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Optimal Local Suppression in Microdata

A.G. de Waal and L.C.R.J. Willenborg1

1. Introduction

In former days statistical of®ces used to publish only macrodata, i.e., tables. This was

suf®cient to satisfy the demands of the users of statistical data. Nowadays, however, the

users of statistical data want to have data that are as detailed as possible. Not only do

they want more detailed tables, but they also want to have microdata, i.e., data for indi-

vidual respondents. This is mainly due to the increased power of modern computers, which

enables users of statistical data to analyze these microdata by themselves. As a conse-

quence of the demand for microdata statistical of®ces are put in a dif®cult position. On

the one hand it is their duty to satisfy this demand, on the other hand they should

protect the privacy of their respondents.

To achieve both aims, i.e., to satisfy the demand for microdata while protecting the

privacy of the individual respondents, statistical of®ces apply certain protection measures.

The measures are applied only when the privacy of some respondents is endangered. Infor-

mation that is deemed safe is not protected in order to release as much information as

possible. Examples of protection measures are global recoding, where several categories

of a variable are combined into a single one, and local suppression, where a value of a
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variable in a record is replaced by ``missing.'' In this article we explain how to determine

the minimum number of local suppressions such that the resulting microdata set is con-

sidered safe.

The remainder of this article is organized as follows. In Sections 2 and 3 the approach

that has been adopted by Statistics Netherlands to protect its microdata sets against statis-

tical disclosure is sketched. In particular, a rule based on checking the frequencies of

certain combinations of values of variables is described in Section 2. In Section 3 two

statistical disclosure control (SDC) techniques to protect microdata sets are described in

some detail, i.e., global recoding and local suppression. Both techniques are extensively

used at Statistics Netherlands. More information on the view of Statistics Netherlands

with respect to the protection of microdata sets can be found in De Waal and Willenborg

(1996) and Willenborg and De Waal (1996). For more information on SDC in general we

refer to Duncan and Lambert (1986, 1989), Fienberg (1994), Lambert (1993), Marsh, Dale

and Skinner (1994), Paass (1988), and Skinner, Marsh, Openshaw, and Wymer (1994).

The problem of minimizing the number of local suppressions while protecting a micro-

data set is described in Section 4. This problem is a special case of a general mathematical

problem. The general problem is stated in Section 5. A similar problem, namely the prob-

lem of minimizing the number of different categories that are affected by local suppres-

sions, i.e., that are suppressed in at least one record, is discussed in Section 6. Special

solutions to the problems in Sections 5 and 6 are examined in Section 7. In Section 8 solu-

tion methods for the problems considered are examined. Finally, Section 9 concludes this

article with a short discussion of its main ®ndings and some suggestions for future research.

2. Statistical Disclosure Control for Microdata

To protect the privacy of respondents a statistical of®ce should prevent the disclosure of

sensitive information on individual respondents by an intruder. As disclosure of sensitive

information is possible only after an individual has been identi®ed, a statistical of®ce

usually tries to prevent the identi®cation of individual respondents.

Identi®cation of individual respondents can occur when values of several so-called

identifying variables are taken into consideration. The distinction between identifying

variables and non-identifying variables is not clear, and has to be made on the basis

of a personal judgement. Identifying variables, intuitively, concern characteristics of

individuals that can be known by other people, and that could be used to track somebody

down. An example of a variable that might qualify as non-identifying is ``The party for

which you voted when you voted for the ®rst time.'' Examples of identifying variables

are ``Age,'' ``Sex,'' ``Domicile,'' and ``Occupation.'' The values of identifying vari-

ables can be assumed known to friends and acquaintances of a respondent. Although

each identifying variable is generally not suf®cient to identify an individual when con-

sidered separately, a combination of identifying variables might be suf®cient. When a

combination of values of identifying variables is unique, i.e., occurs only once in the

population, then an intruder might identify the corresponding individual. For example,

the combination ``Age� 20,'' ``Sex�Female,'' ``Domicile�Amsterdam,'' and ``Occu-

pation�Miner'' is very likely a unique combination (if it is not an error!). So, an intruder

may identify this individual, i.e., he or she may be able to determine the name of this
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individual. Subsequently, the intruder may be able to use the released microdata set to

disclose sensitive information about this respondent.

In practice, however, it is a bad idea to prevent only the occurrence of respondents in the

microdata set who are unique in the population (with respect to a certain combination of

values). Firstly, because unicity in the population, in contrast to unicity in the microdata

set, is hard to establish. Secondly, because an intruder may look at other combinations of

values than the statistical of®ce does. For these reasons it is better to avoid the occurrence

of combinations of values in the microdata set that are rare in the population, instead of

trying to avoid only the population-uniques in the microdata set.

To prevent the occurrence of rare combinations of values in the microdata set, SDC

rules at Statistics Netherlands prescribe which combinations of values of identifying vari-

ables have to be checked before a microdata set can be disseminated. Moreover, the rules

also prescribe how many times these combinations have to occur in order to be considered

safe for release, i.e., the rules prescribe certain threshold values. For instance, the SDC

rules may describe that the bivariate combinations ``Occupation ´ Statistician'' ´
``Sex�Male'' and ``Occupation� Statistician'' ´ ``Nationality� non-Dutch'' each

should occur at least 20 times in the microdata set to be considered safe. In case the

frequency of a particular combination is at least the prescribed threshold value then this

combination is considered safe. Otherwise the combination is considered unsafe and

disclosure limitation measures should be applied. The threshold values may depend on

the combination that has to be checked. For example, the threshold value of a bivariate

combination may be different from the threshold value of a trivariate combination. For

a discussion of this approach see Pannekoek and de Waal (1998) and Zaslavsky and

Horton (1998).

3. Global Recoding and Local Suppression

To safeguard a microdata set against statistical disclosure two techniques are often applied

at Statistics Netherlands, namely global recoding and local suppression. In the present

section we discuss the meaning and application of these techniques to produce safe micro-

data. In case of the procedures applied at Statistics Netherlands this amounts to

``removal'' of unsafe combinations. In the present section we explain how this removal

is to be interpreted in case of global recoding and in case of local suppression. Of course,

the elimination of unsafe combinations should cause as little information loss (suitably

quanti®ed in one way or another) as possible. In Subsection 3.1 global recoding is con-

sidered and in Subsection 3.2 local suppression. Subsection 3.3 discusses both techniques,

in particular if they are used simultaneously to eliminate unsafe combinations from a

microdata ®le.

3.1. Global recoding

In case of global recoding several categories of a variable V are collapsed into a single one.

In the corresponding microdata ®le the values of V appearing in the respective records are

replaced by the new codes. A global recode is applied to the entire data set, not only to the

unsafe part of the data set. This is done to obtain a uniform categorization of each variable.

As an example consider the variable ``Age'' which can take the values 0, 1, 2, ¼, 99, each
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of which stands for the age of a person in years. Suppose ``Age'' is recoded by collapsing

the original values into 10-year classes, i.e., by collapsing the original values 0, 1, ¼, 9

into a single category 0±9, the original values 10, 11, ¼, 19 into a single category

10±19, et cetera. Then each original value of the variable ``Age'' in the microdata set

is replaced by the corresponding 10-year class. For instance, for each record in which

the original value of ``Age'' equals 26 the new, recoded, value equals 20±29 and similarly

for all other ages. The effect of globally recoding the variable ``Age'' is that less detailed

information about the age of a person is released.

In the SDC package, m-ARGUS global recoding can be applied both interactively and

automatically. (Information on m-ARGUS can be found on the web page http://

www.cbs.nl/sdc.) In the former mode the user should specify which variables to recode

and which categories to combine. In the latter mode, m-ARGUS should pick a coding

from a set of possible codings for the variable it wants to recode. For instance, for the vari-

able ``Region'' the possible codings could be municipalities (in the original ®le), regions

within provinces, provinces, and clusters of provinces. These alternative codings have

been prepared prior to the SDC process, for each identifying variable present in the micro-

data set. Advantages of this way of global recoding, compared to the general case, is that it

is easier to automate, and that it allows to control the codings that will be generated. This

prevents the possibility that a coding of a variable is generated that is not used in practice.

3.2. Local suppression

In case of local suppression the value of a variable V in a record R is replaced by a missing

value. In the corresponding microdata ®le the original value of V in record R is replaced

by the ``missing'' value. Whereas a global recode is applied to the entire data set, a local

suppression is only applied to a particular value in a particular record. This means that

local suppression does not require that de®nitions of variables need to be changed, because

it does not effect the coding of any variable.

To explain the mechanics of this elimination process, consider, for example, a ®le of the

Dutch Labor Force Survey, containing ``Region'' (municipalities) and ``Profession.''

Suppose that, among other things, one has to check the bivariate combination

``Region'' ´ ``Profession.'' Assume that, for instance, the combination ``Urk'' ´ ``mathe-

matician'' occurs once in the ®le and the threshold is set to three, which means that this

combination is considered unsafe. (Urk is a small village in The Netherlands.) If we

locally suppress ``Urk'' in the record in which the combination appears, it has to be

checked that the remaining ``combination'' ``mathematician'' appears frequently enough

in the ®le, i.e., at least three times. If so, the remaining combination is safe (which is

likely). It would also be possible to suppress the value ``mathematician'' instead of the

value ``Urk''. Then it has to be checked that the combination ``Urk'' occurs frequently

enough in the ®le. Whatever value is locally suppressed depends on the purposes one

has in mind for the analyses of the protected ®le, and could formally be quanti®ed in terms

of information loss. The intuitive goal that one wants to pursuit is to produce a safe ®le

with a minimum loss of information.

It should be noted that there is an important difference between local suppression in

microdata sets and cell suppression in tables. If a cell value in a table is suppressed it is
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often necessary to suppress some additional cell values, because usually the marginal

totals of the tables are published. These marginal totals allow one in many cases to com-

pute the value of a suppressed internal cell value if no additional cell values have been

suppressed (for more information on cell suppression in tables see Willenborg and

De Waal, 1996). If a value in a record in a microdata set is locally suppressed, then this

value cannot be computed, because there are no marginal totals. Of course, one can com-

pute the marginal totals oneself, but the computed marginal totals will be (partly) based on

the missing values. So, the computed marginal totals cannot be used to recalculate the

missing values.

3.3. Discussion

Both techniques, global recoding and local suppression, can be used to eliminate unsafe

combinations, each in its own way. These techniques can be used separately or in combi-

nation. Both techniques cause a certain loss of information in the data ®le to which they are

applied. Moreover, local suppression may induce biased estimates when it is being dealt

with in a straightforward (but naive) way, such as ignoring the missing values. For that

reason it should be applied only on a relatively small scale. Global recoding is the prefer-

able technique when a large number of unsafe combinations have to be eliminated (and

hence the number of required local suppressions would be large.) On the other hand, local

suppressions may be preferable to global recodings when much information would be lost

due to these global recodings. When the number of local suppressions is small the bias

introduced in estimates is often negligible, whereas the information loss that would

have occurred when the microdata set should have been protected by global recodings

only would have been substantial. In practice the right balance has to be found between

applying global recodings on the one hand and local suppressions on the other.

At Statistics Netherlands ®rst some variables are globally recoded and subsequently the

remaining unsafe records are protected by locally suppressing some values. The package

m-ARGUS is designed to carry out these tasks smoothly. In this article we assume that the

approach outlined above is used, i.e., that the global recodings have already been carried

out. Only the local suppressions remain to be determined. In the remainder of this article

we explain how the number of local suppressions can be minimized.

This approach can in turn be used as a stepping stone to a more comprehensive ± and in

practice more useful ± model in which the optimum mix of global recodings and local sup-

pressions to eliminate a given set of unsafe combinations has to be calculated (cf. Hurkens

and Tiourine, 1998a, b.) Such a model can, in turn, be seen as a precursor to a model in

which the unsafety de®nition of microdata on the basis of a frequency criterion for certain

combinations of values is replaced by a probabilistic model that yields the disclosure risk

for each record in a ®le (cf. De Waal and Willenborg, 1996). The aim is then again to

modify an unsafe microdata set by global recoding and local suppression, in such a way

that a safe one is obtained, with minimum information loss. A microdata ®le is then

considered safe if the disclosure risk for each record is below a given threshold value.

4. Optimal Local Suppression

The easiest way to determine which variable values should be locally suppressed would

be to do this for each combination that has to be checked and for each record
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separately. Basically there are two ways of doing this. Firstly, a value may be set to

``missing'' immediately after a certain unsafe combination is identi®ed. The resulting

microdata set, with missings due to local suppression, is then used to determine whether

or not other combinations, possibly in other records, are safe. Secondly, the original micro-

data set may be used to determine whether or not a certain combination is safe. However,

both approaches lead to some practical problems.

Suppose that a value is set to ``missing'' immediately after a certain unsafe combination

is identi®ed and that the resulting microdata set, with missings due to local suppression, is

used to determine whether or not other combinations, possibly in other records, are safe.

The problem with this sequential approach is that some combinations may not incorrectly

seem to appear frequently enough. For example, if we suppress the value ``Statistician'' in

the combination ``Occupation� Statistician'' ´ ``Nationality� non-Dutch,'' then this

may have the consequence that later on the combination ``Occupation� Statisti-

cian'' ´ ``Sex�Male'' might not seem to occur frequently enough. This combination

would therefore be considered unsafe. However, this combination could occur frequently

enough in the original microdata set. In that case it should in fact be considered safe.

Alternatively, the original microdata set can be used to determine whether or not a

combination is safe. This approach may also lead to problems. Suppose, for instance,

that the combination ``Occupation� Statistician'' ´ ``Nationality� non-Dutch'' does

not occur frequently enough in the (original) ®le and that we decide to suppress the value

of ``Nationality'', i.e., ``non-Dutch'', in each record in which this combination occurs.

Suppose furthermore that the combination ``Occupation� Statistician'' ´ ``Sex�

Female'' also does not occur frequently enough and in this case we decide to suppress

the value ``Female.'' Then it is likely that we suppress too much. In case there would

be records of non-Dutch female statisticians in the microdata set then it would have

been better if we had suppressed the single value ``Statistician'' for these persons instead

of the two values ``non-Dutch'' and ``Female.'' Here we make the assumption that

the combinations obtained after suppressing the value ``Statistician,'' i.e., ``National-

ity� non-Dutch'' and ``Sex� Female,'' occur frequently enough in the population.

Whether this assumption is correct has to be checked, of course.

We conclude that we cannot decide for each unsafe combination and record separately

which values should be suppressed if we want to minimize the number of local suppres-

sions. We have to decide which values have to be suppressed for all the unsafe combina-

tions and records simultaneously. In Section 5 we examine how the resulting problem can

be formally stated as a 0±1 integer programming problem.

5. Models for Optimal Local Suppression

In this section we formulate ``local suppression in a microdata ®le'' as a general 0±1

integer programming problem. We show that the problem discussed in Section 4 is a

special case of this general problem. We begin by de®ning the term ``minimum unsafe

combination,'' or MINUC. These MINUCs will play a crucial role in the remainder of

this article.

To ®x our minds we suppose that the applicable SDC rules required that it is necessary

to check whether certain trivariate combinations of values of identifying variables occur
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frequently enough. The fact that we are considering combinations of three values of

identifying variables is not really restrictive. The number three could be replaced by

any other number without affecting the essence of the method. In the sequel we only

consider the identifying variables of the microdata set because our measures to protect

a microdata set involve only such variables. In other words, whenever we refer to (a

category/value of) a variable we mean (a category/value of) an identifying variable.

We start by checking all the univariates. In case a value of a variable is considered safe

we check the bivariate combinations in which this value occurs. In case a value of a vari-

able does not occur frequently enough, e.g., ``Occupation�Mayor,'' we do not check the

bivariate combinations involving ``Occupation�Mayor,'' e.g., ``Occupation�Mayor'' ´
``Sex� Female.'' Next we check the trivariate combinations in which only safe bivariate

combinations occur. After checking the required trivariate combinations we are able to list

for all the records the minimum unsafe univariate, bivariate and trivariate combinations.

A consequence of this way of constructing the MINUCs is that whenever we suppress a

value in a minimum unsafe n-variate combination the resulting (n ÿ 1)-variate combina-

tion will be safe. Moreover, when in each MINUC of a record at least one value is sup-

pressed then this record is considered safe. This property of the MINUCs makes it easy

to ®nd the minimum number of local suppressions.

Suppose we need to suppress some variable values in some records. For each value j in a

MINUC in record i we introduce a dummy variable yij. This dummy variable is equal to 0

if value j in record i is not suppressed or if value j does not occur in record i; otherwise it is

equal to 1. For each MINUC and for each record we have the constraint stating that at least

one value of a MINUC in a record must be suppressed. In other words, the sum of the yij's

of the corresponding values is at least 1. As we have remarked before this constraint is

necessary and suf®cient in order to make this combination safe. As a target function we

use a weighted sum of the yij's.

In mathematical terms we consider the following 0±1 integer programming problem.

Let the total number of unsafe records be denoted by I and the total number of different

values involved in the MINUCs by J. After renumbering the records and the variables the

dummy variables yij (i � 1;¼; I; j � 1, ¼; J ) must satisfy

yij �

1 if value j in record i is suppressed

0 if value j in record i is not suppressed

or if value j does not occur in record i

8><>: �5:1�

Suppose there are K MINUCs in the microdata set. Let cjk ( j � 1;¼; J; k � 1;¼;K )

and dik (i � 1;¼; I; k � 1;¼;K ) be de®ned by

cjk �
1 if value j occurs in MINUC k

0 otherwise

�
�5:2�

and

dik �
1 if MINUC k occurs in record i

0 otherwise.

�
�5:3�
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The constraints of the problem are given byXJ

j�1

cjk yij $ dik; for all i � 1;¼; I; k � 1;¼;K �5:4�

since we have to suppress at least one value in each MINUC.

We consider the following target function:

XI

i�1

XJ

j�1

wij yij �5:5�

where wij denotes the non-negative weight of value j in record i which needs to be speci-

®ed by the user. Our problem is to minimize the target function (5.5) under the constraints

given by (5.1) and (5.4).

Note that the problem discussed in Section 3 is obtained if we choose all the weights wij

equal to one. Because the weights in the target function (5.5) may be arbitrary non-nega-

tive numbers the problem stated above is more general than the problem of Section 3. The

weights allow one to indicate how important one considers a speci®c value in a speci®c

record to be as far as local suppression is concerned.

Also note that the problem above can be decomposed into subproblems for each

record separately. For each record i the target function (5.5) has to be replaced by the target

function

XJ

j�1

wij yij for all i � 1;¼; I �5:6�

The constraints to be considered for this problem consist of all those given in (5.4) as far as

they pertain to record i.

This subproblem for each record can sometimes be partitioned into a number of smaller

subproblems. Consider the MINUCs of a particular record to be the vertices of a graph.

Two MINUCs are joined by an edge if and only if they have a value in common. This

graph may be disconnected. In that case it consists of several connected subgraphs that

are mutually disconnected. Each subgraph corresponds to a subproblem, namely the pro-

blem of minimizing (5.6), under the constraints that the MINUCs corresponding to the ver-

tices are made safe. Thus sometimes we will be able to reduce the original problem to a

number of smaller subproblems. But also these subproblems may sometimes be reduced to

still smaller problems, some of which are trivial.

This reduction follows from the observation that only the dummy variables correspond-

ing to values that occur in more than one MINUC have to be considered. Combinations

that are still unsafe after some of these values have been suppressed can be made

safe by suppressing the values involved, taking the weights associated with each of the

variables into account.

Thus in practice we can expect that the general optimization problem will be reduced

to a number of small subproblems. This implies that it may even be feasible to try all

possibilities in order to minimize the target function.

Example: Throughout the remainder of this article we illustrate the optimal solutions to the
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problems considered by means of an example. In this example there are eleven unsafe

records, seven variables (V1 to V7) and 21 different values (A to U ). These eleven records

contain the following MINUCs:

Record 1: ``V1 � A'' ´ ``V2 � B'' and ``V2 � B'' ´ ``V3 � C''

Record 2: ``V1 � A'' ´ ``V4 � D'' and ``V1 � A'' ´ ``V5 � E''

Record 3: ``V2 � F'' ´ ``V3 � C''

Record 4: ``V1 � G'' ´ ``V2 � H '' and ``V2 � H '' ´ ``V3 � I ''

Record 5: ``V5 � J '' ´ ``V6 � K ''

Record 6: ``V5 � J '' ´ ``V6 � L''

Record 7: ``V1 � M'' ´ ``V2 � N '' and ``V2 � N '' ´ ``V3 � O''

Record 8: ``V1 � M '' ´ ``V3 � O''

Record 9: ``V5 � P'' ´ ``V6 � Q'' and ``V6 � Q'' ´ ``V7 � R''

Record 10: ``V5 � S'' ´ ``V6 � T ''

Record 11: ``V5 � S'' ´ ``V7 � U ''

Thus Records 1, 2, 4, 7, and 9 each contain two unsafe combinations and the remaining

records one each. Note that the records containing two unsafe combinations each have

one overlapping variable/value, that is a variable value combination that appears in

both MINUCs. For Record 1 this is ``V2 � B,'' for Record 2 ``V1 � A,'' for Record 4

``V2 � H ,'' for Record 7 ``V2 � N ,'' and for Record 9 ``V6 � Q.''

Example: If target function (5.6) has weights wij all equal to one, then an optimal solution

to the problem considered in this section is given by:

suppress in Record 1: ``V2 � B''

suppress in Record 2: ``V1 � A''

suppress in Record 3: ``V2 � F''

suppress in Record 4: ``V2 � H ''

suppress in Record 5: ``V5 � J ''

suppress in Record 6: ``V5 � J ''

suppress in Record 7: ``V2 � N ''

suppress in Record 8: ``V3 � O''

suppress in Record 9: ``V6 � Q''

suppress in Record 10: ``V6 � T ''

suppress in Record 11: ``V7 � U ''

Thus 11 values are locally suppressed and ten different categories are affected, i.e.,

suppressed in some record.

6. Minimizing the Number of Different Affected Categories

Instead of minimizing the total number of local suppressions the user of the data might

want to minimize the number of different categories that are affected by the local suppres-

sions, i.e., he or she might want to minimize the number of categories that is suppressed

in at least one record. A rationale for this could be that he or she considers a category that is

suppressed in some records to be unsuited, or hardly suited, for statistical analysis. In other

words, affected categories are of no, or only limited, value to him or her.
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We can formulate this second problem as follows. First we introduce some new

dummy variables. For each category value j that occurs in a MINUC we introduce a

dummy variable zj, de®ned as

zj �

1 if category j is affected, i.e., if category j is

suppressed in some record

0 if category j is not affected

8<: �6:1�

Note that the zj's are independent of the records. The following constraints have to

be satis®ed:XJ

j�1

cjk zj $ 1 for all k � 1;¼;K �6:2�

We consider the following target function:XJ

j�1

zj �6:3�

Target function (6.3) must be minimized under the constraints given by (6.2). The opti-

mization problem that then arises is a set-covering problem.

This problem can be extended by replacing (6.3) with a weighted sum of the zj's. This

would enable the user to indicate how important he or she considers each category to be.

Very important categories should be given a large weight; unimportant categories should

be given a small weight. The resulting problem can in many cases be decomposed into a

number of subproblems as described in Section 5.

For this problem records cannot be considered independently, as was the case for the

problem of Section 5. However, in many cases the problem can be reduced to smaller sub-

problems, because the remarks made in Section 5 apply to this case as well. The problem

can sometimes be further reduced to subproblems corresponding to connected subgraphs.

In this case the MINUCs correspond to the vertices of a graph. Two vertices are joined

by an edge if and only if the corresponding MINUCs have a value in common and both

MINUCs occur simultaneously in at least one record.

Example (continued): We consider our example again. An optimal solution to the problem

considered in this section is given by:

suppress in Record 1: ``V1 � A'' and ``V3 � C ''

suppress in Record 2: ``V1 � A''

suppress in Record 3: ``V3 � C ''

suppress in Record 4: ``V2 � H ''

suppress in Record 5: ``V5 � J ''

suppress in Record 6: ``V5 � J ''

suppress in Record 7: ``V1 � M '' and ``V3 � O''

suppress in Record 8: ``V3 � O''

suppress in Record 9: ``V6 � Q''

suppress in Record 10: ``V5 � S''

suppress in Record 11: ``V5 � S''

Thus 13 values are locally suppressed and eight different categories are affected.
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7. Special Solutions

After the problems of Sections 5 and 6 have been solved there are usually a number of

possible optimal solutions. Among these possible solutions a solution that is optimal

with respect to some additional criterion can be chosen. In this section we consider

some of these extended problems.

Suppose that the number of local suppressions has been minimized by solving the

0±1 integer programming problem of Section 5. Suppose furthermore that among these

solutions we want to ®nd the solution that affects a maximum number of different

categories. As a result the local suppressions will probably spread more or less evenly

over the categories.

This problem can be formalized as follows. Let the minimum number of local suppres-

sions be denoted by Nmin. This number is known because we assume that the problem of

Section 5 has been solved. We want to use both the variables yij and the variables zj in one

problem. The variable zj should be equal to one if and only if there is a yij equal to one for

some i. This can be achieved by using a large number W and introducing the following

constraints:

W zj $
XI

i�1

yij for all j � 1;¼; J �7:1�

and

yij $ zj for all j � 1;¼; J �7:2�

As we want the number of local suppressions to be minimal we have to add the follow-

ing constraint:XI

i�1

XJ

j�1

yij � Nmin �7:3�

The target function we consider is given by (6.3). This target function must be maximized

under the constraints given by (5.4), (7.1), (7.2), and (7.3).

Example (continued): We consider our example again. A solution to the problem stated

above is given by:

suppress in Record 1: ``V2 � B''

suppress in Record 2: ``V1 � A''

suppress in Record 3: ``V2 � F ''

suppress in Record 4: ``V2 � H ''

suppress in Record 5: ``V6 � K ''

suppress in Record 6: ``V6 � L''

suppress in Record 7: ``V2 � N ''

suppress in Record 8: ``V1 � M ''

suppress in Record 9: ``V6 � Q''

suppress in Record 10: ``V6 � T ''

suppress in Record 11: ``V7 � U ''

Thus 11 values are locally suppressed and 11 different categories are affected.
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Similar to the problem above the user of the data might want to affect as few

different categories as possible while at the same time suppressing as few values as

possible.

In this case the target function (6.3) must be minimized under the constraints given by

(5.4), (7.1), (7.2), and (7.3).

Example (continued): We consider our example again. A solution to the problem above

is given by:

suppress in Record 1: ``V2 � B''

suppress in Record 2: ``V1 � A''

suppress in Record 3: ``V2 � F''

suppress in Record 4: ``V2 � H ''

suppress in Record 5: ``V5 � J ''

suppress in Record 6: ``V5 � J ''

suppress in Record 7: ``V2 � N ''

suppress in Record 8: ``V1 � M ''

suppress in Record 9: ``V6 � Q''

suppress in Record 10: ``V5 � S''

suppress in Record 11: ``V5 � S''

Thus 11 values are locally suppressed and nine different categories are affected.

The ®nal problem we consider is the following. Suppose that the number of different

categories affected has been minimized by solving the 0±1 integer programming problem

of Section 6. Suppose furthermore that among these solutions we want to ®nd a solution

that suppresses a minimum number of values.

Let the minimum number of different categories affected be denoted by Mmin. This

number is known because we assume that the problem of Section 6 has been solved.

We introduce the following constraint:

XJ

j�1

zj � Mmin �7:4�

In this case we have to minimize (5.5) with all wij's equal to one under the constraints

given by (5.4), (7.1), (7.2), and (7.4).

Note that the problem above is easy to solve once the problem of minimizing (6.3) with

equal wij's under the constraints (6.2) has been solved. On the one hand at least one value

per MINUC should be suppressed. Thus the optimal value of the target function (5.5) is at

least equal to the number of MINUCs. On the other hand it is suf®cient to suppress only

one value in a MINUC to make this combination safe. This implies that for a MINUC in

which n values have been suppressed we can re-open any (n ÿ 1) values, i.e., replace the

missings by the original values. Thus the optimal value of the target function (5.5) is at

most equal to the number of MINUCs. Combining both results we conclude that the

optimal value of the target function equals the number of MINUCs, and that a solution

to the above problem can be found by re-opening any (n ÿ 1) values in each MINUC in

which n values have been suppressed.
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Example (continued): For the last time we consider our example. A solution to the problem

above is given by:

suppress in Record 1: ``V1 � A'' and ``V3 � C ''

suppress in Record 2: ``V1 � A''

suppress in Record 3: ``V3 � C ''

suppress in Record 4: ``V2 � H ''

suppress in Record 5: ``V5 � J ''

suppress in Record 6: ``V5 � J ''

suppress in Record 7: ``V2 � N ''

suppress in Record 8: ``V1 � M ''

suppress in Record 9: ``V6 � Q''

suppress in Record 10: ``V5 � S''

suppress in Record 11: ``V5 � S''

Thus 12 values are locally suppressed and eight different categories are affected.

8. Solution Methods

The problems of Sections 5, 6, and 7 can be solved by using a standard algorithm for solving

0±1 integer problems, such as a branch-and-bound algorithm (see for instance Nemhauser

and Wolsey (1988)). A drawback of these standard algorithms, however, is that they are

rather time-consuming. In practice one therefore often uses a heuristic to determine a

suboptimal solution. Several of such heuristics are described in Van Gelderen (1995).

Van Gelderen (1995) describes two basic greedy algorithms. In the ®rst one the value

that is chosen to be suppressed at any stage is the value that makes the most MINUCs safe

at that stage. In the second one a value is chosen that occurs in MINUCs of as few values as

possible, e.g., when only bivariate and trivariate MINUCs occur in the problem then the

bivariate MINUCs are protected ®rst. Van Gelderen (1995) also describes an exchange

procedure. After a partial solution has been generated, it is likely that values that entered

the solution early in the selection process no longer contribute as much to the solution as

they did when selected. That is, it may be advantageous to replace a value in the partial

solution by a value not occurring in this partial solution. These three ingredients, the

two basic greedy algorithms and the exchange procedure, are combined to construct six

hybrid algorithms that have already been proposed by Vasko and Wilson (1986) for gen-

eral set-covering problems.

Apart from greedy algorithms Van Gelderen (1995) examines a heuristic based on the

sum of the frequencies of the values in each of the (remaining) MINUCs. The combination

with the lowest sum of frequencies, i.e., a combination that is made up of relatively rare

values, is chosen. From this combination the value that has the highest frequency, i.e., the

value that simultaneously protects as many MINUCs as possible, is selected for suppres-

sion. This heuristic is also combined with the ®rst basic greedy algorithm, yielding a kind

of modi®ed Vasko and Wilson algorithm.

Finally, Van Gelderen (1995) describes a probabilistic heuristic. At each stage of this

heuristic the frequencies of the values in the remaining MINUCs are calculated. Based

on these frequencies the probabilities for selecting a speci®c value for suppression are
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determined. The probability of suppressing a value is its frequency divided by the sum of

the frequencies of all values. The exchange procedure described above is incorporated into

this probabilistic heuristic in order not to miss the really important values.

These heuristics have been applied to the problem of minimizing the number of affected

categories (see Section 6). The instances were generated randomly. Each value was con-

sidered equally important, i.e., target function (6.3) was used. For the largest problem

considered, 1,000 unsafe combinations with 64 different categories, the optimal solution

was determined. It turned out that 43 different categories had to be affected. It took 1,158

seconds of user CPU-time to solve this problem on a SPARC 10/31, and 3,479 seconds of

user CPU-time to prove optimality when an exact algorithm was used. On the other hand,

the heuristics each took less than half a second. The worst heuristic for this case, the ®rst

basic greedy algorithm, obtained a suboptimal solution of 47 different affected categories.

The best heuristic for this case, the algorithm based on the sum of frequencies, obtained a

supoptimal solution of 44 different affected categories.

For other, smaller, problems the solutions of the heuristics were only compared to each

other, not to the optimal solution. For these smaller problems the heuristics were also

combined, i.e., each heuristic of such a combination was used to solve the problem to sub-

optimality and the best solution found was selected. It turned out that these combinations

of different heuristics yield very good results. A combination of three heuristics of the

Vasko and Wilson kind, three heuristics of the modi®ed Vasko and Wilson kind, and

the probabilistic heuristic accounted for over 95% of the best solutions.

9. Discussion

Optimal local suppression procedures can be automated and used in many practical situa-

tions, although theoretically the problems are infeasible (NP-complete). This is particu-

larly the case if a problem splits into several smaller subproblems, each of which can

be solved ef®ciently. This is, for instance, the case if the total number of suppressed values

is to be minimized, because then the problem can be solved record-wise. In case the num-

ber of different affected categories is to be minimized the problem ± in practice ± tends to

be somewhat more dif®cult. However, in many cases the problem can be decomposed into

a number of smaller, and therefore easier to solve, problems. Moreover, fast heuristics that

give good results, i.e., with solutions close to the optimal one, have been constructed. Thus

it is possible to solve this problem in many practical instances as well within a relatively

short period of time. Algorithms to determine the minimum number of locally suppressed

values have been implemented in m-ARGUS.

Automating the global recodings is the next logical step to automating the local suppres-

sions. Optimization models for a special form of global recoding have been developed by

Hurkens and Tiourine (1998), generalizing the kind of models presented. The models these

authors consider are able to deal with local suppression and global recoding simulta-

neously. For these models it is assumed that a data protector has, for each variable that

appears in the combinations of variables checked, provided a set of alternative codings.

It is also requested from this person to specify how much information is lost when

a particular global recoding is applied. The idea is that a global recoding for a variable

in this case is nothing but a selection of one of the prede®ned codings for that variable.
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The optimization problem that has to be solved is to select the global recodings in such a

way that the resulting microdata set is safe and the associated information loss is

minimized.
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