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A dynamic sampling plan among strata is a permutation of sampled items specifying which
stratum is to receive the next item to be included in the sample. An optimal such plan has the
property of achieving minimum variance for its cost whenever it is truncated. This article
shows that optimal dynamic sampling plans exist under very general conditions, and gives a
simple algorithm for constructing them. The well-known Neyman allocation is compared to
the dynamic optimum, both statically and dynamically. The theorems rely on a version of the
Neyman-Pearson Lemma adapted for use in search theory.
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1. Introduction

In planning for a stratified sample in the context of an audit of a governmental data base, it

was not too hard to guess variances and relative costs of the strata. However, absolute costs

depended on how difficult it would be to find the hardcopy substantiation for sampled

items. When the plan was made, we had very little information about this. It was entirely

plausible that our cost estimates could be wrong by a constant factor of 2 (up or down), and

not implausible that they could be wrong by a factor of 5. Thus we could guess the ratio of

stratum sampling costs, but translating those into money or auditor time involved much

greater uncertainty. Using standard Neyman allocation in this context could result in a

sampling plan that is seriously over budget if sampling items is more time-consuming than

anticipated. On the other hand, it could result in a plan that has larger variance than

necessary because it failed to utilize fully the available sampling budget, if sampling items

is less time-consuming than anticipated. If there were only a single stratum, a random

permutation of the items, together with instructions to examine items in the order specified

by the permutation and to examine as many as resources allow, results in a valid random

sample regardless of where in the permutation sampling stops, provided that stopping is

independent of the sample results. The problem addressed in this article is to find an

analogous sampling plan when there are several strata.

Such a sampling plan is called “dynamic,” in contrast to “static” plans based on either a

fixed maximum budget or a fixed minimum variance to be attained. A dynamic sampling

plan should optimally have the property that wherever it is stopped, the result is an optimal
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allocation of sample units among strata. It is not obvious that such a sampling plan exists.

I show here that such plans do exist, give a simple necessary and sufficient condition for a

sampling plan to be dynamically optimal, and give a simple algorithm for constructing

such a plan. The analysis in this article draws heavily on that in Kadane (1968), using an

analogy between the jth search of box h and the assignment of j items to stratum h in a

sampling plan.

The remainder of this article is organized as follows: Section 2 reviews the literature and

states the main result of the article, Section 3 compares the resulting algorithm to Neyman

allocation, Section 4 gives practical considerations and an example, and Section 5

concludes. The theorems and proofs are in the Appendix.

2. Previous Literature and the Current Result

The current method of allocating sample observations to strata is to take sample sizes in

strata proportional to the number of items in the stratum times the stratum standard

deviation divided by the squared root of the cost of sampling per stratum element. The

result that this allocation minimizes cost for a fixed target variance, or minimizes variance

for a fixed target cost, is known as Neyman allocation, after Neyman’s (1934) famous

paper. Zarkovich (1956, 1962) shows that Tschuprow (1923a and b) and Kowalsky (1924)

anticipated Neyman in this respect. Fienberg and Tanur (1995, 1996, 2001) show that

Gram (1883) in turn anticipated Tschuprow and Kowalsky.

Neyman allocation involves a double approximation. A fundamentally discrete

problem, the choice of the number of items in a stratum to be sampled, is replaced by a

continuous one, in which it is imagined to be possible to allocate noninteger numbers of

observations to a stratum. The result cited above is then the solution to the continuous

problem. Then this continuous solution is in turn approximated by integer allocations.

However, as shown for example in Cochran (1977, pp. 115 ff.), the optimum is quite flat in

that small deviations in the allocations cause small variations in the consequent variance

obtained. Therefore, for the problem for which it is designed, Neyman allocation has

worked well in practice.

The approach taken here eliminates both approximations, and delivers a permutation of

the union of the strata having the property that wherever it is stopped, the resulting

allocation has the smallest variance possible among allocations costing no more than it

does. Furthermore the required computations are very simple.

To be precise, a static sampling plan is a sample from the universe of items. After they

are selected, sampling ceases. An optional static sampling plan minimizes some loss

function, such as a variance, subject to a constraint on the resources it requires. A dynamic

sampling plan is a permutation (i.e., an ordered list) of the universe of items, together with

the instruction to sample in the order specified by the permutation until sampling resources

are exhausted, or until variances are sufficiently small. An optimal dynamic sampling plan

is an optimal static sampling plan wherever it is stopped.

The mathematics in the Appendix can be summarized in the following result:

Theorem 1: Let Dj,h be the reduction in variance occasioned by taking j instead of j – 1

items from stratum h in the sample, and let cj,h be the added cost of doing so. Suppose that

Dj,h/cj,h is strictly decreasing in j for each h.
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Then a sampling plan that starts with the allocation of one sampled item to each stratum,

and then orders allocations by Dj,h/cj,h, highest first (breaking ties arbitrarily), is

dynamically optimal, and only such sampling plans are dynamically optimal.

In Theorem 1, Dj,h/cj,h is a benefit-cost ratio. Dj,h is the decrease in variance in assigning

j instead of j – 1 sample points to stratum h. Similarly cj,h is the additional cost of doing so.

To apply this result to the standard case sampling to estimate the mean of a stratified

sampling under linear cost, I use the following notation:

Suppose there are K strata indexed by h, and j ¼ 1; : : : ;1 indexes the number of

allocations to a stratum. A static sampling plan specifies the number of items nh to be

sampled from stratum h. The variance of the sampling plan with nh of the sample allocated

to stratum h is

Vð�ystÞ ¼
1

N 2

XK
h¼1

N2
hS

2
h

nh
2

1

N 2

XK
h¼1

NhS
2
h ð1Þ

where S2h is the variance of stratum h, Nh is the number of elements in stratum h and

N ¼
PK

h¼1Nh: See Cochran (1977, p. 97). Note that Vð�ystÞ is infinite if any nh ¼ 0, so we

restrict ourselves to sampling plans with nh $ 1. The cost of such a sampling plan is taken

to be

Cð�ystÞ ¼ C0 þ
XK
h¼1

nhch ð2Þ

It should be noted that these costs are the anticipated costs in the design stage.

Actual costs may differ from these by some constant multiple. Note, however, that the

dynamically optimal sampling plan is invariant to the value of that constant multiple.

Let dh ¼ N2
hS

2
h=N

2: Then the decrease in variance occasioned by increasing the

allocation to stratum h from j 2 1 to j is

Dj;h ¼
dh

j2 1
2

dh

j
¼

dh

jðj2 1Þ
ð3Þ

provided j . 1, and the cost increases by

cj;h ¼ ch ð4Þ

Since
Dj;h

cj;h
¼ dh

chðjÞðj21Þ
strictly decreases in j for each h, a dynamically optimal sampling

plan exists, and is given by the theorem above.

This method can be applied to other loss functions than the variance of a sample mean,

and to other cost functions. For example, Cochran (1977, p. 96) mentions the possibility of

a cost function in which travel costs dominate, and are approximated by

XK
h¼1

th
ffiffiffiffiffi
nh

p
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Then cj;h ¼ th½
ffiffi
j

p
2

ffiffiffiffiffiffiffiffiffiffi
j2 1

p
�: The key condition that assures the existence of a

dynamically optimal sampling plan is that Dj,h/cj,h is decreasing in j for each h. In this case,

Dj;h

cj;h
¼

dh

thjðj2 1Þð
ffiffi
j

p
2

ffiffiffiffiffiffiffiffiffiffi
j2 1

p
Þ

To see that this is decreasing in j, observe that ð
ffiffi
j

p
2

ffiffiffiffiffiffiffiffiffiffi
j2 1

p
Þð
ffiffi
j

p
þ

ffiffiffiffiffiffiffiffiffiffi
j2 1

p
Þ ¼ 1: Hence

Dj;h

cj;h
¼

dh

th
·

ffiffi
j

p
þ

ffiffiffiffiffiffiffiffiffiffi
j2 1

p

jðj2 1Þ
¼

dh

th

1

j1=2ðj2 1Þ
þ

1

jðj2 1Þ1=2

� �

which decreases as j increases.

Hence, using this Dj,h and cj,h, the same results and algorithm may be applied to find a

dynamically optimal sampling plan, and hence optimal sampling plans for fixed variances

or fixed cost.

3. A Comparison with Neyman Allocation in the Static Case

As mentioned above, Neyman Allocation amounts to minimizing (1) by choice of the

numbers nh, subject to (2) and the constraints

nh # Nh for each stratum h ¼ 1; : : : ;K ð5Þ

Typically solutions to this minimization neglect the constraints (5) until later.

This minimization, for real numbers nh, can be regarded as a nonlinear program.

Cochran (1977, pp 97, 98) solves it using the Cauchy-Schwartz inequality, following

Stuart (1954). It can also be thought of as a geometric program (Duffin et al. 1967). I prefer

to derive it using a LaGrange multiplier technique, as this is more general, applying to loss

functions other than (1) and cost constraints other than (2).

In the notation introduced above, (1) can be rewritten as

Vð�ystÞ ¼
XK
h¼1

dh

nh
2 L

where L ¼ 1
N 2

PK
h¼1NhS

2
h does not depend on the allocations nh. Then forming the

Lagrangian,

L ¼
XK
h¼1

dh

nh
2 Lþ l

XK
h¼1

cnNh þ C0 2 C

 !

Taking the first derivative with respect to nh and l and setting them equal to 0, yields,

respectively,

2dh

n2h
þ lch ¼ 0 h ¼ 1; : : : ;K ð6Þ

and (2).
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Rearranging (6) gives

nh ¼
1ffiffiffi
l

p

ffiffiffiffiffi
dh

ch

r
h ¼ 1; : : : ;K ð7Þ

Now the constraint (2) can be used to solve for 1=
ffiffiffi
l

p
:

C 2 C0 ¼
XK
h¼1

chnh ¼
1ffiffiffi
l

p
XK
h¼1

cn
ffiffiffiffiffiffiffiffiffiffiffi
dn=ch

p
¼

1ffiffiffi
l

p
XK
h¼1

ffiffiffiffiffiffiffiffiffi
cndh

p

Hence 1ffiffi
l

p ¼ C2C0PK

h¼1

ffiffiffiffiffiffiffi
cndh

p : Substituting this result into (7) yields

nh ¼
ðC 2 C0Þ

ffiffiffiffiffiffiffiffiffi
dnch

p

PK
h¼1

ffiffiffiffiffiffiffiffiffi
chdh

p ð8Þ

So far, the constraints (5) have been neglected. When (8) yields a solution violating (5)

for some strata, those strata are to be sampled fully, by setting nh ¼ Nh, and (8) is to be

recomputed for the remaining strata, adjusting C0 and K accordingly. This results in

allocations to the remaining strata higher than previously found. Again (5) may be

violated. This process is to be repeated until (5) is satisfied for the remaining strata.

Finally, the constraint that the nh’s be integers must be addressed. There may not exist

an integer solution to the minimization of (1) subject to (2), so (2) must be replaced by

Cð�ystÞ $ C0 þ
XK
h¼1

nhcn ð9Þ

The fully sampled strata already have allocations nh that are integers, so they need not

be considered further. The less-than-fully-sampled strata have not-necessarily-integer

allocations from (8) that can be thought of as consisting of an integer part and a fractional

part, i.e.,

nh ¼ ih þ f h ð10Þ

where ih is an integer, and 0 # f h , 1 is the fractional part. Now a new minimization

results, namely to minimize, with respect to fh,

XK
h¼1

dh

ih þ f h
2 L ð11Þ

subject to the constraintsX
chf h # 0 ð12Þ

and f h integers: ð13Þ

This nonlinear integer programming problem is usually avoided by applying some

heuristic rounding rule to the allocations derived in (8). As mentioned earlier, because of

the flatness of the variance function in the variables nh, these heuristic rules tend to work

satisfactorily in practice.
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The minimization technique used in Theorem 1 avoids the complication of re-

computation if there are fully-sampled strata and automatically gives integer solutions. It

gives all the possible combinations of variances achieved and cost expended, allowing a

statistician to choose that combination most suitable to the problem at hand.

None the less, it is reasonable to suppose that the solutions proposed by Theorem 1 and

those given by Neyman Allocation will approximate each other under certain conditions.

Note that the ratios Dj;h=cj;h ¼
dh

chðjÞðj21Þ
approach 0 as j gets large. Suppose that the

allocation algorithm specified by Theorem 1 has been going for some time, so that each

stratum has some minimal allocation. Limiting attention to those strata not yet sampled

with certainty, to a reasonable approximation the ratios Dj,h/cj,h will be the same for each

such stratum h. This will not be exactly true, of course, but because strata with current

ratios substantially larger than others would have been included in the current allocations

already, it will be approximately true. Thus the nh‘s for strata not yet sampled with

certainty will satisfy roughly

Dnh;h

Cnh;h
, s ð14Þ

for some constant s.

The second approximation I make is that, again roughly, 1
nnðnh21Þ

, 1
n2
h

: For example,

when nh is 10, 1
90
¼ :0111 is not very different from 1

100
¼ :01; and the difference will

decline even further as nh grows.

Combining these approximations yields

s ,
Dnh;h

cnh;h
¼

dh

chðnhÞðnh 2 1Þ
,

dh

chn
2
h

ð15Þ

Solving for nh,

nh ,
1ffiffi
s

p

ffiffiffiffiffi
dh

ch

r
ð16Þ

which is the Neyman allocation. Thus it is reasonable to expect that the allocation of

Theorem 1 will differ from those of Neyman allocation most strongly when stratum sizes

are fairly small, as this is when the integer restriction matters the most.

4. Practical Considerations

In application, it is important that each stratum be given a random permutation, so that

each element of each stratum has the same chance of being in each position in the

dynamically optimal allocation to which an element of that stratum is assigned.

When sampling is intense, so that large numbers of observations are assigned to each

stratum, it is to be expected that the continuous approximations involved in the Neyman

allocation will be less onerous. Conversely, the optimal allocation will be relatively farther

from the Neyman allocation when the samples are small. This point is illustrated in

Figure 1, computed in an example with three strata, with respective sizes 3, 5 and 7,

variances 7, 9, and 11, and costs per sample 2.5, 4.2, and 6.7. The most desirable direction

is toward the lower left, combining small cost with small variance. The line gives the
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combinations of costs and variances from the Neyman allocation, but these cannot be

attained. The dots are from the dynamic optimum, and can be attained. The reason for the

difference is that the Neyman allocation assumes that any real number can be used as a

stratum allocation, so it achieves apparently better, but unobtainable, combinations of cost

and variance. By contrast, the dynamic allocation is restricted only to integer allocations.

Notice that toward the upper left of the graph, indicating a larger sample than the lower

right, the dots and the curve move closer together, as hypothesized.

A program in S þ to compute dynamic allocations has been submitted to StatLib’s

archive (http://lib.stat.cmu.edu/S).

An important qualification to any dynamic sampling plan is that the stopping rule is

independent of the sampling results. Thus if the people doing the sample look ahead to see

which items are next, and use prior information about likely results if the next items were

sampled, the validity of the result is destroyed. Alternatively, it might be the case that

sample results are not independent of sample costs, if, say, a discrepant result in an audit

costs more to research than a nondiscrepant one. These cases are outside the scope of this

article.

I envisage that standard analysis can be used, conditional on the stratum allocations nh.

In the lead example of estimating a population mean, the stratified sampling variance (1)

would still be relevant, conditional on the nh’s actually obtained.
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Figure 1. The continuous line gives the Neyman allocation costs and variances; the dots are the dynamic

allocation costs and variances. For example, the dot on the lower right corresponds to n1 ¼ n2 ¼ n3 ¼ 1 with

cost (1) (2.5) þ (1) (4.2) þ (1) (6.7) ¼ 13.4
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While uncertainty about a constant factor multiplying costs was the motivating example

for this article, uncertainty about variances is also a concern. While they are assumed

known in the design phase, of course they are estimated after the data are gathered.

A referee writes “In my experience, as the sample size increases, apparent variance may

also increase substantially, due to an increase in nonsampling error (i.e., a decrease in data

quality). In the application described, this could just mean that care should be taken in the

collection of each additional observation, rather than rushing to see how many

observations can be made.” Additionally, it is worth noticing that the dynamically optimal

plan is invariant to misestimation of variances by a common constant, just as it is to

misestimation of costs by a common constant.

5. Conclusion

This article draws a distinction between static and dynamic sampling plans. In a static

plan, either the maximum cost allowed or the minimum variance required is known in

advance. In such a situation, Neyman allocation generally works satisfactorily. However,

in a dynamic problem, in which the plan has to be flexible in case the costs are either too

high or too low by a constant factor, Neyman allocation is awkward and ill-suited. Optimal

dynamic plans are shown to exist, and are easy to compute.

Appendix

Thus we seek a strategy to maximize

X
Dj;h ð17Þ

subject to

X
cj;h # C 2 C0 ; L ð18Þ

where both summations extend over all ( j, h) for which there is a jth element from stratum

h in the sampling plan.

Because (5) and (6) do not depend on the order in which the sample units in s are

examined, the double summation over j and h can be replaced with a single summation

over i, where i represents a pair ( j, h), and i is an element of an unordered set S. However,

an additional constraint must be imposed, that if a set includes assignment ( j, h), it must

include assignment ( j 2 1, h) for all j . 1. Such a set is called feasible.

Hence we seek a set S maximizing

X
Di ð19Þ

subject to the constraintX
ci # L ð20Þ
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where both summations extend over S. The assumption of feasibility is ignored for the

moment; later it will be shown that the sets maximizing (7) subject to (8) are feasible.

This maximization of (7) subject to (8) is very close to that solved by the Neyman-

Pearson lemma, in which a critical set is chosen to maximize power subject to the

constraint that the size of the test be no larger than some specified a. Let B be the sum of

costs ci over those Di that are positive, and suppose C0 , L , B, so that some, but not all

useful sampling is included in the budget. Note that B might be infinite.

The following theorem is a version of the Neyman-Pearson Lemma (Kadane 1968,

Theorem 1; Lehmann 1959, pp. 65, 66):

Theorem 2: Let {Di} and {ci} be arbitrary nonnegative sequences such that
P

Di , 1.

Let X be the class of sequences xi such that 0 # xi # 1 for all i. If C0 , L , B, then the

maximum ofX
xiDi ð21Þ

subject toX
xici # L ð22Þ

and x [ X is attained, and it occurs when and only when

xi ¼
1 if Di . rci

0 if Di , rci

(
ð23Þ

for some r, 0 , r , 1, and

C0 þ
X

xici ¼ L ð24Þ

The set of r’s satisfying (11) is the same for each optimal x and is a single point or a

closed interval.

The function X can be taken to have only the values 0 and 1 if and only if L can be

expressed as the sum of cost of all stratum allocations with Di=ci bigger than some r,

possibly together with costs of some stratum allocations with Di=ci ¼ r. Otherwise a

fractional X must be used for some i, but one such xi is always enough.

When xi is neither 0 or 1, it can be interpreted as a randomization probability, in which

with probability xi the extra observation is included, and with probability 1 2 xi it is not.

This has the same role as randomization to achieve a fixed level of a test in the Neyman-

Pearson theory. With such a possible randomization, (9) can be thought of as the expected

variance, and the left side of (10) as the expected cost.

Call a set of stratum allocations locally optimal if inclusion of i0 and exclusion of i

implies

Di0

ci0
$

Di

ci
ð25Þ

By Theorem 2, a set of stratum allocations included or partially included in a sampling

plan can correspond to a solution to the relaxed problem only if it is locally optimal.
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Returning to the double-subscript notation and the requirement of feasibility, a set of

sample allocations is locally optimal if inclusion of ( j0, h0) and exclusion of ( j, h) implies

Dj0;h0

cj0;h0
$

Dj;h

cj;h
ð26Þ

Since Dj,h/cj,h is strictly decreasing in j for each h, every locally optimal sampling

allocation is feasible.

Theorem 3: Permit a randomized last allocation and suppose that Dj,h/cj,h is strictly

decreasing in j for each h. Then any set that maximizes (5) subject to (6) and costs no more

than L, C0 , L , B, includes all stratum allocations for which

Dj;h

cj;h
. r

for some r, excludes all those for which

Dj;h

cj;h
, r

and includes enough of those with

Dj;h

cj;h
¼ r

to spend exactly L. Each such set is feasible and maximizes (5) subject to (6). A

randomized last allocation is unnecessary if and only if L is the cost of some locally

optimal set.

Theorem 3 shows that ordering allocations according to Dj,h/cj,h, largest first, and

breaking ties arbitrarily, yields a sampling plan that is dynamically optimal.

When a randomized last allocation is not permitted and L is not the cost of some locally

optimal set, the optimal allocation may be found using a branch and bound algorithm (see

Kadane (1968, Section 3) and Kolesar (1967)). In this case the optimal allocation need not

be a truncation of a dynamically optimal plan.
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