

once and for all. Notice that the problem of second-order Bayes risk is not the same as that

of the instability of the variance estimator (Raj 1965), but a similar issue may arise because

of the clustering due to systematic sampling. Secondly, we investigate possible

consequences of ignoring the robust Bayes decision principle, i.e., choosing systematic

sampling in spite of knowing that it has greater second-order Bayes risks. In particular, by

simulations based on the Norwegian Census and Labour Force data, we show that the use

of systematic sampling in panel surveys causes the estimates of changes in an

autocorrelated population to vary considerably in precision over time, which is a fault that

can not be overlooked in panel surveys. A summary will be given at the end.

2. Homogeneous Populations

Consider first equal-probability systematic sampling from a fixed population ordering that

may be considered as uncorrelated with the variable of interest. Let the sample size be n,

and let the sampling interval be k. For simplicity we assume that k is naturally an integer

satisfying N ¼ nk. Denote by sm the mth systematic sample, i.e.,

sm ¼ {m;mþ k;mþ 2k; : : : ;mþ ðn2 1Þk}. Let �ym be the corresponding sample

mean, which is an unbiased estimator of the population mean, denoted by
�Y ¼

P
i[U yi=N. The sampling variance of �ym is given as Vsys ¼ k21

Pk
m¼1ð�ym 2 �YÞ2,

which may or may not exceed the variance of the simple random sample mean, denoted by

Vsrs ¼ ðn21 2 N21Þs2, where s2 ¼
P

i[Uð yi 2
�YÞ2=ðN 2 1Þ.

As mentioned before, there are two results which show that SRS and SYS have the same

Bayes risk, i.e., EuðVsrsÞ ¼ EuðVsysÞ. We shall investigate their second-order Bayes risks

under the following homogeneous model for the population

Eð yiÞ ¼ m and Eðð yi 2 mÞrÞ ¼ mr , 1 ð3Þ

for i [ U, where for simplicity we write E instead of Eu, and yi is independent of yj for

i – j. We have EðVsrsÞ ¼ EðVsysÞ ¼ ð1=n2 1=NÞm2 ¼ ð12 1=kÞm2;n, where mr,n denotes

the rth central moment of �ym. This is a special case of the more general Theorem 8.5 of

Cochran (1977), where the model variance of yi is allowed to vary over the units.

Moreover, based on a result of the variance of the empirical variance (e.g., Wetherill

1981), we obtain

VðVsrsÞ ¼
1

n
2

1

N

� �2

Vðs2Þ ¼ 12
1

k

� �2

m2
2;n

2

N 2 1
þ

g2

N

� �

where g2 ¼ m4=m
2
2 2 3 is the coefficient of kurtosis of yi. Similarly, we have

VðVsysÞ ¼
k2 1

k

� �2

V
1

k2 1

Xk
m¼1

ð�ym 2 �YÞ2

 !
¼ 12

1

k

� �2

m2
2;n

2

k2 1
þ

g2;n

k

� �
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where g2;n ¼ g2=n is the coefficient of kurtosis of �ym. It follows that the coefficients of

variation (CV) of Vsrs and Vsys are, respectively,

CVðVsrsÞ ¼ 12
1

k

� �
2

N 2 1
þ

g2

N

� �1
2

and

CVðVsysÞ ¼ 12
1

k

� �
2

k2 1
þ

g2

N

� �1
2

ð4Þ

Provided the population is large enough we have CVðVsysÞ < ð12 1=kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðk2 1Þ

p
,

which increases with the sampling fraction. For example, the overall sampling fraction is

about 1/140 in the Norwegian Labour Force Survey (LFS), such that CVðVsysÞ < 12%. In

comparison, CVðVsrsÞ ¼ Oð1=
ffiffiffiffi
N

p
Þ and the second-order Bayes risk of simple random

sampling is negligible. Drawing systematic samples from a seemingly random, but fixed

list of population is a haphazard business without expectation of gains compared to simple

random sampling. One simply has less control over the actual sampling variance, which

may considerably deviate from its expectation. The same holds for stratified systematic

sampling compared to stratified simple random sampling. In two-stage sampling where

systematic sampling is used for subsampling of units within a primary sampling unit

(PSU), what counts for the second-order Bayes risk is the within-PSU sampling fractions.

Thus, systematic sampling can have a large second-order Bayes risk in the case of multi-

stage sampling, even though the overall sampling fraction may be low.

3. Ratio Regression Populations

Consider now the situation for systematic pps sampling. In this case the “every kth” rule is

applied to the cumulated total of an auxiliary variable, denoted by xi for i [ U. Any fixed

list U can be used. For simplicity we assume that xi is an integer. Let X ¼
P

i[U xi. The

interval length is then given by k ¼ X=n, where again we assume that k is naturally an

integer. Looked at the other way around, equal-probability systematic sampling becomes

systematic pps sampling with xi ; 1. The unit i may appear in xi different systematic

samples. We assume that the inclusion probability is such that pi ¼ nxi=X , 1 for all

i [ U. Based on any systematic pps sample, denoted by sm for m ¼ 1; : : : ; k, the

estimator of Y is

Ŷm ¼
i[sm

X yi

pi

¼
X

n sm

X
bi ¼ X �bm for bi ¼

yi

xi
and �bm ¼

i[sm

X bi

n

.

We have Esysð�bmÞ ¼ Y=X, and Esysð�ymÞ ¼ Y , and

VsysðŶmÞ ¼ X 2Vsysð�bmÞ ¼ X 2 1

k

Xk
m¼1

ð�bm 2 Y=XÞ2

( )

Now, �bm is the best linear unbiased estimator (BLUE) of b under the following model

yi ¼ xibþ xi1i ð5Þ
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where Eð1iÞ ¼ 0, and Vð1iÞ ¼ m2, and Covð1i; 1jÞ ¼ 0 for i – j [ U, i.e., a ratio regression

model with residual variance proportional to x2i . We have

Vsysð�bmÞ ¼
1

k

Xk
m¼1

ð�bm 2 bÞ2 2 ðY=X 2 bÞ2 8
1

k

Xk
m¼1

ð�bm 2 bÞ2 ¼
1

k

Xk
m¼1

�12m
def
¼Z

where �1m ¼
P

i[sm
1i=n, provided the population is large enough so that the term

ðY=X 2 bÞ2 is of a lower order compared to Z. We have EðZÞ ¼ m2;n. Moreover,

Z 2 ¼
1

k 2

Xk
m¼1

�14m þ
m;p;p–m

X
�12m �12p

0
@

1
A

where �1m and �1p are not necessarily independent of each other because some units

may appear both in sm and sp. However,

E �12m �12p

� �
¼ n24

ði1;i2Þ[sm;
ð j1;j2Þ[sp

X
Eð1i11i21j11j2 Þ

where Eð1i11i21j11j2Þ is not zero, indeed positive only if it is of the form E 14i
� �

or

E 12i 1
2
j

� �
. Let smp denote the intersection of sm and sp. We have

ði1;i2Þ[sm;
ð j1;j2Þ[sp

X
Eð1i11i21j11j2 Þ ¼ E 2

i–j[smp

X
12i 1

2
j þ

i[sm;
j[sp

X
12i 1

2
j

0
BB@

1
CCA

The first term arises by taking ði1; i2Þ ¼ ð j1; j2Þ and ði1; i2Þ ¼ ð j2; j1Þ with i1 – i2,

and the second term by taking i1 ¼ i2 and j1 ¼ j2. Let s
p
m denote the units of sm that

are not included in sp, and let smp denote the units of sp that are not included in sm.

We have

i[sm; j[sp

X
12i 1

2
j ¼

i;j[smp

X
12i 1

2
j þ
i[smp; j[s mp

X
12i 1

2
j þ
i[smp; j[s

p
m

X
12i 1

2
j þ
i[s mp ; j[s

p
m

X
12i 1

2
j

and

i;j[smp

X
12i 1

2
j ¼

i[smp

X
14i þ

i–j[smp

X
12i 1

2
j
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Thus, we obtain

n4E �12m �12p

� �
¼ 2

i–j[smp

X
m2
2 þ

i[smp

X
m4 2

i[smp

X
m2
2

0
@

1
A

þ
i[smp

X
m2
2 þ

i–j[smp

X
m2
2 þ

i[smp;
j[smp

X
m2
2 þ

i[smp;

j[s
p
m

X
m2
2 þ

i[smp ;

j[s
p
m

X
m2
2

0
BB@

1
CCA

¼ 2cmpðcmp 2 1Þm2
2 þ cmpðg2 þ 2Þm2

2 þ n2m2
2 ¼ m2

2 n2 þ cmpg2 þ 2c2mp

� �
where cmp is the number of common units in sm and sp, and the two terms that

involve cmp exist only if smp is not empty. Denote by m4,n the fourth central moment

of �1m. We now have

VðZÞ ¼
1

k
m4;n 2 m2

2;n

� �
þ

m2
2;n

k 2n2
g2

m–p

X
cmp þ 2

m–p

X
c2mp

0
@

1
A ¼ m2

2;nlnðg2Þ ð6Þ

where

lnðg2Þ ¼ 2
1

k
þ

X
m–p

c2mp

X 2

0
BB@

1
CCAþ g2

XN

i¼1
x2i

X 2

since m4;n ¼ m2
2;nðg2;n þ 3Þ, and X ¼ nk, and

P
m–p cmp ¼

PN
i¼1xiðxi 2 1Þ. The termP

m–p c
2
mp seems intractable in general, but it can be calculated given the ordering of

the units. It follows that CVðVsysðŶmÞÞ8 CVðZÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðg2Þ

p
.

Meanwhile, there are a variety of alternative random pps sampling methods. It is easily

shown that in the case of Poisson sampling (PS), the CV of VpsðŶÞ is of the order Oð1=
ffiffiffiffi
N

p
Þ

under Model (5). The result holds generally for any fixed-sized pps sampling design,

provided its sampling variance is related to that of the PS through a finite population

correction term.

4. A Numerical Illustration

For a numerical illustration of Results (4) and (6), let us consider sampling of 10 units from

a population of 100, denoted by U ¼ {1; 2; : : : ; 100}. The auxiliary variables are simply

given as xi ¼ i. The survey variables yi are to be simulated under the model below.

yi ¼ xi þ xai 1i where 1i
iid,Nð0;s2Þ and 0 # a # 1 ð7Þ

The conditional variance of yi given xi is thus equal to x2ai s2. In the case of a ¼ 0,

yi 2 xi follows the homogeneous model (3). In the case of a ¼ 1, we have Model (5) with

b ¼ 1, which can be used to motivate the pps sampling.

Consider first the pps sampling. Let a ¼ 0; 0:25; 0:5; 1 and s ¼ 0:01; 0:1. Notice that s

cannot be too large here before negative y-values can be generated with nonnegligible
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probabilities, in which case the rationale for pps sampling would be doubtful. For each

pair of (a,s) we generate a population u ¼ ð y1; : : : ; y100Þ
T , for which three sampling

variances are calculated. The first one is for the systematic pps sampling. The second one

is for the SPS, which is an approximate random pps sampling method. This is calculated

by simple Monte Carlo. Finally, we calculate the asymptotic theoretical sampling variance

of systematic pps sampling, with random permutation of u before drawing a systematic

sample, i.e.,

Vasy ¼
X100
i¼1

pi 12
n2 1

n
pi

� �
yi

pi

2
Y

n

� �2

(Hartley and Rao 1962), which can be used to benchmark the efficiency of the other two.

The simulations are repeated for 1,000 independently generated u. The results are given

in Table 1, where the relative efficiency (RE) refers to the ratio EðVdÞ=EðVasyÞ. We notice

the following. (I) It is seen that both the systematic pps sampling and the SPS achieve RE

around 100%, such that the two sampling methods are equivalent with regard to the Bayes

risk principle. (II) Under Model (5), i.e., a ¼ 1, the CV of systematic pps sampling can be

derived from (6). We have g2 ¼ 0 given normality of 1i and
P

m–p c
2
mp ¼ 2079500 givenU

above, such that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðg2Þ

p
¼ 0:410 which does not depend on s 2. The theoretical CV is

confirmed by the simulations. It is seen that systematic pps sampling has much greater

second-order Bayes risk than random pps sampling. (III) The second-order Bayes risk

varies little over s given a. For 0.25 , a , 1 the second-order Bayes risk of random pps

sampling is almost a constant, and is considerably lower than that of the systematic pps

sampling. The second-order Bayes risk of random pps sampling increases quickly as a

gets close to 0, but remains lower than that of systematic pps sampling. In summary,

random pps sampling is preferred according to the robust Bayes decision principle under

Model (5), and the choice is robust towards departures from the assumption of a ¼ 0,

which is a form of misspecification of p(u).

Consider next equal-probability systematic sampling. There is a general result which

states that systematic sampling is more efficient than SRS provided that the within-sample

Table 1. Simulation results for pps sampling in percentage

Relative Efficiency CV of Sampling Variance

Design Systematic SPS Systematic SPS Theoretical

a ¼ 1 s ¼ 0:01 98 100 41 16 16
s ¼ 0:1 101 100 41 16 16

a ¼ 0:5 s ¼ 0:01 101 100 34 15 15
s ¼ 0:1 99 99 34 15 15

a ¼ 0:25 s ¼ 0:01 100 99 28 18 18
s ¼ 0:1 99 99 29 18 18

a ¼ 0 s ¼ 0:01 100 99 37 36 35
s ¼ 0:1 101 99 40 38 37

Relative efficiency: Ratio between average sampling variance of systematic pps (or SPS sampling) and average

theoretical variance Vasy. CV of sampling Variance: Coefficient of variation of respective sampling variances.
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variance is larger than the population variance, due to the following decomposition:

i[U

X
ð yi 2 �YÞ2 ¼

Xk
m¼1 i[sm

X
ð yi 2 �ymÞ

2 þ
Xk
m¼1

nð�ym 2 �YÞ2;

i.e., the variation within the k systematic samples and the variation between them. Since

Vsys is proportional to the second component, it is minimized for a given u when the first

component is maximized. Based on the corresponding ordering of units, systematic

sampling could potentially lead to gains in efficiency over simple random sampling. For

instance, suppose the extreme case under Model (7) with s ¼ 0, i.e., yi ¼ xi. The optimal

ordering for a systematic sample of 10 units is to alternate between increasing and

decreasing order every 10 units in the population (Särndal et al. 1992, Example 3.4.2),

denoted by Uopt ¼ ð1; : : : ; 10; 20; : : : ;11; 21; : : : ; 30; 40; : : : ; 31; : : : ; 100; : : : ; 91Þ,

in which case Vsysð�ysÞ ¼ 0.

In practice, of course, one never knows yi exactly. However, the ordering Uopt remains

optimal under Model (7) with a ¼ 0, now that �xm ¼ X=N is a constant of sampling. The

estimator based on an equal-probability systematic sample drawn from Uopt is given by

Ŷm ¼ X þ N �1m where X ¼
XN
i¼1

xi and �1m ¼
i[sm

X
ð yi 2 xiÞ=n

which is the same as the difference estimator (Särndal et al. 1992, Chapter 6.3) based on a

simple random sample. In other words, the efficiency of systematic sampling based onUopt

can as well be achieved by the combined use of simple random sampling and difference

estimator. Of course, the second-order Bayes risk of the latter strategy is only of order

Oð1=
ffiffiffiffi
N

p
Þ. The situation is illustrated in Table 2, where RE refers to EðVsysÞ=EðVsrsÞ, and

CVd is the CV of the actual sampling variance induced by d ¼ SYS and SRS,

respectively. We notice the following. (I) As expected, the combined use of simple

random sampling and difference estimator is as efficient as the optimal systematic

sampling under Model (7) with a ¼ 0. The systematic sampling becomes slightly less

efficient under departures from the assumption a ¼ 0, i.e., as a moves from 0 towards 1.

(II) The second-order Bayes risk of systematic sampling is much greater than that of

simple random sampling under the assumption a ¼ 0. There is little variation in either for

0 # a # 1. In summary, the combined use of simple random sampling and difference

estimator is preferred to the optimal systematic sampling according to the robust Bayes

Table 2. Simulation results for equal-probability sampling in percentage: Systematic sampling based on Uopt

vs. combined use of simple random sampling and difference estimator

a ¼ 0 a ¼ 0:5 a ¼ 1

RE CVsys CVsrs RE CVsys CVsrs RE CVsys CVsrs

s ¼ 0:01 104 47 16 107 48 18 112 48 19
s ¼ 0:1 99 49 16 107 47 17 112 47 20

RE: Ratio between average systematic sampling variance and that of simple random sampling. CV: Coefficient of

variation of respective sampling variances.
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decision principle under Model (7) with a ¼ 0, and the choice is robust towards departures

from this assumption.

5. Systematic Sampling for Several Occasions

A systematic sample, once drawn, may be used for several subsequent occasions. Such a

sample may constitute a group in a rotating panel design, such as that of the LFS in most

countries. It can also form the core of a panel survey, with supplementary units added to the

sample from time to time, in order to account for natural regeneration of the population. To

simplify the discussion we assume here that a single systematic sample is drawn on the first

occasion and used for all the subsequent occasions before it is abandoned, and that the

population U remains the same throughout the period.

Results (4) and (6) apply then directly to the entire active period of the panel. More

explicitly, let yi ¼ ð yi1; : : : ; yit; : : : ; yiT Þ
T be the variables of interest associated with

i [ U. Results (4) and (6) apply directly to any function of yi. For instance, suppose that yi
consists of 4 employment status measures in each of the 4 quarters of a calendar year from

the LFS. The average yearly employment is given by the average of yi1 to yi4. By drawing a

systematic sample on the first occasion, one risks a variance fluctuation in the estimator of

the average yearly employment rate as well as in any single quarter.Moreover, an important

use of panel data is to estimate changes in the population. Let zi ¼ ðzi2; : : : ; ziT Þ
T , where

zit ¼ yit 2 yi;t21 for t ¼ 2; : : : ; T , are the period-to-period changes. Again, Results (4) and

(6) apply directly to any zit, such that the estimation of changemay have a high second-order

Bayes risk due to systematic sampling.

The considerations above do not take into account possible strong autocorrelation

among yi, which one often finds in natural populations. A conditional examination is

needed in addition. Consider the simplest setting where T ¼ 2, and yit is a categorical

variable such as the employment status. As a simple model of the dependence between yi1
and yi2 we assumeMarkov transition probability pab for yi2 ¼ b given yi1 ¼ a, independent

for i – j [ U. This amounts to a homogeneous population model (3) conditional on

y1i ¼ a. The systematic sample mean of zi ¼ yi2 2 yi1 is given as

�zm ¼
a;yi1¼a

X na

n
�zm;a

where na is the number of units with yi1 ¼ a and �zm;a is the mean of change among them.

Closed expression of the conditional variance Vsysð�zmj{yi1; i [ U}Þ appears intractable in

general.

Instead, consider any ordering where the units are segmented according to the value

of yi1. Assume that Na=k is naturally an integer for all a, where Na is the number of

units with yi1 ¼ a in the population. Both na and �ym;t¼1 then become constants of

sampling, such that the variance of �zm is simply the variance of �ym;t¼2. Result (4) can

now be applied to �ym;a;t¼2, i.e., within each segment of yi1 under the Markov

transition model, such that the second-order Bayes risks of �ym;a;t¼2 given {yi1; i [ U}

carries straight over to �zm. Consideration of this special case suggests that the

second-order Bayes risk of systematic sampling can be high for estimators of change
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in auto-correlated populations, also when the variance is evaluated conditionally. We

shall examine this issue in a simulation study below.

6. Simulation: Labour Market Dynamics

We simulate the labour market dynamics using data from the Norwegian Census 2001 and

the Norwegian LFS as follows. From the Census 2001, we obtain the employment status,

classified as “Employed”, “Unemployed” or “Not in the labour force”, which is to be

treated as the variable of interest in the population at t ¼ 1. Next, from the LFS of the last

quarter in 2004 and the first quarter in 2005, we observe a 3 £ 3-transition matrix for the

employment status between the two quarters. Using these Markov transition probabilities,

we are able to simulate an employment status in the population at t ¼ 2. The population

within each of the 19 counties in Norway is sorted by municipality, age, sex, and the

personal identification number (PIN), where the PIN may be considered as uncorrelated

with the employment status of interest.

We consider four different strategies: (1) equal-probability systematic sampling at t ¼ 1

and estimation based on direct weighting, denoted by Sys-Dir, (2) simple random

sampling at t ¼ 1 and estimation based on direct weighting, denoted by SRS, (3)

proportionally allocated stratified random sampling with regard to sex and age (altogether

22 groups) followed by stratified estimation, denoted by Str-SRS, and (4) equal-

probability systematic sampling followed by post-stratified estimation, with the 22 age-sex

groups as post-strata, denoted by Sys-Pst.

The simulations are carried out separately for each of the 19 counties of Norway,

reflecting the stratified design of the Norwegian LFS. A sample selected at t ¼ 1 is also

used at t ¼ 2, and the within-county sample sizes are taken from the Norwegian LFS. The

results are very similar for all the counties. Here we show only the situation for Østfold in

Figure 1. Systematic sampling can in this case be considered as implicit stratification with
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Fig. 1. Boxplot of standard error of (SE) of employment rate at t ¼ 2 (Emp), change in employment rate

(Change Emp), unemployment rate at t ¼ 2 (UnEmp) and change in unemployment rate (Change Unemp) for

county Østfold: direct weighting following simple random sampling (SRS), stratified random sampling with

proportional allocation (Str-SRS), systematic sampling (Sys-Dir), and poststratified estimation following

systematic sampling (Sys-Pst)
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regard to municipality, age and sex. The stratification effects are notable only for

employment rate at t ¼ 2 (Emp), giving about 20% variance reduction compared to SRS.

Most of the effect, however, can be achieved through stratification with regard to sex and

age alone. Notice that stratification with regard to municipality in addition is unpractical

due to the large number of strata. In all the other cases, no gains of efficiency can be

expected from using systematic sampling.

It is seen that, while the second-order Bayes risks of SRS and Str-SRS are negligible for

a population of this size (about 179 thousand persons), they are appreciable under

systematic sampling also when the variances are evaluated conditionally as is done here.

The CV of Vsys is 11.0% for Emp, 15.8% for Change Emp, 16.4% for UnEmp, and 15.4%

for Change UnEmp. These are comparable to the theoretical unconditional value given by

(4), which is approximately
ffiffiffiffiffi
2f

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=134:6

p
¼ 12:2% for Østfold. On certain occasions,

therefore, the variance fluctuation may cancel out the expected stratification effect on the

estimation of Emp. Notice that the second-order Bayes risk of systematic sampling cannot

be reduced by means of post-stratification.

In particular, for the estimation of changes which is our primary concern here, the CV

of systematic sampling variance is about the same as in the case of level estimation.

Thus, the use of systematic sampling may cause the actual sampling variance of a change

estimator to vary greatly over time. For instance, if the actual variance is 15% above the

expectation between the first and second quarters, and it is 15% below the expectation

between the second and third quarters, then the two change estimates have a difference

of 30% in their sampling variances, caused by the use of systematic sampling alone. Now

that the CV for the variance of either change estimator is about 15% here, this is hardly

an unusual scenario. In the more extreme case of two standard deviations up or down

from the expected sampling variance, the actual variance of one change estimator is

almost twice (i.e., 1.3/0.7) that of the other. It is certainly undesirable to keep this as a

feature of the sampling design.

7. Summary

In the above we introduced the concept of second-order Bayes risk and the robust Bayes

decision principle. We have considered a number of situations where systematic sampling

is commonly used as a substitute for alternative random sampling methods that are equally

efficient. It is shown that the practice can induce large second-order Bayes risks, i.e.,

fluctuations in the actual sampling variance, both in cross-sectional and longitudinal

survey sampling. This can be highly damaging for large samples taken from small

populations, or large subsamples from small subpopulations. The use of systematic

sampling for convenience is in such situations a haphazard business without any

expectation of gains in efficiency.

Systematic sampling is also frequently applied outside the situations that we have

considered. Cochran (1977) cited several examples, including the common use of one- or

two-dimensional systematic sampling in forestry and land surveys. Such situations can be

studied similarly to how it has been done here, but will require rather special population

models containing correlations over both time and space, which are beyond the scope of

this article. Moreover, as pointed out earlier, a systematic sample may still be easier to
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collect in such situations. Finally, the balance in a systematic sample may figure

prominently in land or ecology surveys. For instance, an even spread of the sample sites

may be considered more important than randomness of the sample for good spatial

smoothing of the data.

We have studied systematic sampling from a statistical decision point of view, where

the loss function is defined as the sampling variance of the survey estimator. Notice that,

for model-based inference where the variance of an estimator is evaluated under the

population model alone, the second-order Bayes risk of systematic sampling does not

differ from that of an alternative random sampling method, provided the sampling is

noninformative in both cases. Indeed, systematic sampling is sometimes considered to be

useful as a first step in constructing various balanced samples (Valliant et al. 2000,

Chapter 3).
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