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When investigating unemployment data, one may be interested in estimating the totals of
unemployed in subpopulations, e.g., by regional or by contentional differentiation. For the
estimation of a population total, typically Horvitz-Thompson type estimates are used.
However, often the data are prone to item nonresponse. To achieve valid results for these
estimates from a randomization-based perspective, in general variance correction methods are
needed.
In this article we discuss imputation issues in large-scale datasets with different scaled

variables, laying special emphasis on binary variables. Since fitting a multivariate imputation
model can be cumbersome, univariate specifications are proposed which are much easier to
perform. The regression-switching or chained equations Gibbs sampler is proposed and
possible theoretical shortcomings of this approach are addressed as well as data problems.
A simulation study is done based on the data of the German Microcensus, which is often

used to analyze unemployment. Multiple imputation, raking, and calibration techniques are
compared for estimating the number of unemployed in different settings. We find that the
logistic multiple imputation routine for binary variables, in some settings, may lead to poor
point estimates as well as variance estimates. To overcome possible shortcomings of the
logistic regression imputation, we derive a multiple imputation-matching algorithm, which
turns out to work well.

Key words: Complex surveys; missing data; multiple imputation; logistic regression;
Horvitz-Thompson estimator; GREG estimator.

1. Introduction

Typically, in complex surveys we are confronted with variables of different scales with

some missing data spread all around. Theoretically, we can apply a multivariate model and

derive suitable imputation routines therefrom. Practically, this is not an easy task. The

multivariate normal model (see e.g., Schafer 1999b) has become quite popular among

statisticians for multiple imputations in multivariate settings. But in many applications, the

assumption of a multivariate normal distribution can hardly be justified, for example when

binary variables have missing data. Recently, Rubin (2003) has suggested univariate

multiple imputation procedures for large-scale datasets. They are successfully used for
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multiple imputation in the U.S. National Medical Expenditure Survey (NMES) where the

dataset to be imputed consists of up to 240 variables of different scales and 22,000

observations. Such routines have been used quite efficiently in the context of mass

imputation, i.e., imputing a large quantity of data that are missing by design. This is the

situation in the so-called data fusion case and the split questionnaire survey designs (see e.g.,

Rässler 2002). For the pseudouniverses and the simulation study to be performed within the

DACSEIS project (cf. http://www.dacseis.de), we therefore suggest such multiple

imputation routines as state-of-the-art. The advantages and disadvantages of this approach

are described herein, also the necessary pseudocode is provided in S-PLUS/R routines on

the electronic DACSEIS recommended practice manual (cf. http://rpm.dacseis.de).

It is said that iterative univariate imputations were first implemented by Kennickell

(1991) and Kennickell and McManus (1994) (see Schafer and Olsen 1999). Ready to use

and available for free via the Internet is a software called MICE, which is a recent

implementation of some iterative univariate imputation methods in S-PLUS as well as R

(see van Buuren and Oudshoorn 2000). Moreover, there is the free SAS-callable

application IVEware, which also provides iterative univariate imputation methods.

The intuitively appealing idea behind the iterative univariate imputation procedure is to

overcome the problem of suitably proposing and fitting a multivariate model for mixtures

of categorical and continuous data by reducing the multivariate imputation task to

conventional regression models iteratively completed. In many surveys it may be difficult

to propose a sensible joint distribution for all variables of interest. On the other hand there

are a variety of procedures available for regression modelling of continuous and

categorical univariate response variables such as ordered or unordered logit/probit models

(see Greene 2000). Thus any plausible regression model may be specified for predicting

each univariate variable that has to be imputed given all the other variables. This approach

is known as regression switching, sequential regressions, chained equations, or variable-

by-variable Gibbs sampling; see e.g., van Buuren and Oudshoorn (1999). In the chained

equations Gibbs sampling approach it is also possible to include only relevant predictor

variables, thus reducing the number of parameters.

2. Univariate Multiple Imputation Models for Complex Surveys

2.1. Multiple imputation

The theory and principle of multiple imputation (MI) originates from Rubin (1978).

A comprehensive treatment of data augmentation and multiple imputations can be found

in Schafer (1997). An introduction to MI is also given by Schafer (1999a), Little and Rubin

(2002) and in the context of the DACSEIS project (Rässler 2004). The theoretical

motivation for multiple imputation is Bayesian, although the resulting multiple imputation

inference is usually also valid from a frequentist viewpoint. Basically, MI requires

independent random draws from the posterior predictive distribution f YmisjYobs
of the

missing data Ymis given the observed data Yobs. Since it is often difficult to draw from

f YmisjYobs
directly, a two-step procedure for each of the m draws is useful:

(a) First, we make random draws of the parameters Jaccording to their observed-data

posterior distribution fJjYobs
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(b) then, we perform random draws of Ymis according to their conditional predictive

distribution f YmisjYobs;J

Because

f YmisjYobs
ðymisjyobsÞ ¼

ð
f YmisjYobs;Jðymisjyobs; j ÞfJjYobs

ðjjyobsÞdj ð1Þ

holds, with (a) and (b) we achieve imputations of Ymis from their posterior predictive

distribution f YmisjYobs
. Due to the data-generating model used, for many models the

conditional predictive distribution f YmisjYobs;J is rather straightforward. Often it can be

easily formulated for each unit with missing data.

In contrast, the corresponding observed-data posteriors fJjYobs
are usually difficult to

derive for those units with missing data, especially when the data have a multivariate

structure and different missing data patterns. The observed-data posteriors are often not

standard distributions from which random numbers can easily be generated. However,

simpler methods have been developed to enable multiple imputation based on Markov

chain Monte Carlo (MCMC) techniques. In MCMC the desired distributions f YmisjYobs
and

fJjYobs
are achieved as stationary distributions of Markov chains which are based on the

easier to compute complete-data distributions.

Typically, m ¼ 5 values are imputed for each missing datum according to some

distributional assumptions. We conduct, say, m . 1 independent simulated imputations

ðYobs; Y ð1Þ
misÞ, ðYobs; Y ð2Þ

misÞ, : : : ;ðYobs; Y ðmÞ
misÞ. Then standard complete-case analysis can be

performed for each of the m imputed datasets, enabling us to calculate the imputed data

estimate û ðtÞ ¼ ûðYobs; Y ðtÞ
misÞ along with its estimated variance V̂ðû ðtÞÞ ¼ V̂ðûðYobs; Y ðtÞ

misÞÞ,

t ¼ 1; 2; : : : ;m. Finally the complete-case estimates are combined according to the MI

rule, which means that the MI point estimate for u is simply the average

ûMI ¼
1

m

Xm

t¼1

û ðtÞ ð2Þ

To obtain a standard error
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ðûMIÞ

p
for the MI estimate ûMI , we first calculate the

between-imputation variance

V̂bðûÞ ¼
1

m 2 1

Xm

t¼1

ðû ðtÞ 2 ûMIÞ
2 ð3Þ

and then the within-imputation variance

V̂wðûÞ ¼
1

m

Xm

t¼1

V̂ðû ðtÞÞ ð4Þ

Finally, the estimated total variance is defined by

V̂ðûMIÞ ¼ V̂wðûÞ þ ð1þ
1

m
ÞV̂bðûÞ ð5Þ

For large sample sizes, tests and two-sided ð12 aÞ100% interval estimates can be based

on Student’s t-distribution
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ðûMI 2 uÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ðûMIÞ

q
~tv and ûMI ^ tv;12a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ðûMIÞ

q
ð6Þ

with the degrees of freedom

v ¼ ðm 2 1Þ 1þ
V̂wðûÞ

ð1þ m21ÞV̂bðûÞ

� �2

ð7Þ

MI is in general applicable when the complete-data estimates are asymptotically normal

(as ML estimates are) or t-distributed; see e.g., Rubin and Schenker (1986), Rubin (1987),

Barnard and Rubin (1999), or Little and Rubin (2002).

From (6) we can see that the multiple imputation interval estimates are widened to

reflect the uncertainty due to imputation and the model choice. If this in done correctly the

MI method is said to be proper in Rubin’s sense. From a frequentist perspective this means

that randomization valid inference will be drawn from the multiply imputed datasets; for

further discussion see Brand (1999) or Rässler (2004). To show analytically whether an MI

method is proper is a difficult task and often only simulation studies can help. In our

setting, the logistic regression imputation is obviously not proper. Therefore we propose

another routine, which is based on the proper linear regression imputation method.

2.2. Regression-switching

To illustrate the principle of the regression switching let us assume the simple case with

three variables A, B, and C, each with missing data. Then Rubin (2003) proposes:

. Begin by arbitrarily filling in all missing B and C values.

. Then, fit a model of AjB;C using those units where A is observed, and impute the

missing A values.

. Next, toss the imputed B values, and fit a model of BjA;C using those units where B is

observed, and impute the missing B values.

. Next, toss the imputed C values, and fit a model of CjA;B using units where C is

observed, and impute the missing C values.

. Iterate.

Since this describes a Markov chain Monte Carlo (MCMC) procedure, in general, the

changed equations are cycled through until convergence of the chains can be expected.

This procedure allows great flexibility due to the different conditional specifications. Each

specification simply is a univariate regression. It has to be mentioned that there are some

theoretical shortcomings, because it is possible to generate incompatible distributions via

implicit contradictions in the specified conditional specifications. The practical

implications of this phenomenon in iterative univariate imputation are still quite unknown

(see Schafer and Olsen 1999). A real Gibbs sampler starts with an existing but intractable

joint distribution for the variables of interest, iteratively generating random variables from

easier to operate full conditional distributions derived from its joint distribution. In the

context of iterative univariate imputations the conditional distributions are specified in the

hope that these conditional distributions will define a suitable joint model. However, even

if there is no such joint distribution for the data, the MCMC method can be implemented,
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and each conditional specification may be a good empirical fit to the data (see Rubin 2003,

van Buuren and Oudshorn 2000, and Brand 1999).

2.3. MI algorithm for missing continuous variables

To impute missing data for a continuous variable Y , such as income or expenditure in

household budget surveys, we propose to apply a simple linear regression model. As prior

distributions the usual uninformative or flat priors are used. The continuous variable

(income or expenditure data, whichever has data missing) may be transformed by its

logarithm before performing the imputations. Note that after imputation the values have to

be transformed back. To assure that only values are imputed that lie within a certain range,

also upper and lower bounds can be given. After performing the final imputation step for

the missing Y values, each row of the imputed dataset is examined to see whether any of

the imputed values is out of range. In such cases these values are redrawn until the

constraints are satisfied. According to Schafer (1997, p. 204), this procedure leads to

approximately proper multiple imputations under a truncated normal model.

The basic algorithm according to Rubin (1987, p. 166) is as follows.

. Assume the underlying data model of a linear regression

y ¼ b1x1 þ b2x2 þ : : :þ bpxp þ 1 ¼ Xbþ 1; 1~N ð0;s2Þ

. Assume that y has nmis missing data, variables X are fully observed or already

imputed. yobs and Xobs refer to the jointly observed part, Xmis to the missing part ymis.

. Let b̂ and ŝ2 ¼ ðyobs 2 Xobsb̂Þ
0ðyobs 2 Xobsb̂Þ=ðnobs 2 pÞ be the least squared

estimates from the observed data.

. Multiple imputation procedure for j ¼ 1; 2; : : :m:

1. Draw s2jX ~ð yobs 2 Xobsb̂Þ
0ðyobs 2 Xobsb̂Þx

22
nobs2p

2. Draw a vector of p variables from bjs2;X ~Nðb̂;s2ðX0
obsXobsÞ

21Þ

3. Draw Ymisjb;s
2;X ~NðXmisb;s

2Þ independently for every missing value

i ¼ 1; 2; : : :; nmis

For the independent variables X all available auxiliary variables from the universes may be

taken. If both income and expenditure have missing values, then the regression switching

can be applied. Since income and expenditure are typically highly correlated, it seems

adequate to incorporate both variables in one imputation model.

2.4. MI algorithm for missing binary variables

For a binary target variable with missing values, we first base the imputations on a logistic

regression model. For labor force surveys or the microcensus and its data, the employment

variable has to be either recoded to zero and one (e.g., to 1 if y ¼ unemployed and to

0 otherwise) or split into dummy variables (e.g., to employment (yes/no) and

unemployment (yes/no)), leaving the third category for nonlabor force or simply the

rest. Then the following algorithm is proposed by Rubin (1987, p. 169).

. Assume the underlying data model of a logistic regression

ln
p

12 p

� �
¼ b0 þ b1x1 þ : : :þ bpxp ¼ Xb; p ¼ PðY ¼ 1jXÞ

Münnich and Rässler: PRIMA: A New Multiple Imputation Procedure for Binary Variables 329



. Assume that y has nmis missing data, variables X are fully observed or already

imputed. yobs and Xobs refer to the jointly observed part, Xmis to the missing part ymis.

. Let b̂ be the iterative least squares estimates from the observed data (or any

approximate ML estimate) and V̂ðb̂Þ its estimated covariance matrix (e.g., from the

inverse Fisher information matrix Iðb̂Þ21).

. Apply the large sample normal approximation for j ¼ 1; 2; : : :;m:

1. Draw a vector of p variables from bjX ~Nðb̂; V̂ðb̂ÞÞ

2. For every i [ mis calculate pi ¼ 1=ð1þ expð2X0
ibÞÞ

3. Draw nmis independent uniform (0,1) random numbers ui for i ¼ 1; 2; : : : ; nmis

and if ui . pi impute Yi ¼ 0, otherwise impute Yi ¼ 1.

For the independent variables X again all available information may be taken. If more

than one (dummy) variable (after recoding) has missing data, then we may impute the

most populous category first versus the rest. If zero is imputed, then we impute the next

category versus the rest, and so on. If one is imputed once, all remaining categories are

set to zero.

2.5. Refined MI algorithm for binary variables

First experiences with the logistic regression approach show that in a couple of cases the

large sample approximation for the estimated variance V̂ðb̂Þ of the logistic regression does

notworkwell.According toRubin andSchenker (1987) this is due to the diverging shapes of

the true and the approximated likelihood, and a stabilizing prior may be used instead of the

standard noninformative prior. Alternatively, the computer-intensive importance sampling-

resampling algorithm may be used instead of the large sample approximation. To get a

computationally easy and fast-working solution for better imputations we propose a new

algorithm based on the simple linear MI routine of Section 3. First imputations according to

this linearmodel are created for all unitsmissing or not, although the dependent Y variable is

a binary one. Then, for each unit with missing Y values, from the units with observed Y

values the unit with the nearest imputed Yimp is searched and its Yobs value is imputed. This

procedure basically follows the predictive mean matching approach by Rubin (1986) and

Little (1988) though the matching is not done on the mean but on the imputed values. We

will call this approach predictive imputation matching (PRIMA), which was earlier denoted

by MI linbin throughout the DACSEIS simulation study (cf. http://rpm.dacseis.de).

Whether this approach leads to proper imputations has to be left to future research.

However, the results are quite encouraging, as will be shown later in this article.

3. Typical Problems That May Occur with Regression-switching

3.1. Incorporating the sampling design

In the multiple imputation model, stratification can be incorporated by including strata

indicators as covariates. Clustering may be incorporated by multilevel models that include

random cluster effects (see Little and Rubin 2002, p. 90, or Schafer and Yucel 2002). On the

other hand, these effects can be controlled by a design-based complete-data inference.
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3.2. Collinearity

It should be noted that the problem of collinearity might occur when the coefficients of the

linear regression model are to be estimated from the observed data. If some covariates of X

show only very little variability it may happen that the remaining part in Xobs, which

belongs to the observed part of Y, has one or more variables with constant values. To avoid

such cases, it is useful to perform plausibility checks to exclude such variables from the

regression model.

3.3. Discrete data

For continuous discrete data we propose proceeding with the linear regression model and

the PRIMA or directly using the predictive mean matching approach as already mentioned

above.

Both procedures have the great advantage that only values, which are really observed,

can be imputed and the imputation is even more robust against misspecification of the

linear model (see Rässler et al. 2002).

3.4. Monotone missingness versus incompatibility

The regression-switching approach can suffer from the theoretical limitation of possibly

generating incompatible distributions via implicit contradictions on their conditional

specification (Rubin 2003). This may be of importance if the rate of missingness is high

and there are a lot of different conditional specifications. If the missingness has a

monotone pattern (for illustration see Fig. 1) we may impute the variable from left to right

always regressing the variable to be imputed on all other variables on the left. This

procedure is continued until all missing values have been imputed.

Monotone patterns of missingness have the advantage that they can be handled

noniteratively because each imputation model being fit is conditioning only on the

variables to the left. The resulting univariate models are automatically distributionally

compatible. When the missing data are not monotone but approximately monotone,

Rubin (2003) proposes first imputing those values, which disturb the monotone

missingness pattern regressing on all other variables (thus, possibly specifying

an incompatible Gibbs sampler) and then impute the monotone missing values from left

to right.

Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

obse
rv

ed

m
iss

ing

Fig. 1. Monotone pattern of missingness
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4. The Multiple Imputation Study of the German Microcensus

4.1. Estimating unemployment in the German Microcensus

The German Microcensus (GMC) is a 1% sample survey of persons and households that is

conducted on a yearly basis (cf. Statistisches Bundesamt 1999). The main purpose is to

analyse the structure of the population, the labor market, including the labor participation,

and the housing situation. As in Germany no separate Labor Force Survey exists, the

relevant unemployment figures, which refer to the ILO definition of unemployment are

drawn from the GMC.

The sampling design is stratified cluster sampling, where the strata are the 214 regional

classes within the federal states and finally the five house size classes. Within these 1,070

strata, clusters are built of approximately 15–20 persons. From every 100 of these clusters,

one is drawn randomly. Further details on the GMC can be found in Heidenreich (1994),

Meyer (1994), Münnich (2001), or Quatember (2002).

In this study, the number of unemployed in Germany is of interest. Unfortunately, in

Germany two definitions of unemployment exist. One refers to the labor participation

similar to the Eurostat definition as unemployment type U1. Data for this variable are

gained from the variable EF504 in the GMC. Unemployment type U2 which refers to job-

seeking people who are registered at the Federal Employment Agency (Bundesagentur für

Arbeit) in Nürnberg and is therefore different from U1.

Subsequently, we will use as the estimation variable U1, which is denoted by Y . U2 will

be used as an appropriate auxiliary variable, denoted by X. The first-order inclusion

probabilities in the GMC are all pi ¼ 1=100 for i ¼ 1; : : : ;N.

4.2. Estimators of interest

The estimators of interest are based on the classical Horvitz-Thompson estimator for a

total t

t̂HT ¼
Xn

i¼1

di·yi ð8Þ

with observed values yi and weights i. In general, the di are the design weights 1=pi where

pi denotes the first-order inclusion probability (cf. Särndal et al. 1992, or Lohr 1999).

Then, the well-known GREG estimator can be expressed as a linear weighted sum of the

observed values

t̂GREG ¼
Xn

i¼1

wi·yi ð9Þ

where wi ¼ di·gi are the GREG weights with

gi ¼ 1þ
XN

k¼1

xk 2
Xn

k¼1

dk·xk

 !0 Xn

k¼1

dk·xk·x
0
k

 !21

·xi ð10Þ

and the individual auxiliary information vector xi. However, the wi can also be derived

from calibration and raking approaches which are discussed in D’Arrigo and Skinner

(2004).
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As the corresponding variance estimator, the jackknife linearized variance which

considers the calibrated weights was chosen. In the case of stratified random sampling with

H strata one obtains the following (D’Arrigo and Skinner, 2004, p. 8):

V̂ðt̂
GREG

Þ ¼
XH

h¼1

nh

nh 2 1

Xnh

j¼1

whj·ehj 2
1

nh

Xnh

k¼1

whk·ehk

 !2

ð11Þ

ehj ¼ yhj 2 xhj·B̂ denote the estimated residuals obtained by using the least squares

estimate B̂ of the multiple regression coefficient. This will be used later in the simulation

study of the German Microcensus.

In the case of nonresponse, the design weights and sample sizes have to be updated

according to the actual nonresponse.

The combination of point estimator (9) and variance estimator (11) was studied in detail

in D’Arrigo and Skinner (2004) and turned out to be a recommended method in the

presence of nonresponse and was therefore used as a benchmark in many of the DACSEIS

simulations (cf. DACSEIS recommended practice manual).

The second estimator using weights for compensating for nonresponse is defined

according to Lundström and Särndal (2002, Sections 6.3 and 6.4). The variance estimator

is given by

V̂ðt̂Þ ¼ V̂SAMðt̂Þ þ V̂NRðt̂Þ ð12Þ

where

V̂SAMðt̂Þ ¼
Xr

i¼1

Xr

j¼1

ðdidj 2 dijÞ ðgivsieiÞ ðgjvsjejÞ2
Xr

i¼1

diðdi 2 1Þvsiðvsi 2 1Þ ðgieiÞ
2 ð13Þ

V̂NRðt̂Þ ¼
Xr

i¼1

d2
i vsiðvsi 2 1Þe2i ð14Þ

The weights vsi are drawn from

vsi ¼ 1þ
Xn

k¼1

dkxk 2
Xr

k¼1

dk·xk

 !0 Xr

k¼1

dk·xk·x
0
k

 !21

·xi ð15Þ

with r respondents in the sample, the gk are the same as before and the ek are gained from

the least squares estimate of the regression coefficient on the set of respondents.

4.3. Simulation results

The data used are the same, which are used within the DACSEIS simulation study. For a

detailed description of the universe dataset generation mechanism we refer to Münnich

and Schürle (2003). The simulation set-ups are best viewed in Münnich and Magg

(2004).

The universe of Saarland (SAL) consists of 1,089,381 individuals. Within the Monte-

Carlo study, 10,000 samples were evaluated for point estimation and 1,000 for variance

estimation. This choice was based on some very computer-intensive resampling-based
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variance estimation procedures within the entire DACSEIS study while providing an

adequate benchmark of the variance VðûÞ.

The nonresponse mechanism was introduced into the estimation variable as item

nonresponse. In the case of the German Microcensus, this seems appropriate since the

unemployment variable refers to the register variable. In practice, the assignment of units

between the two unemployment variables is still problematic for legal reasons. However,

within the simulation study, this link could be achieved. The influence of poor assignments

of units was studied in Wiegert and Münnich (2004).

The nonresponse rate is 25% in all simulations below. Other nonresponse rates and

further estimators can be taken from the DACSEIS recommended practice manual (cf.

http://rpm.dacseis.de).

Four simulation tasks are described as follows:

Task 1: The target variable is the total U1 of unemployed in Saarland. The auxiliary

variable for estimation and calibration is the number of job-seeking, U2. The universe is

referred to as sub0. The number of unemployed is u2 ¼ 38; 713 and the number of

individuals is N1 ¼ 1; 089; 381.

Task 2: The simulation of Task 1 is performed on the house-size classes 1–3 in regional

stratum 1 of Saarland. The number of unemployed is now u2 ¼ 12; 222 and, the number of

individuals is N2 ¼ 312; 137. The universe is referred to as sub5.

Task 3: The simulation of Task 1 is now performed on a subset of Saarland, the house-

size classes 3 in all three regional strata. Here, the number of unemployed is u3 ¼ 3; 784

and the number of individuals is N ¼ 52; 635. The universe is referred to as sub1.

Task 4: The target variable is the unemployed U1 in the age class ½45; 65Þ in the entire

population of Saarland (sub0; N ¼ 1; 089; 381). In this case, only u4 ¼ 15; 274

individuals are unemployed. Again, the number of job seeking, U2, was used as auxiliary

variable for the estimation and imputation process.

The tasks were chosen according to the size of the universe, the proportion of

unemployed in the areas of interest, and the different stratifications (sub1 and sub5).

The estimators of interest are (in parenthesis the numbers when only four are shown):

1 (1): GREG estimator with nonresponse correction and jackknife linearized variance

estimator

2 (2): Calibration estimator according to Lundström and Särndal

3 (–): Horvitz-Thompson estimator with logit MI (cf. Section 2.4)

4 (3): Horvitz-Thompson estimator with PRIMA (cf. Section 2.5)

5 (–): GREG estimator with logit MI

6 (4): GREG estimator with PRIMA

For the Horvitz-Thompson and the GREG estimator in connection with MI, the g-weights-

residual variance estimator was applied. Within the simulation study, hardly any

differences occur for the point estimators beyond the recommended m ¼ 5 imputed

datasets. For variance estimation, there was some increase in efficiency when using

m ¼ 15 but little further increase was observed for m ¼ 30. Since the computation effort

was rather small on these datasets for the MI routines, we chose to take m ¼ 30

imputations within this simulation.
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The dark lines in the graphs indicate the true value whereas the light lines indicate the

average of the simulated distribution of the estimator of interest. The measures graphs

contain the MSE values (left) and the coverage rates (right) for the estimators. The upper

bar indicates the true relative root MSE of the estimator, the middle bar the simulated

relative standard error, and finally the lower bar the average of the estimated relative

standard errors from the samples within the simulation. The coverage rates considered

were 90% (upper bar) and 95% (lower bar).

With regard to task one, in Fig. 2 the performance of the six point and variance

estimators is shown.

All estimates yield comparable results. The GREG calibration with nonresponse

correction, however, is slightly preferable to the other estimators. The Horvitz-Thompson

estimator is certainly inferior to the other estimators. The MSE-based measures and

coverage rates indicate rather small differences (cf. Fig. 3). However, in this case, the MI

logistic regression seems to have a small advantage as compared to the MI PRIMA routine

with respect to the coverage rates. This tends to be more a problem of the GREG estimator

in comparison with the standard Horvitz-Thompson.

In Fig. 4 we see that turning to the subpopulation while still using the number of

unemployed as the target variable, the estimators using logit imputation become unstable.

The variance estimator itself seems a little more stable in comparison with the point

estimator, which is due to the different numbers of simulation runs. However, the

estimators still seem to be unbiased.

In order to be able to compare the other estimators with each other, one can see in Fig. 5

that the GREG-based estimators, including the Lundström and Särndal formulae, show

little difference whereas the gain in efficiency compared to the Horvitz-Thompson is very

large, which results from the highly correlated auxiliary variable.

The measures in Fig. 6 yield the same results. However, we observe two things that

could be seen in many simulations. First, once an estimator starts to become inadequate,
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Fig. 3. MSE-based measures (left) and coverage rates (right) of the estimators for the total number of

unemployed in Saarland (Task 1)
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Fig. 2. Comparison of the six point (left) and variance (right) estimators for the total number of unemployed in

Saarland (Task 1)
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the corresponding estimated relative standard error tends to become inefficient (all

estimators are asymptotically unbiased). Second, the Horvitz-Thompson estimator

generally yields slightly more stable confidence coverage rates but with–sometimes–a

much larger variance.

Fig. 7 shows the scatterplots of the variance estimators compared with each other. The

diagonal line indicates the equal line, and the horizontal and vertical lines the true

variances. All GREG-based estimators are highly correlated with each other and close to

independent of the Horvitz-Thompson estimator.

Turning to Task 3, we find that the more homogeneous strata on the one hand and the

smaller size of the area of interest on the other do not produce the extreme outliers, but

tend to overestimate the true values in many more cases, which results in biased estimates

(cf. Fig. 8). Here, the estimators of interest suffer from the type of cluster sampling used in

connection with the classical asymptotical problems of discrete-valued distributions.

Figure 9 again shows the efficiency of the refined MI routine for binary data. In this

case, only small differences between the GREG with linearized variance estimator, the

Lundström-Särndal and the GREG estimator under multiple imputation in the refined

version occur. The coverage rates suffer from a slight underestimation of the true variance

(cf. Fig. 10).

Finally, in Fig. 11 again problems arise using the logit imputation for very small

proportions of the target variable. In this case u ¼ 15; 274 in the universe, which gives a

true proportion of 1.4% unemployed people aged from 45 to 64 years in Saarland. These
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Fig. 4. Comparison of the six-point (left) and variance (right) estimators for the total number of unemployed in

Saarland, subregion according to Task 2
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Fig. 6. MSE-based measures (left) and coverage rates (right) of the estimators for the total number of

unemployed in Saarland (Task 2)
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Fig. 5. Comparison of the four-point (left) and variance (right) estimators for the total number of unemployed in

Saarland, subregion according to Task 2
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Fig. 7. Scatter plot of the four variance estimators for the total number of unemployed in Saarland, subregion

according to Task 2
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Fig. 9. Comparison of the four point (left) and variance (right) estimators for the total number of unemployed in

Saarland, subregion according to Task 3
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Fig. 8. Comparison of the six point (left) and variance (right) estimators for the total number of unemployed in

Saarland, subregion according to Task 3
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figures seem to be typical for the logistic regression imputation and may yield–when

applied as imputation routine–erroneous point estimates as well as useless variance

estimates. In these cases, the maximum likelihood estimation does not seem to converge

properly which results in a considerably larger number of unemployed (cf. Section 2.5).

The graphs based on the measures again show proper values for the other four point and

variance estimation results (cf. Fig. 12). They also show the insufficiency of the logit based

multiple imputation ending up in a severe increase of the MSE and especially the

estimated relative standard error.

Further simulation results have shown that an increase of variables used as X in the

imputation generally caused further troublesome effects on the logistic regression

imputation. So far, in the simulation study no case has been observed where the PRIMA

routine has turned out to be problematic. However, the tendency of a small

underestimation of the true variance was observed in some cases using several imputation

variables in stratification with homogeneous strata.

5. Summary and Outlook

The preceding study has shown some peculiarities of the logistic regression imputation for

binary data. The most severe cases obviously may lead to wrong answers in the analysis.

The predictive imputation matching turned out to be very insensitive with regard to these
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Fig. 11. Comparison of the six point (left) and variance (right) estimators for the total number of unemployed in

Saarland in the age class ½45; 65Þ, according to Task 4
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Fig. 10. MSE-based measures (left) and coverage rates (right) of the estimators for the total number of

unemployed in Saarland (Task 3)
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Fig. 12. MSE-based measures (left) and coverage rates (right) of the estimators for the total number of

unemployed in Saarland in the age class ½45; 65Þ (Task 4)
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troublesome data constellations, although we have not yet proved this routine to be proper

in Rubin’s sense. However, the actual simulations have shown encouraging results.

Hence, we conclude that the regression-switching approach seems to be quite promising

in large datasets and also for large quantities of missing values. Even in the context of

mass imputation, i.e., split questionnaire survey designs and data fusion, we find good

frequentist properties. In the U.S. the regression-switching multiple imputation approach

is basically applied in the NHANES (a split project) and NMES. The basic routines are

already implemented in MICE (SPLUS and R version) and IVEware, Raghunathan’s SAS

callable application.
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