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1. Introduction

This article introduces the Post RAndomisation Method (PRAM) as a method for disclo-

sure protection of the categorical variables in a microdata ®le. Applying PRAM means that

for each record in a microdata ®le the score on one or more categorical variables is

changed (independently of the other records) according to a predetermined probability

mechanism. Since the original data ®le is perturbed, it will be dif®cult for an intruder

to identify records as corresponding to certain individuals in the population. The records

in the original ®le are thus protected, which is the main goal of applying PRAM. On the

other hand, since the probability mechanism that is used when applying PRAM is known,

characteristics of the (latent) true data can be estimated from the perturbed data ®le. Hence

it is still possible to perform all kinds of statistical analyses after PRAM has been applied.

Originally we developed PRAM as the categorical variable analogon of noise addition

to continuous variables; see e.g., Fuller (1993), Hwang (1986), and Kim and Winkler

(1995). Only after we had developed most of the theory did we become aware of the

obvious relationship of our method with the randomised response technique applied in sur-

vey sampling; see e.g., Warner (1965, 1971) and Chaudhuri and Mukerjee (1988). This

method is employed in the case of highly sensitive questions to which the respondent is

not likely to respond truthfully in a face-to-face setting. By embedding the question in
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a pure chance experiment, the true score of the respondent is never revealed to the inter-

viewer. By knowing the probabilities involved in the chance experiment, the analyst can

nevertheless uncover population frequencies of the characteristics involved, be it with

some loss in precision. Retracing the literature on randomised response methods, we

also found out that the idea of using Markov randomisation techniques to protect data

ex post, i.e., after the data has been collected, had predecessors as well: it is mentioned

in SaÈrndal et al. (1992, pp. 572±573), and also in Warner (1971). Neither of these have

elaborated the idea in any detail, though. An important difference between PRAM and ran-

domised response methods is that the probability mechanism in randomised response

models is necessarily independent of the (unknown) true score, whereas in the case of

PRAM we condition on the true score, which is known at the moment that the method

is applied.

PRAM offers an alternative to data swapping as a technique for disclosure protection. In

data swapping, individual scores on certain variables are interchanged between records,

thus preserving the ®rst moments of the data. For an overview of data swapping, see

e.g., Dalenius and Reiss (1982). Another article related to PRAM is that by Adam and

Wortman (1989). This article provides a rough sketch of an alternative method for

®xed-data perturbation.

When it comes to analysis of data protected by PRAM, there is a close relationship with

the literature on the analysis of categorical variables affected by misclassi®cations.

Indeed, applying PRAM amounts to deliberately introducing a certain amount of misclassi-

®cations in the data set. Methods to correct for the presence of misclassi®cations are

proposed by e.g., Kuha and Skinner (1997). It should be mentioned that in most of the

errors-in-variables literature, the probability mechanism giving rise to misclassi®cations

is unknown to the analyst, so that it has to be inferred from the data. In contrast, the

probability mechanism underlying misclassi®cations introduced by PRAM is known

by the analyst, which simpli®es the subsequent analysis considerably, see e.g., Chen

(1979).

This article is organised as follows. In Section 2 PRAM is introduced formally. Section 3

is concerned with the effect of PRAM on disclosure limitation. It discusses when a data ®le

to which PRAM is applied can be called safe. Section 4 describes how results of certain

analyses performed on the perturbed ®le can be translated back to the results that would

have been obtained if these analyses were performed on the original ®le. This translation

will in general imply performing a matrix multiplication as an extra step. It is also possible

to apply PRAM in such a way that the perturbed ®le can be used as if it were the original

®le. This special case of PRAM is called invariant PRAM, and is discussed in Section 5.

Section 6 is concerned with questions that arise when one wants to apply PRAM in prac-

tice, as for example how to construct the probability mechanism that is used in PRAM. As

an example, Section 7 applies PRAM to the Dutch National Travel Survey. Section 8,

®nally, contains some concluding remarks and suggests some topics for further research.

2. How to Apply PRAM

Let y denote a categorical variable in the original data ®le to which PRAM is applied, and

let X denote the same categorical variable in the perturbed ®le. Suppose that y has K
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categories, numbered 1, ..., K. Let pkl � P�X � ljy � k� denote the probability that an ori-

ginal score y � k is transformed into a score X � l for all k, l � 1; :::;K; and let P � fpklg

denote the K ´ K matrix that has pkl as its �k; l�-th entry. Note that P is a Markov matrix,

i.e., Pi � i where i is a K-vector of 1's. It is desirable for P not to have two equal rows,

since in that case the categories corresponding to these rows cannot be distinguished

from one another in the perturbed ®le. In this article the more general assumption that

P is invertible is made. Strictly speaking, this is not necessary for applying PRAM, but

it turns out that Pÿ1 can be used to estimate the frequency distribution of y in the original

®le, as well as the additional variance introduced by PRAM, as will be seen in Section 4.

Let y�r� (respectively X�r�) denote the score on y (respectively X) for the rth record in the

microdata ®le. Applying PRAM then means that, given that y�r� � k, the score on X�r� is

drawn from the probability distribution pk1; :::; pkK . This procedure is performed for each

record in the data ®le, independently of the other records.

We now illustrate these ideas with an example. Suppose that the variable y is gender,

with scores 1 � male and 2 � female. PRAM is applied to the gender variable in such

a way that pkk � 0:9 for k � 1; 2. Suppose that the data ®le originally contained 100 males

and 100 females. Then the perturbed data will (in expectation) also contain 100 males and

100 females. However, 10 of these males were originally female, and similarly 10 of the

females were originally male (in expectation)!

Obviously PRAM can be applied independently to different variables, by applying the

method sequentially. However it is also possible to apply PRAM to more than one variable

simultaneously. Consider the case where we want to apply PRAM to two categorical vari-

ables y1 and y2, with K1 and K2 categories, respectively. Let Xs denote the value of ys in

the perturbed ®le, s � 1; 2. Furthermore, let

p�k1;k2�;�l1;l2�
� P�X1 � l1; X2 � l2jy1 � k1; y2 � k2�

for k1; l1 � 1; :::;K1 and k2; l2 � 1; :::;K2. Applying PRAM now means that

fy�r�1 � k1; y�r�2 � k2g the scores on X�r�
1 and X�r�

2 are (simultaneously) drawn from a prob-

ability distribution fp�k1;k2�;�l1;l2�
; l1 � 1; :::;K1; l2 � 1; :::;K2}. Again this is performed for

each record independently of the other records. There are no essential differences between

applying PRAM to one variable and applying PRAM to two (or more) variables. Indeed y1

and y2 can be considered as one compounded variable y with K1K2 categories, numbered

1, ..., K1K2 (by letting y1 � k1 and y2 � k2 correspond with y � k1 � �k2 ÿ 1�K1�. The

corresponding Markov matrix P � fp�k1;k2�;�l1;l2�
} now is the K1K2 ´ K1K2 matrix with

p�k1;k2�;�l1;l2�
as its �k1 � �k2 ÿ 1�K1; l1 � �l2 ÿ 1�K1�th entry. If PRAM is applied to y1

and y2 independently, the transition probabilities can be rewritten as

p
�k1 ;k2 �;�l1 ;l2 �

� p�1�
k1 l1

p�2�
k2 l2

;where p�s�
ks ls

� P�Xs � lsjys � ks�; for s � 1; 2

If we let P�s�
� fp�s�

ksls
g denote the matrix with transition probabilities for the sth variable,

then we have

P �
�

p�k1;k2�;�l1;l2�

	
� P�2� Ä P�1�

where Ä denotes the Kronecker product.

Even though it is computationally convenient to apply PRAM to different variables

independently, it may give rise to some unpleasant side-effects, as will be illustrated in
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the next example. Suppose that the microdata ®le contains the variables y1 � gender (with

categories 1 � male and 2 � female) and y2 � number of pregnancies (for illustrational

purposes with just two categories: 1 � 1 or more and 2 � none). In this case, it may be

convenient to apply PRAM in such a way that the perturbed ®le does not contain any males

with one or more pregnancies, since if a record of a male with a positive number of preg-

nancies appears in the ®le, then it is obvious to any intruder that this record has been

affected by PRAM. If we want to apply PRAM to y1 and y2 independently then the

only way to exclude males with a positive number of pregnancies from the perturbed

data ®le would be to impose p�1�
21 � p�2�

21 � 0. But this does not give enough freedom to pro-

tect the data, since a male in the perturbed ®le was originally male, and a person with a

positive number of pregnancies in the perturbed ®le originally had a positive number of

pregnancies. However, if we do not restrict ourselves to applying PRAM to each variable

independently, then any set of transition probabilities {p�k1;k2�;�l1;l2�
} can be used, as long as

p�k1;k2�;�l1;l2�
� 0 if l1 � l2 � 1. In this case the probabilities can be chosen in such a way

that a male in the perturbed ®le can have been female (either with or without any pregnan-

cies) in the original ®le, so the original scores are protected.

The example shows that structural zeroes in the cross-tabulation of two variables y1 and

y2 can be maintained by applying PRAM simultaneously to these two variables. However,

preservation of structural zeroes in the cross-tabulation of y1 and some other variable in

the data ®le (to which PRAM is not applied) cannot be guaranteed because of the stochas-

tic character of PRAM. Thus in considering a primary set of variables to which PRAM will

be applied, one might wish to include extra variables in the set only because they give rise

to structural zeroes, or other analytical restrictions, in cross-tabulations with the primary

variables to which PRAM will be applied.

The extension to the case where we want to apply PRAM to m variables y1; :::; ym is

straightforward, only notation will become more cumbersome. In this case, it is also

possible to apply PRAM independently to some variables and not independently to others.

This may be accomplished by partitioning the variables y1; :::; ym into groups in such a way

that PRAM is applied to each group independently of the other groups, and within groups,

dependencies may occur.

The notation introduced in this section will be used throughout the remainder of this

article, i.e., y is a variable in the original data ®le with K categories and X is the value of

y in the perturbed ®le. y�r� denotes the score on y for the rth record and P denotes the matrix

with transition probabilities used for PRAM. For notational convenience, most of the theory

in this article is explained for the case where PRAM is applied to one single variable. Exten-

sions of the theory to the general case where PRAM is applied to m variables y1; :::; ym are

always straightforward by considering y1; :::; ym as one compounded variable.

3. The Effect of PRAM on Disclosure Limitation

In this section, the effect of PRAM on disclosure limitation is considered. We start with an

example. Consider a microdata ®le containing n records. This ®le represents a simple ran-

dom sample of a population of size N. The data set contains exactly one female surgeon.

PRAM has been applied to the gender variable, though. Independently for each record, the

gender score has remained unaltered with probability 0.9, and has been changed to the
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opposite score with probability 0.1. Other variables in the ®le have not been perturbed.

Suppose an intruder knows that the population contains one female surgeon and 99

male surgeons. He or she can derive that the probability that the female surgeon in the

perturbed data ®le is indeed the female surgeon in the population equals 0.08. This

probability is very small, hence the perturbed data can be considered safe. However, if

the gender score had remained unaltered with probability 0.9999 and changed to the

opposite score with probability 0.0001, then the probability that the female surgeon in

the perturbed data ®le corresponds to the female surgeon in the population equals 0.99

and of course the perturbed data ®le can hardly be considered safe!

It can be concluded from the previous example that we need a methodology to establish

whether the perturbed ®le obtained by applying PRAM is indeed safe. The outline for such

a methodology is developed in this section. The ideas behind this methodology are based

on the statistical disclosure control rules that Statistics Netherlands currently uses. These

entail that certain rare combinations of scores on variables should not be released, since

such a rare combination of scores could lead to spontaneous recognition by an intruder.

(For example, if a record contains the scores {occupation � mayor} and {place of resi-

dence � Amsterdam}, then any intruder knows to whom this record corresponds.

Obviously, the combination of scores {mayor} and {Amsterdam} is rare (there is only

one mayor in Amsterdam) and hence not safe.) The rules prescribe which combinations

of variables have to be checked. A combination of scores is considered rare if the number

of times that this combination occurs in the populations is below a certain threshold (where

the exact value of the threshold is speci®ed in the rules). For further details, the reader is

referred to Willenborg and de Waal (1996).

When a traditional disclosure control method, such as global recoding of variables or

local suppression of certain scores, is applied to a ®le, the resulting ®le is considered

safe if it does not contain any rare combination of scores. When a perturbative method

such as PRAM is applied to the microdata ®le, it does not make sense to consider a per-

turbed ®le safe when it does not contain any rare combination of scores. Indeed, starting

from a ®le that is perfectly safe (i.e., does not contain any rare combination of scores),

applying PRAM may give rise to (arti®cial) rare combinations. Considering such a ®le

unsafe is obviously not sensible, since by assumption the underlying data are safe and

no one is vulnerable to disclosure. As a consequence, it cannot be judged by inspection

of the contents of the perturbed ®le if a data ®le protected by PRAM is safe. More gener-

ally, it is desirable that the safety of the perturbed microdata ®le is determined by the way

PRAM is applied (including the choice of the transition probabilities) and not by the coin-

cidentally obtained realisation of the perturbed ®le.

Since the rare combinations of scores in the original ®le are vulnerable to disclosure, it

seems natural to concentrate on these combinations when looking for a sensible quantity to

determine the (un)safety of a perturbed data ®le. In particular it is critical that such a com-

bination, when it appears in the perturbed ®le, has suf®ciently small probability to be a

true, i.e., unperturbed, rare combination. In other words, the application of PRAM should

introduce enough confusion as to whether apparently rare combinations of scores repre-

sent truly rare combinations of scores.

An obvious quantity to represent this idea would be the so-called Posterior Odds ratio

as de®ned in, for example, Zellner (1971). Here the posterior odds ratio of the score
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k �k � 1; :::;K�; PO�k� is de®ned by

PO�k� �
P�y � kjX � k�

P�y Þ kjX � k�
�

pkkP�y � k�P
lÞk plkP�y � l�

Now P�y � k� is the probability that y � k for any member of the population, and this

quantity is in general not known, which makes it dif®cult to base rules on the posterior

odds. If the sampling design is known, then P�y � k� can be estimated. In general this

is a complicated formula, unless the sampling design is self-weighting, in which case

P�y � k� can be estimated by Ty�k�=n, where Ty�k� denotes the number of records in the

original ®le for which y�r� � k, and n is the number of records in the microdata ®le. It

is also possible that an intruder knows who participated in the survey. In that case

P�y � k� should refer to the probability that y � k for any record in the microdata ®le,

in which case P�y � k� � Ty�k�=n. This is a worst case scenario, since it is easier for an

intruder to identify records if he or she knows who participated in the survey.

These ideas lead to the introduction of the so-called Expectation Ratio as a measure for

the amount of confusion introduced by PRAM. The expectation ratio of the score k;ER�k�,

is de®ned by

ER�k� �
pkkTy�k�P
lÞk plkTy�l�

; for k � 1; :::;K �3:1�

The numerator of ER�k�; pkkTy�k�, equals the expected number of records for which

X�r�
� k given that y�r� � k (conditional given the values of y�r� for all records r in the ori-

ginal ®le). Similarly, the denominator
P

lÞk plkTy�l� equals the expected in¯ow, i.e., the

expected number of records for which X�r�
� k given that y�r� � l with l Þ k (given

the values of y�r� for all records r in the original ®le). The sum of the nominator and the

denominator is exactly the expected number of records in the perturbed data ®le for which

X�r�
� k. If k was originally a rare score, then the expectation ratio ER�k� shows the ratio

between the average number of records that truly belong to the rare score k and the average

number of records that obtained the score k as a result of applying PRAM. The smaller the

value of ER�k� is, the more likely it is that a record for which X�r�
� k did not originally

belong to this score, and thus the safer the perturbed ®le is.

A decision whether a perturbed ®le created by applying PRAM is indeed safe can now

be based on the expectation ratios, as follows. First it has to be decided which combina-

tions of variables have to be inspected. For all these combinations, the expectation ratios of

the rare scores are inspected. If these ratios are ``small enough,'' the perturbed ®le is con-

sidered safe. It is hard to de®ne what exactly is ``small enough.'' Just like the decision

which (combinations of) variables have to be inspected, this is essentially a matter of

policy and should be determined by the statistical of®ce.

4. The Effect of PRAM on Statistical Analyses

When applying PRAM to a microdata ®le, an obvious question is what the effect of PRAM

is on all kinds of statistical analyses. Of course, analyses that are based on the perturbed

®le will usually give different results from analyses performed on the original ®le. How-

ever, results of certain analyses performed on the perturbed ®le can be translated to the

results that would have been obtained if these analyses were performed on the original
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®le. This subject has been treated in Kooiman et al. (1997). For the sake of completeness

and for later reference, some of the results are presented in this section. First we consider

cross-tabulations of categorical variables, and next we discuss regression analysis on the

perturbed data ®le. All results are discussed brie¯y.

Let Ty � �Ty�1�; :::; ty�K��
t be the K-vector of frequencies in the original ®le of the K

categories of a categorical variable y and similarly let TX be the vector of frequencies

in the perturbed ®le. Here the superscript `t' indicates transposition. Let n denote the num-

ber of records in the microdata ®le. Then it is easy to verify that

E
�
TX

��y�1�; :::; y�n�� � PtTy �4:1�

Thus, Ty can unbiasedly be estimated by

ÃTy �
ÿ
Pÿ1

�t
TX �4:2�

Note that the matrix P has to be non-singular in order for ÃTy to be well-de®ned. The con-

ditional variance of ÃTy is given by

V
ÿ

ÃTy

��y�1�; :::; y�n�� � ÿPÿ1
�t

V
ÿ
TX

��y�1�; :::; y�n��ÿPÿ1
�

Since PRAM is applied to each record in the microdata ®le independently of the other

records,

V
ÿ
TX

��y�1�; :::; y�n�� �XK

k�1

Ty�k�Vk

where, for k � 1; :::;K;Vk is the K ´ K covariance matrix of the outcomes l � 1; :::;K of

the multinominal transition process of an element with true score k:

Vk�l; j� �
pkl�1 ÿ pkl� if l = j

ÿpkl pkj if l Þ j

�
for l; j � 1; :::;K

Substituting the estimator ÃTy for the unknown true frequencies Ty, we obtain an estimator

for the uncertainty introduced by the noise process:

ÃV
ÿ
TX

��y�1�; :::; y�n�� �XK

k�1

ÃTy�k�Vk

The derivations show that univariate frequencies can straightforwardly be corrected for the

perturbation applied to the ®le. It just requires pre-multiplication with the transpose of the

inverted transition probability matrix. This matrix can be supplied along with the (per-

turbed) data ®le, so that analysis only requires a matrix multiplication as an extra step

in the tabulation. Using the same information, it is also possible to estimate covariances

of the estimated true frequencies.

As a consequence, tabular analysis of perturbed microdata sets consisting of categorical

variables poses no fundamental problems. The frequency tables summarise all available

information in the data set. The presence of a small amount of extra variance in these esti-

mates will generally pose no problem to the analyst, as the extra variance just adds to the

measurement errors that are present in the data anyhow. Moreover, there will also be samp-

ling variance present in the data. Multivariate analyses for categorical data, like loglinear
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modelling or correspondence analysis, can proceed from the estimates of the true tables.

Chen (1979) shows that loglinear modelling of contingency tables can also directly pro-

ceed from the perturbed table by incorporating the perturbation design in the model.

The moment estimator (4.2) satis®es ÃTyi � n, i.e., the estimated frequencies add to the

number of records n in the data ®le. However, since Pÿ1 is not a Markov matrix, the esti-

mated frequencies themselves may fall outside the feasible range [0, n]. In particular,

negative frequencies may occur when the corresponding frequencies in the original data

®le are suf®ciently small. Of course this is undesirable. Moreover, (4.2) is hence not

the maximum likelihood estimator (MLE) of Ty when maximising over all distribution

functions that could have generated the original table Ty. This problem has been noticed

in the literature on randomised response methods; see Chaudhuri and Mukerjee (1988) and

the references cited there. For the randomised response model, it has been derived that in

the case where y has two categories (say 1 and 2), the MLE is obtained as

ÃTMLE
y �

� ÃT if 0 < ÃTy�1� < n and 0 < ÃTy�2� < n

�0; n�t if ÃTy�1� < 0

�n; 0�t if ÃTy�2� < 0

The MLE is biased, but it has a smaller mean squared error than ÃTy.

If y has more than two categories, the conditional distribution function of TX given Ty

and P is a convolution of multinomial distributions, which is nontrivial. It is therefore dif-

®cult to verify whether the truncation at the boundary of the feasible region generalises to

the case where y has more than two categories. Nevertheless, a practical solution to get rid

of negative entries in ÃTy suggests itself: truncate these entries at zero and subsequently

renormalise the remaining entries to add to n again.

A quite different approach is to apply Bayesian methods, using uniform or Dirichlet

priors restricted to the feasible region. Given the complicated likelihood function, the pos-

terior distribution of Ty is bound to be quite intractable in the case where y has more than

two categories, so that analytical results will not easily be obtained. Still another solution

is discussed below in Section 5, where we consider invariant matrices P. Using such a

matrix to protect the data ®le entails that TX itself is an unbiased estimator of Ty. Since

TX is admissible by construction, we will never end up with negative frequencies.

A natural further question is what the effect of PRAM is on different types of multivari-

ate analysis, for example regression analysis. Suppose we want to perform a regression of

some numerical variable y on a categorical variable y, and suppose that PRAM has been

applied to y. We introduce the dummy variables d1; :::; dK , where for each record in the

data ®le dk � 1 if y�r� � k and dk � 0 otherwise. Furthermore, let

T
y
y �

ÿ
T

y
y�1�; :::; T

y
y�K�

�
; with T

y
y�k� �

Xn

r�1

y�r�Ify�r��kg

where y�r� denotes the value of y for the rth record in the microdata ®le and I denotes the

indicator function. Let T
y
X be de®ned similarly. It was shown in Kooiman et al. (1997) that

T
y
y can unbiasedly be estimated by

ÃT
y
y � �Pÿ1

�
tT

y
X

Note that the elements of T
y
y divided by the number of records in the data ®le n are in fact
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the (empirical) second moments (at zero) of the joint distribution of the dummy variables

d1; :::; dK and the numerical variable y. Now a regression of y on y amounts to a regression

of y on d1; :::; dK . The regression coef®cient is given by �DtD�
ÿ1Dty, where D is the n ´ K

matrix which has its �r; j�th entry equal to the value of dj for the rth record in the original

data ®le. �DtD� can unbiasedly be estimated by using ÃTy (note that �DtD� is the diagonal

matrix which has Ty�k� as its �k; k�th entry) and Dty can unbiasedly be estimated by ÃT
y
y .

Since these estimates are unbiased the resulting regression estimator is consistent. This

conclusion holds true for all statistical analysis techniques based on second moments of

the data, such as discriminant analysis and analysis of variance.

In summary, we have demonstrated in this section that both tabulation and standard

multivariate analysis techniques for mixed categorical/numerical variable models can

easily be adapted to data sets with randomised categorical variables. It only requires

pre-multiplication by the inverse of the transposed Markov transition matrix involved in

the randomisation process.

5. Invariant PRAM

So far, the only restriction that has been imposed on the Markov matrix P used for PRAM

is non-singularity. In this section, it will be shown that the analyses of the perturbed ®le

can be simpli®ed if a special choice is made for P. The general idea is that the perturbed

®le should be close to the original ®le. This can be achieved by choosing P in such a way

that kPtTy ÿ Tyk < e, for some pre-speci®ed e > 0, where k´k denotes a norm. In this section

we consider the simpler case where the matrix P is chosen in such a way that the distribu-

tion of y over the different categories is invariant with respect to P, i.e., P should in fact

satisfy the stronger condition that

PtTy � Ty �5:1�

The identity matrix always satis®es this equation, but this is not very interesting, since the

perturbed data ®le will be the same as the unperturbed data ®le. A non-trivial solution P of

(5.1) can be constructed as follows. Assume without loss of generality that Ty�k�$

Ty�K� > 0; for k � 1; :::;K; and let, for some 0 < v < 1:

pkl �
1 ÿ �vTy�K� =Ty�k�� if l = k

vTy�K�=��K ÿ 1�Ty�k�� if l Þ k

�
�5:2�

It is easy to verify that P � fpklg is indeed a Markov matrix satisfying (5.1).

Now suppose that P is chosen in such a way that (5.1) is satis®ed. In that case

E�TXjy
�1�; :::; y�n�� � PtTy � Ty

where the ®rst equality follows from (4.1) and the second equality follows from (5.1). This

means that Ty can unbiasedly be estimated by

ÃTy � TX �5:3�

hence the estimator for Ty can directly be obtained from the perturbed ®le. Of course this

simpli®es the analysis, since no premultiplication by a matrix is needed. When P satis®es

(5.1), we may also consider another estimator for Ty that may perform better. This estima-

tor is discussed at the end of the present section.
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In the previous paragraph, the matrix P was invariant with respect to the distribution in

the data ®le. Alternatively, we can choose P to be invariant with respect to the distribution

in the population (that is, with respect to the weighted frequencies), i.e., P should be such

that

Tw
y � PtTw

y

where Tw
y is the K-vector of weighted frequencies. In that case, Tw

y can be directly esti-

mated from the perturbed ®le by Tw
X , where Tw

X is the K-vector of weighted frequencies

in the perturbed ®le. (For details, the reader is referred to Kooiman et al. 1997.)

When invariant PRAM is applied, TX equals Ty in expectation. The two quantities are

not exactly the same, though. Since PRAM uses perturbations that are independent for the

different records it is only possible to preserve entries of Ty by switching off PRAM for

these entries altogether. Otherwise, identically preserving some entries requires depen-

dency of the perturbations for the different records, as e.g., in data swapping. A method

that protects tables by random perturbations while identically preserving its marginals

is given in Duncan and Fienberg (1998). Their approach implies misclassi®cations that

are (singularly) dependent between records.

When the Markov matrix P satis®es (5.1), in some cases there is an estimator superior to

(5.3). For, if the invariant matrix P is shipped to the analyst along with the perturbed

microdata ®le, then the analyst can unbiasedly estimate Ty as the eigenvector of P corre-

sponding to the eigenvalue 1. In fact, if the eigenvalue 1 has multiplicity 1, then this esti-

mator is uniquely determined and has variance equal to 0. This implies that if P is such that

all possible cross-tabulations in the original microdata ®le are preserved, then the original

microdata ®le can be retrieved from P. In practice, this situation will not occur. First of all,

the preceding argument only holds if the eigenspace corresponding to the eigenvalue 1 is

one-dimensional. It follows from the theorem of Perron-Frobenius (see e.g., Seneta 1981)

that this only holds if P is irreducible. It is easy to make sure that P is not irreducible, by

letting P be a block diagonal matrix. Secondly, it will not be tractable to preserve all

possible cross-tabulations, as we will argue below.

The obvious advantage of using invariant PRAM is that we can just work with the per-

turbed data ®le, no pre-multiplication by a matrix being needed. As a consequence, there

will never be negative estimated frequencies, for which a correlation has to be made. A

drawback is that there is less freedom in the choice of the Markov matrix P. Moreover,

the matrix P may become very large if we want to preserve the distribution of all possible

cross-tabulations. Indeed, suppose that the data ®le contains m variables y1; :::; ym with

K1; :::;Km categories, respectively. Then we can preserve all possible cross-tabulations

by considering y1; :::; ym as one compounded variable y with K � K1 ´ ::: ´ Km possible

categories. Note that K may indeed be very large. Moreover, many of the K categories

of this compounded variable y will contain no observations, and this makes a non-trivial

choice for P that satis®es (5.1) almost impossible.

In practice, it is probably best to apply PRAM in such a way that some distributions are

preserved while others are not. Some analyses can then be performed directly on the per-

turbed ®le, while others require an extra matrix multiplication. It is a topic for further

research whether it is possible to choose P in such a way that all analyses can (unbiasedly)

be performed on the perturbed ®le, even if not all possible cross-tabulations are preserved.

472 Journal of Of®cial Statistics



In choosing an invariant matrix P, we probably have to choose which distribution should

be kept invariant (the distribution in the data ®le or the distribution in the population). It is

another topic for further research whether it is possible to choose P in such a way that both

distributions are preserved. Finally it should be noted that an analyst always needs the

Markov transformation matrices, be they invariant or not, once he or she wants to compute

the extra variance introduced by using PRAM.

6. Problems When Applying PRAM in Practice

Now that we have introduced PRAM, we turn to the question of how to apply this tech-

nique in practice. This involves several aspects. First of all, it has to be decided to which

variables PRAM should be applied. Next, for each of the variables to which PRAM will be

applied, it should be decided which category can be changed into which category and with

what probability. We will discuss these problems one by one.

First of all, it has to be decided which variables will be perturbed. If PRAM is applied to

(some of the) identifying variables in the microdata ®le, then as a result it becomes more

dif®cult for an intruder to recognise a record as corresponding to some individual in the

population. Alternatively, PRAM can also be applied to the sensitive variables in the

microdata ®le. In that case, an intruder may recognise the record of an individual in

the microdata ®le, but he or she cannot be sure as to whether the sensitive information

obtained from the data ®le is correct. There is some discussion on whether a ®le can be

called safe when PRAM would only be applied to sensitive variables. In that case, records

can be identi®ed as belonging to certain individuals, and thus an intruder has discovered

that the individual has participated in the survey. This may itself be sensitive information.

From the point of view of statistical analyses, it does not matter whether PRAM is applied

to identifying or sensitive variables.

A microdata ®le will usually contain many variables that are candidates for applying

PRAM. A choice has to be made whether it is preferable to perturb only a few variables

(and thus in order to obtain a safe ®le, perturb each of them a lot) or to perturb many vari-

ables (and perturb each of them a little bit). Both strategies could lead to a safe ®le. A

choice of either of the strategies could be motivated by the information loss due to the

application of PRAM. It is a reasonable approach to produce a safe microdata ®le from

an unsafe one by applying disclosure control techniques in such a way to the original

microdata set that the resulting ®le is safe (according to the criteria applied) while the

amount of information loss due the modi®cation is minimised. This information loss

would then have to be quanti®ed. A straightforward measure is the increase in variance

of the estimates due to the measurement error introduced by PRAM. Appropriate variance

formulas have been derived in Section 4. Another approach that could be used for this pur-

pose involves using the concept of entropy as introduced by Shannon in communication

theory in the 1940s (see e.g., Shannon and Weaver 1949), or the more general measures

of disclosure that are introduced in Duncan and Lambert (1986).

When it has been decided to which variables PRAM should be applied, the next step is

to decide which category can be replaced by which category and what probability mechan-

ism should be used to do so. An algorithm for this will be described. The idea behind this

algorithm is that for computational convenience we do not want it to be possible for each
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category to be replaced by any other category, especially when the number of categories is

large. Consider a variable y with categories 1, ..., K to which PRAM will be applied. First

of all, a partition of the categories into groups C1; :::;CG is made in such a way that each

category can only be replaced by a category within the same group. More formally

C1; :::;CG are such that

Cg Ç Ch � B if h Þ g; ÈG
g�1Cg � f1; :::;Kg �6:1�

pkl � 0 if k [ Cg; l [ Ch and h Þ g

It is up to the data protector to decide how these groups C1; :::;CG should be constructed.

This can be done in such a way that a group always contains categories that are (in some

sense) similar, but this is by no means necessary. It can also be done in such a way that the

expectation ratios become small.

The group structure immediately determines the structure of the Markov matrix. For,

the categories 1; :::;K can now be reordered in such a way that P can be written as

P �

P1 0 . . . 0

0 . .
. . .

. ..
.

..

. . .
. . .

.
0

0 . . . 0 PG

0BBB@
1CCCA �6:2�

This follows immediately from (6.1). So the only thing left to choose are the values pkl for

k and l in the same group Cg. If general PRAM is applied, then any set of values for these

pkl will suf®ce, as long as the resulting matrix is an invertible Markov matrix. When invar-

iant PRAM is applied, the matrix P should also satisfy (5.1). This still leaves a lot of pos-

sible choices.

7. A Case Study: The Dutch National Travel Survey

In this section we illustrate the application of PRAM to a real-life problem. This section is

intended to illustrate the theoretical remarks made in the previous sections.

At Statistics Netherlands, it has been investigated how to apply PRAM to the Dutch

National Travel Survey. In this survey, a 1% sample is drawn from the Dutch population

and each person in the sample has to record all the travelling he or she does on one speci®c

day. The microdata ®le contains information about these trips (such as location of depar-

ture, location of arrival, travelled time, travelled distance, means of transportation used),

as well as background information on the persons in the ®le (such as gender, marital status,

highest level of education, place of residence), and background information on the house-

hold to which the person belongs (such as size and composition of the household). The ®le

contains a total of 167,923 records.

The microdata of the Dutch National Travel Survey is used by clients outside Statistics

Netherlands. These clients have expressed the wish that not only the place of residence of

each person is included in the microdata ®le, but also the postal code (a four-digit number)

of place of residence. If we want to include the postal code in the microdata ®le, then it is

no longer possible to arrive at a satisfactory level of disclosure protection using traditional

methods (like recoding and data suppression). Therefore, it was considered to what extent

PRAM would provide useful services.
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According to the existing rules of Statistics Netherlands, eight combinations of two

variables have to be inspected to see whether rare combinations of scores occur. In order

to obtain a safe ®le, PRAM had to be applied to six variables: postal code (with 3,555

categories), mari-tal status, composition of the household, age (in classes), main activity

status (indicating whether someone is working, unemployed, retired, and so on) and any

household vehicle availability. It was decided to apply PRAM to these variables

independently. In fact invariant PRAM was applied to each variable separately, so that

all the analyses concerning one single variable can be performed directly on the perturbed

data ®le. Invariant PRAM on all the six variables simultaneously is intractable, since this

would lead to one compounded variable with 400 million categories. Since the data ®le

contains 167,923 records, most of the categories of the compounded variable will contain

no observations, which makes it dif®cult to determine an invariant matrix P. Moreover,

from a computational point of view, it is impractical to work with a matrix of dimension

400 million.

Analyses concerning more than one variable would theoretically involve multiplication

by �Pÿ1
�
t, as was shown in Section 4. For the moment, this may not be acceptable to the

clients. Therefore, PRAM is applied in such a way that the original ®le is not too seriously

perturbed, and can be used directly for all analyses, even when the analysis concerns mul-

tiple variables. In that case, estimates will not be unbiased, but it is likely that the bias is

small. This assumption was tested by comparing several cross-tabulations in the original

publication of the Dutch National Travel Survey with the same cross-tabulations based on

the perturbed ®le. It turned out that the differences were all minor, and much smaller than

the sampling margin.

Note that, since the place of residence can in fact be deduced from the postal code,

applying PRAM to postal code can lead to inconsistencies in the perturbed ®le. This could

give a researcher a clue as to which records postal codes have been affected by PRAM.

This is not desirable. Therefore, the following approach was taken. The place of residence

is ®rst deleted from the original ®le. Next PRAM is applied to the postal code, and ®nally

the place of residence is recomputed from the perturbed value of the postal code. This way,

place of residence is always consistent with postal code. This idea is similar to the idea of

matching additional variables to the perturbed ®le, as described in Kooiman, Willenborg,

and Gouweleeuw (1997).

For each variable, the Markov matrix P that was used has the block diagonal form as in

Formula (6.2). Furthermore within block Pg the probabilities pkl were de®ned by Formula

(5.2). For the postal codes, the value of v in (5.2) is 0.9 for all the groups Cg. This implies

that the value of pkk (the probability that postal code k is not perturbed) varies between 0.1

and 1. For the other variables, the value of v is chosen to be is 0.1, which implies that the

value of pkk varies between 0.9 and 1. When the value of v is known, it can be computed

what the expected number of records is in which the value of some variable is changed.

These ®gures are given in Table 7.1.

Finally it had to be decided whether the perturbed ®le that was created by applying

PRAM was indeed safe. A total of 38,466 expectation ratios were studied, to check

whether they were small enough. It turned out that 15.8% of these ratios were larger

than 20 and only 2.4% larger than 100. Furthermore, approximately 37% of the

expectation ratios were smaller than 3. It still has to be decided whether this represents
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a suf®cient level of disclosure protection according to the current standards of Statistics

Netherlands.

The conclusion which can be drawn from this application is that PRAM is a useful addi-

tion to the existing tools for disclosure protection. However, it is not possible to obtain a

perturbed ®le with a high level of detail on a regional variable (for instance postal code)

which is only slightly perturbed and can be analysed as if it were the original ®le. In the

case of the Dutch National Travel Survey, some postal codes had to be perturbed signi®-

cantly (i.e., with probability 0.9), and it still has to be decided whether the perturbed ®le is

considered safe by the standards of Statistics Netherlands. At the time of writing this

article, it was still unknown how the clients of Statistics Netherlands experienced working

with a perturbed data ®le.

8. Concluding Remarks

In this article, PRAM has been described as a method for disclosure protection of categ-

orical variables in a microdata ®le. There are a number of issues concerning PRAM that

need further research.

In Section 3, the expectation ratio was introduced to determine whether the perturbed

®le is safe. Another possible way to do this is by using the theory of exact matching,

when errors occur in the variables that have to be matched (see e.g., Fellegi and Sunter

1969). It could be checked to what extent the records in the original ®le could be matched

successfully to those in the perturbed ®le, given some matching algorithm. For a given

record in the original ®le, the number of records in the perturbed ®le that match this record

can be determined. The larger this number is, the harder it is to match the original ®le to

the perturbed ®le, and thus the safer the perturbed ®le is. An alternative measure of re-

identi®cation risk is described in Skinner (1997), where for each record the probability

of re-identi®cation is calculated.

Another important problem is the existence of dependencies between variables in the

original microdata ®le. The variables in the original data ®le satisfy all kinds of edit rules.

If PRAM is applied to different variables independently, then inconsistencies in the per-

turbed ®le may occur, i.e., the edit rules may not be satis®ed anymore. This gives an intru-

der a clue as to which values are perturbed, and he or she can partially undo the

perturbation process. For example, in the Dutch National Travel Survey, the data ®le con-

tains postal code as well as place of residence. The place of residence can be deduced from

the postal code. If PRAM should be applied to postal code and place of residence sepa-

rately (or only to postal code without taking the place of residence into account), these

two could be inconsistent in the perturbed ®le. This then gives an intruder a clue that in
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Table 7.1. Expected number of changes per variable

Variable Expected number of changes Expected percentage of changes

Postal code 22,551 13.4

Marital status 1,041 0.6

Age (in classes) 2,803 1.7

Main activity status 914 0.5

Composition of the household 879 0.5

Household vehicle availability 889 0.5



such a record a score has been affected by PRAM. The question is how these dependencies

should be dealt with routinely.

It was shown that it is possible to make cross-tabulations and perform regression ana-

lysis on the perturbed ®le. An open question is which other standard statistical techniques

withstand PRAM, and how these techniques should be modi®ed to account for the

randomisation process.

Some microdata ®les have a hierarchical structure, containing information on for exam-

ple households as well as on persons. If PRAM is applied to the records of the different

persons, then it may occur that two persons belong to the same household but score dif-

ferently on the same household variable. The question is how to take this structure into

account when applying PRAM. This may be accomplished by abandoning the requirement

that PRAM is applied to each record independently of the other records.

A more practical problem is how PRAM should be incorporated in a software package

for disclosure protection of a microdata ®le. It seems wise to restrict the choices of the

Markov matrix to a few special classes, in order to keep the number of possible options

tractable. If a general Markov matrix is allowed, every user of the package has to have

a thorough knowledge of PRAM before being able to use the package in a sensible

way. It is a topic for further research how the Markov matrix should be chosen, and

what the effects of any restrictions will be.

In this article, we have only considered PRAM as a method for disclosure protection. In

general we want to apply a mixture of several disclosure protection methods: PRAM, glo-

bal recoding, local suppression, etc. Generally speaking, it is still unclear what the impli-

cations for disclosure protection rules are and what the consequences for statistical

analyses will be.
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