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We discuss variance estimation by resampling in surveys in which data are missing.
We derive a formula for linearization in the case of calibrated estimation with deterministic
regression imputation, and compare the resulting variance estimates with balanced repeated
replication with and without grouping, the bootstrap, the block jackknife, and multiple
imputation, for simulated data based on the Swiss Household Budget Survey. We also
investigate the number of replications needed for reliable variance estimation under
resampling in this context. Linearization, the bootstrap, and multiple imputation perform best
in terms of relative bias and mean squared error.
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1. Introduction

Classical variance formulae for sample survey estimators are derived using

approximations based on Taylor series expansion of the estimators. When the sample is

small or the estimator complex––for instance, because of modifications to account for

missing data––it is natural to be concerned about the quality of such approximations, and

to consider alternatives such as resampling procedures. The purpose of this article is to

give formulae for general variance approximations in the presence of calibration and

deterministic imputation, and to compare them numerically with resampling procedures.

Section 2 reviews the classes of estimator that we consider, and Section 3 reviews

resampling methods for variance estimation. Section 4 outlines a linearization approach

for use when missing data are dealt with by calibration and deterministic regression

imputation, and Section 5 contains numerical investigations based on the Swiss Household

Budget Survey. The article ends with a brief discussion.

2. Basic Ideas

Consider first complete response for a stratified single stage unequal probability sampling

scheme without replacement, with N units divided into H strata, from which a total of
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n units are sampled. Let nh be the number of units sampled from the Nh population units in

stratum h, and let phi be the inclusion probability for unit i of this stratum. In household

surveys this unit might consist of a cluster of individuals, in which case the unit response

of interest is supposed to be cumulated over the cluster. Let xhi and yhi be variables that

have been measured on the units, where yhi is the scalar response of interest and xhi is a

q £ 1 vector of auxiliary variables, which may be continuous, categorical, or both.

Parameters of the finite population can be classified into two broad groups. The first,

largest, and most important group comprises smooth quantities such as the population total

t ¼
PH

h¼1

PNh

i¼1 yhi; the ratio, the correlation, or the change in the ratio between two

sampling occasions. The other main group comprises nonsmooth functions of the finite

population responses, such as the median, quantiles, and statistics based on them (Berger

and Skinner 2003).

Estimation of the finite population parameters is based on the data from the n sampled

units and on their inclusion probabilities under the given sampling design. The most

important estimator of a total is the Horvitz–Thompson estimator

t̂ ¼
XH
h¼1

Xnh
i¼1

vhiyhi ¼ vTy ð1Þ

where vhi ¼ 1=phi are the inverse inclusion probabilities. The variance of t̂ is readily

obtained, but complications arise when the weights themselves are random, or when some

of the responses are unavailable.

In many cases population totals are known for some of the auxiliary variables x, and this

information can be used to increase precision of estimation by a procedure known as

calibration. Suppose that qC marginals of the q auxiliary variables are known, with

qC # q; let c be the qC £ 1 vector of known marginals, and let XC denote the n £ q matrix

of auxiliary variables whose marginal total for the entire population is known to equal c.

Using the estimation of a total to illustrate calibration, the quality of the

Horvitz–Thompson estimator can be improved by choosing the weights whi to be as

close as possible to the original weights vhi in some metric G, subject to the constraint that

the weighted auxiliary variables match the marginals (Deville and Särndal 1992), that is,

whi
min

XH
h¼1

Xnh
i¼1

vhiGðwhi=vhiÞ such that
XH
h¼1

Xnh
i¼1

whixChi
¼ c

A widely-used distance measure is the l2 or squared error metric, GðxÞ ¼ ðx2 1Þ2=2;

which results in the calibrated weights

w ¼ vþVXC XT
CVXC

� �21
c2 XT

Cv
� �

ð2Þ

where V denotes the diagonal matrix whose elements are the vhi, and a calibrated

Horvitz–Thompson estimator of the form

t̂ ¼ wTy ¼ vTyþ c2 XT
Cv

� �T
XT
CVXC

� �21
XT
CVy ¼ vTyþ c2 XT

Cv
� �T

ĝ ð3Þ

where ĝ is the regression estimator when y is regressed on XC with weight matrix V.
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Other distance measures have been suggested, but are equivalent asymptotically (Deville

and Särndal 1992) and in practice (Deville et al. 1993).

In practice survey data sets are rarely complete, but are subject to unit nonresponse, or

item nonresponse, or both. Although calibration is mainly used for variance reduction,

it may also be used to allow for unit nonresponse. Item nonresponse, where the covariate

x is known but the target variable y is missing, demands a different approach, typically

through the use of an imputation model that allows missing values of y to be predicting the

data available.

A common deterministic approach to imputation of missing response values is to use a

(generalized) linear model based on the vectors xhi of auxiliary variables. The normal

equations for estimating the parameters b of such imputation models across strata may be

written in the vector form

XH
h¼1

Xnh
i¼1

xhicð yhi; xhi;bÞ ¼ 0 ð4Þ

where c, the derivative of the implied loss function with respect to b, is also sometimes

known as an influence function. There is a close connection here with M-estimation,

commonly used in robust statistics (Huber 1981; Hampel et al. 1986). If the response y is

dichotomous it is natural to use logistic regression as the imputation model, and then the

yhi are binary indicator variables and cð y; x;bÞ ¼ y2 expðxTbÞ={1þ expðxTbÞ}: If y is

continuous then one simple possibility is ratio imputation using a scalar x, for which we

take c ð y; x;bÞ ¼ y2 bx: For a more robust imputation model, one might use Huber’s

Proposal 2 (Huber 1981), for which c ðuÞ ¼ signðuÞminðjuj; tÞ; here t . 0 controls the

degree of robustness of the fit, with t!1 recovering the least squares estimator, and

t! 0 giving higher robustness. Once the linear model M-estimate b̂ of b has been found,

the missing response for an individual with explanatory variable x can be predicted by

xTb̂; or by a smooth function of this.

For a linear imputation model, the calibrated and imputed Horvitz–Thompson

estimator may be written as

t̂ ¼ wT{Zyþ ðI 2 ZÞŷ} ¼ vTZyþ c2 XT
Cv

� �T
XT
CVXC

� �21
XT
CVZy

þ vTðI 2 ZÞXb̂þ c2 XT
Cv

� �T
XT
CVXC

� �21
XT
CVðI 2 ZÞXb̂

ð5Þ

where Z ¼ diagðzÞ is the n £ n diagonal matrix of indicator variables zhi corresponding to

observed response, X is the n £ q matrix that contains the auxiliary variables

corresponding to both respondents and nonrespondents, and ŷ ¼ Xb̂ represents the n £ 1

vector of fitted values from the regression model used for imputation.

3. Resampling Variance Estimation

Modern sample survey estimators often involve calibration and/or imputation, and

variance formulae for them cannot be found in classic texts such as Cochran (1977). The

simplest approach would be to treat the imputed responses ŷ as if they were true responses,

but this can lead to considerable underestimation of the true variance. One way to estimate

the variance of estimators such as (5) is through resampling. The adaptation of resampling
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methods to the survey setting requires special care, because it must take into account the

dependence that may be induced by the sampling scheme as well as the effect of possible

calibration and imputation. We now briefly outline the main resampling procedures

proposed for sample surveys. A more detailed overview may be found in Davison and

Sardy (2007).

The jackknife, originally introduced as a method of bias estimation (Quenouille

1949a,b) and subsequently proposed for variance estimation (Tukey 1958), involves the

systematic deletion of groups of units at a time, the recomputation of the statistic with each

group deleted in turn, and then the combination of all these recalculated statistics.

The simplest jackknife entails the deletion of single observations, but this delete-one

jackknife is inconsistent for nonsmooth estimators, such as the median and other

estimators based on quantiles (Efron 1982). Shao and Wu (1989) and Shao and Tu (1995)

have shown that the inconsistency can be repaired by deleting groups of d observations,

where d ¼ oðnÞ!1 as n!1: Rao and Shao (1992) describe a consistent version of

the delete-one jackknife variance estimator using a particular hot deck imputation

mechanism to account for nonresponse; see also Fay (1996) for a wider perspective, and

Chen and Shao (2001), who show that this approach fails for another popular imputation

scheme, nearest-neighbour imputation.

The bootstrap involves recomputing the statistic, now using resampling from an

estimated population F̂ to obtain bootstrap samples and the corresponding statistics û* :

Repeating this process R times independently yields bootstrap replicates û *
1 ; : : : ; û

*
R of û;

and the bootstrap estimate of variance is vB ¼ ðR2 1Þ21
P

r û *
r 2 û*

� �2

; where û* ¼

R21
P

r û
*
r : For stratified data, the resampling is performed separately within each stratum.

The usual bootstrap uses sampling with replacement, corresponding to independent

sampling from an original population, but this does not match the without-replacement

sampling generally used in the survey context, so the finite sampling correction is missed,

leading to a biased variance estimator. This failure of the usual bootstrap has spurred a

good deal of work on modified bootstraps including the without-replacement bootstrap

(Gross 1980; Chao and Lo 1985; Bickel and Freedman 1984; Sitter 1992b; Booth et al.

1994; Booth and Hall 1994), the with-replacement bootstrap (McCarthy and Snowden

1985), the rescaling bootstrap (Rao and Wu 1988), and the mirror-match bootstrap (Sitter

1992a). When responses are missing, the imputation mechanism must be applied to each

resample (Shao and Sitter 1996): the idea is to reimpute repeatedly using the respondents

of the bootstrapped sample to fit the imputation model and then impute the nonrespondents

of the bootstrap sample. This is computer intensive, but it is claimed to give consistent

variance estimators for medians and other estimators based on quantiles––though the

mathematical property of consistency is no quarantee of good performance in practice.

Balanced half-sampling (McCarthy 1969) is the simplest form of balanced repeated

replication. It was originally developed for stratified multistage designs with two primary

sampling units drawn with replacement in the first stage. Two main generalizations to

surveys with more than nh ¼ 2 observations per stratum have been proposed. The first,

investigated by Gurney and Jewett (1975), Gupta and Nigam (1987), Wu (1991) and Sitter

(1993), uses orthogonal arrays, but requires a large number of replicates, making it
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impractical for many applications. The second generalization, a simpler more pragmatic

approach, is to group the primary sampling units in each stratum into two groups, and to

apply balanced repeated replication using the groups rather than individual units (Rao and

Shao 1996; Wolter 1985, Section 3.7). The balanced repeated replication variance

estimator vBRR can be highly variable, and a solution to this suggested by Robert Fay of the

U.S. Bureau of the Census (Dippo et al. 1984; Fay 1989) is to use a milder reweighting

scheme. Another solution (Rao and Shao 1996) is to repeat the method over differently

randomly selected groups to provide several estimates of variance, averaging of which will

provide a more stable overall variance estimate. Shao et al. (1998) adjust balanced

repeated replication to the presence of nonresponse, by taking into account a deterministic

or random imputation mechanism. Under a general stratified multistage sampling design,

they establish consistency of the adjusted balanced repeated replication variance

estimators for functions of smooth and nonsmooth statistics.

Multiple imputation (Rubin 1987, 1996; Little and Rubin 2002) has also been promoted

for variance estimation in complex surveys (Münnich and Rässler 2005)––standard

formulae are computed for several datasets for which missing data have been

stochastically imputed, and are then combined in such a way as to make proper

allowance for the effect of imputation. This approach has been regarded as controversial

by certain authors; see, for example Fay (1996).

4. Linearization

Linearization is a general term for the construction of variance estimators based on a linear

series expansion of the estimator of interest in terms of underlying quantities; it is

sometimes called the delta method. The best-known approach of this type involves Taylor

series expansion of the estimator in terms of means or totals around their population

values, and the resulting variance is then estimated by replacing population variances and

covariances by unbiased estimators based on the sample. Taylor linearization may be

applied to estimators that may be written as smooth functions of means, and so is useful for

most common survey estimators (Deville 1999).

A more general approach is through a functional expansion of the estimator, sometimes

called a von Mises expansion, in which the averages that appear in Taylor series expansion

are replaced by sums of directional derivatives that involve individual observations.

Depending on the mathematical formalism used, these are Fréchet or Gâteaux derivatives.

Although it yields the same results as Taylor series expansion when applied to averages,

von Mises expansion may also be applied to quantities not directly expressible as

averages, such as sample quantiles. More details may be found in Fernholtz (1983),

Hampel et al. (1986), or Davison and Hinkley (1997, §2.7), and Campbell (1980) discusses

application to finite population sampling. Here we adopt the functional approach, which

deserves to be more widely known.

The main tool in construction of linearization variance estimators using the functional

approach is the influence function, whose derivation we now outline. In many cases the

estimand u can be written as a functional t(F) of the underlying distribution function F

from which observations Y1; : : : ; Yn are supposed independently drawn. A simple

estimator of t(F) is then tðF̂Þ; where F̂ is the empirical distribution function of the data.
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For the mean, for instance, tðFÞ ¼
Ð
udFðuÞ and tðF̂Þ ¼ Y is its empirical analogue. Under

some differentiability properties for tð�Þ; the estimate û ¼ tðF̂Þ can be expanded around

u ¼ tðFÞ as tðF̂Þ8 tðFÞ þ n21
Pn

i¼1 LtðYi;FÞ; where

Ltð y;FÞ ¼
e!0
lim

t{ð12 eÞF þ edy}2 tðFÞ

e
ð6Þ

is the influence function for tðF̂Þ; dy being the distribution function putting a point mass at

y. This expansion can be used to establish that the estimator is asymptotically unbiased and

Gaussian. Its variance vLðFÞ ¼ n21var{LtðY ;FÞ} can be estimated from a sample

y1; : : : ; yn by

v̂L ¼ n22
Xn
i¼1

l2i ð7Þ

where li ¼ Ltð yi; F̂Þ are the empirical influence values for the statistical functional t

evaluated at yi and F̂: Here li can be thought of as the derivative of t at F̂ in the direction of

a distribution putting more mass on the ith observation.

There is a close relationship with the jackknife, which can be regarded as providing a

numerical approximation to the empirical influence values. Yung and Rao (1996, 2000)

have exploited this to produce analytical approximations to jackknife variance estimators

that they call jackknife linearization variance estimators; they study theoretical properties

of their estimators under various imputation schemes and provide some numerical results.

For stratified random sampling without replacement (7) may be modified to

vL ¼
XH
h¼1

ð12 f hÞ
1

ðnh 2 1Þnh

Xnh
i¼1

l2hi ð8Þ

where lhi is the empirical influence value corresponding to the ith observation in stratum h.

We now consider the Horvitz–Thompson estimator and give formulae for its empirical

influence functions for stratified sampling in three situations of increasing complexity:

. the standard estimator (1), for which

lhi ¼ nhvhiyhi 2 vT
h yh

. the calibrated estimator (3), for which (Canty and Davison 1999)

lhi ¼ðnhvhiyhi 2 vT
h yhÞ þ XC

T
hvh 2 nhvhixChi

� �T
ĝ

þ nhvhi c2 XT
Cv

� �T
XT
CVXC

� �21
xChi

yhi 2 xC
T
hiĝ

� � ð9Þ

where vh and yh are nh £ 1 vectors of the weights and responses for the h-th stratum,

XCh is the nh £ qC matrix of calibration covariates for the h-th stratum, and ĝ ¼

XT
CVXC

� �21
XT
CVy; and

. the calibrated estimator (5) with imputation of missing responses. Let

ĝM ¼ XT
CVXC

� �21
XT
CVðI 2 ZÞŷ
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correspond to ĝ; but for those individuals with missing responses, and let liðb̂Þ be the

elements of the q £ 1 vector of influence functions for the imputation regression

coefficients, corresponding to differentiation with respect to the ith case in stratum h.

Then calculations along the lines of those in Rust and Rao (1996) or Canty and Davison

(1999) and sketched in the Appendix yield

lhi ¼ nhvhizhiyhi 2 vT
hZhyh

� �
þ XC

T
hvh 2 nhvhixChi

� �T
ĝ

þ nhvhi c2 XT
Cv

� �T
XT
CVXC

� �21
xChi

zhiyhi 2 xC
T
hiĝ

� �
þ nhvhið12 zhiÞŷhi 2 vT

h ðIh 2 ZhÞŷh
� �

þ vTðI 2 ZÞXliðb̂Þ

þ XC
T
hvh 2 nhvhixChi

� �T
ĝM

þ nhvhi c2 XT
Cv

� �T
XT
CVXC

� �21
xChi

ð12 zhiÞ~yhi 2 xC
T
hiĝM

� �
þ c2 XT

Cv
� �T

XT
CVXC

� �21
XC

T
hVhðIh 2 ZhÞXhliðb̂Þ

ð10Þ

In particular, use of a linear model fitted by least squares for deterministic imputation

yields

liðb̂Þ ¼ nhziðX
TZXÞ21xið yi 2 xTi ðX

TZXÞ21X TZyÞ; i ¼ 1; : : : ;
XH
h¼1

nh

where X is the regression matrix. When the regression coefficients vary among the

strata, then the liðb̂Þ in (10) are taken to be

liðb̂hÞ ¼ nhziðX
T
hZhXhÞ

21xi yi 2 xTi XT
hZhXh

� �21
XT
hZhyh

� �
where Xh, Zh, and yh are the covariate matrix, the indicator matrix for observed

responses, and the response vector for stratum h.

The advantages of these formulae over resampling techniques are a reduction in

computational effort and the possibility of handling massive surveys. However, such

formulae entail further assumptions whose validity needs careful investigation in

applications: that the models underlying the calibration and imputation schemes and

leading to estimators such as (3) and (5) do not introduce serious bias––if so, then (8) may

provide an inadequate idea of the uncertainty of the estimator.

5. Numerical Comparison

5.1. Simulation Study

Using a realistic simulation based on the 1998 Swiss Household Budget Survey (Renfer

2001), we consider the calibrated and imputed Horvitz–Thompson estimator of the total

expenditure on bread and cereal products, based on complete data from N ¼ 9; 275

households inH ¼ 7 strata of various sizes. Also available on each household is a set of 14
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auxiliary variables, of which 10 population margins are known. For the simulation, we

consider the N ¼ 9; 275 households as the whole population, for which we assume we

know the total expenditure. We perform stratified random sampling without replacement

and with equal inclusion probabilities of 1/8 within 6 strata, and 3/8 in the other stratum,

giving a sample size of 1332. Item nonresponse for the response variable is applied using a

uniform probability of missingness across the entire sample. On each of the 500 samples

simulated, we calculate the calibrated and imputed Horvitz–Thompson estimates, with

deterministic imputation performed using linear regression, and use resampling

techniques to obtain variances for them. The true variances were computed using

estimates from 10,000 samples from the population, with the sampling and nonresponse

schemes outlined above.

The bootstrap of the calibrated and imputed Horwitz–Thompson estimator involved the

procedure of Shao and Sitter (1996): missing responses were imputed deterministically using

a linear model fitted to the bootstrapped full respondents, and with the imputed dataset

calibrated to the weights by linear regression. The sampling fraction here is sufficiently small

to apply a standard,with-replacement, bootstrap. In order to keep the computational effort to a

reasonable level, we took R ¼ 100 bootstrap replicates, see Section 5.2. To match the

computational burden of the bootstrap, we used roughly the same number of block deletions

when applying the block jackknife with replacement. This was applied with 13 randomly

selected blocks in each stratum, leading to about 91 computations in all for each jackknife

variance estimate. Two forms of balanced repeated replication were applied, the first using a

single random split of each stratum into two halves for each replication; no Fay factor was

used but the weights for those observations included in the replicate were multiplied by a

factor of two before calibration. The second form, repeatedly grouped balanced repeated

replication, averages over variance estimates from13 such splits. The linearization estimators

were those given by (8) and (10).

The standard formulae for multiple imputation were applied, using 30 random

imputations from a linear model fitted to the complete data; for parametric imputation we

used a homoscedastic normal error model, with the values of the regression parameters

and variance changing randomly and independently according to the fitted normal

and chi-squared distributions between simulations; for nonparametric imputation

errors were simulated according to a model-based residual bootstrap (Davison and

Hinkley 1997, p. 262).

Table 1 and Figures 1 and 2 compare the performances of these variance estimation

techniques for missingness rates of 0%, 20%, 40%, and 60%. Linearization and both

multiple imputation methods give the same results when no data are missing. The block

jackknife underestimates the true variances, which are systematically overestimated by

repeatedly grouped balanced repeated replication. Ungrouped balanced repeated

replication is highly variable by comparison, in agreement with results of Rao and Shao

(1996), but grouping reduces its variance appreciably. Linearization works well for low

levels of missingness, and overall produces variances that are slightly low but quite stable.

For higher levels of missingness the bootstrap performs best. Nonparametric multiple

imputation also performs well.

Figure 2 shows how the variance estimates for the 500 simulated data sets are correlated

with the bootstrap variance estimates. Linearization, repeatedly grouped balanced
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Table 1. Relative bias and root mean squared error (%) for the different resampling plans applied to simulated data based on the 1998 Swiss Household Budget Survey, for different

proportions of missing data. The relative bias and root mean squared error are obtained by dividing the bias and root mean squared error by the target ‘true’ variance of the estimator

Proportion missing (%) Relative bias (%) Relative RMSE (%)

0 20 40 60 0 20 40 60

Block jackknife 210 211 212 215 15 15 17 19
Balanced repeated replication (BRR) 3 6 2 4 31 34 30 32
Randomly grouped BRR 8 8 8 7 14 14 14 15
Bootstrap 7 6 4 1 12 12 12 12
Linearization 20.3 22 25 29 6 7 9 13
Multiple imputation, parametric 20.3 1 22 214 6 8 9 17
Multiple imputation, nonparametric 20.3 12 16 9 6 14 18 13
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Fig. 1. Comparison of resampling estimators of variance in the presence of calibration and imputation, as a function of the proportion of missing data. Simulation based on the 1998

Swiss Household Budget Survey. The solid line shows the true variances, estimated from 10,000 simulations, and the boxplots show the variance estimates computed for 500 samples.

RG and BRR indicate repeatedly grouped and balanced repeated replication, respectively
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Fig. 2. Comparison of resampling standard errors in the presence of calibration and imputation, as a function of the proportion of missing data; from top to bottom 0%, 20%, 40%,

60% item nonresponse. The dashed lines are the ‘true’ sampling standard errors, and the dotted line shows x ¼ y. Simulation based on the 1998 Swiss Household Budget Survey. RG,

BRR and MI indicate repeatedly grouped, balanced repeated replication and multiple imputation, respectively
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repeated replication and multiple imputation variance estimates are fairly closely

correlated with bootstrap variance estimates. The added variability of the variances from

balanced repeated replication shows clearly.

Overall the bootstrap approach of Shao and Sitter (1996), the linearization method of

Section 4, and nonparametric multiple imputation seem best in terms of bias and stability.

As far as computation time is concerned, the advantage goes to linearization, which is up

to fifty times faster than the other methods included in the study.

5.2. Number of Resamples

The use of resampling entails choosing the number R of resamples. The comparisons

described in Section 5.1 were made for roughly equal computational effort, with around

R ¼ 100 replications for each method. However, they tend to overestimate the variances,

which consist of components of variation between samples and between resamples.

More explicitly, consider the bootstrap estimate of variance vB for an estimator û: As

R!1; we have vB ! s 2
BðYÞ; say, where s 2

BðYÞ is the ‘ideal’ but unattainable variance

that would be obtained from an infinite bootstrap. If we suppose that vB has approximately

a scaled x2R distribution, as would be the case in large samples, and let E* ð�Þ and var* ð�Þ

denote expectation and variance over possible bootstrap resamples, conditional on the

underlying sample Y, then E* ðvBÞ ¼ s 2
BðYÞ and var* ðvBÞ8 2s 4

BðYÞ=R: Hence varðvBÞ8

var s 2
BðYÞ

� �
þ 2E s 4

BðYÞ
� �

=R; where Eð�Þ and varð�Þ are taken with respect to the

distribution of samples Y. A similar argument should hold for other resampling variance

estimators, such as the grouped jackknife or balanced repeated replication.

Figures 1 and 2 show this variability based on R ¼ 100; but the question arises whether

the results might be different with larger R. To investigate this we performed a further

simulation without missing data, and computed the variances for a variety of values of R,

Fig. 3. Variance of bootstrap and block jackknife variance estimators as functions of the inverse number of

resamples R 21. The £ shows the estimated variance of the linearisation variance estimator across samples, and

the lines show weighted linear regression fits
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for the bootstrap and the grouped jackknife, which seem to be the most promising of the

resampling methods. The results, plotted in Figure 3, show the anticipated linear reduction

in varðvBÞ with R21: The relative advantage of the bootstrap is retained for values of

R # 400; beyond which the grouped jackknife appears less variable. For very large R, the

bootstrap variance estimator behaves similarly to the linearisation estimator, while the

grouped jackknife varies by less, coherent with the downward bias it exhibits in Figure 1.

The number of resamples used to estimate a variance in practice is typically of the order

of a few hundred, so this small study suggests that the bootstrap variance estimator is to be

preferred to the grouped jackknife, on grounds of its lower variability for given

computational effort and its lower bias.

6. Discussion

The broad conclusions of the numerical study above support those of Canty and Davison

(1999), who concluded that linearization and the bootstrap were the simplest and most

accurate methods of variance estimation in their study. They did not consider imputation,

but found similar conclusions for a variety of smooth estimators and for differences of

them between two sampling occasions. It seems reasonable to suppose that the general

results seen above would also extend to a broader context.

Both calibration and imputation entail assumptions about how missing responses are

related to known explanatory variables. It is interesting to note that the relatively simple

form of calibration and the linear imputation scheme adopted in Section 5.1 seem to work

fairly well, in the sense of producing fairly unbiased variance estimators, even when large

proportions of the data are missing. This suggests that even simple approaches to allowing

for missing data, coupled to appropriate resampling schemes, may produce reasonable

results, though it would be essential to have a clearer idea when this conclusion holds and

reliable diagnostics of its failure.

Appendix

For a linear functional tðFÞ ¼
Ð
aðuÞdFðuÞ; the definition of the influence function (6)

yields Ltð y;FÞ ¼ tðdyÞ2 tðFÞ ¼ að yÞ2
Ð
aðuÞdFðuÞ; with corresponding empirical

influence values li ¼ Ltð yi; F̂Þ ¼ að yiÞ2 n21
P

að yjÞ: The computation of the empirical

influence values for (1), (3) and (5) uses the fact that these estimators are linear or are

products of (almost) linear estimators. For example, the empirical influence function forPn
i¼1viyi ¼ n £ n21

Pn
i¼1viyi is

li ¼ nviyi 2
Xn
j¼1

vjyj

For a parameter tðFÞ determined by the estimating equationð
c{u; tðFÞ}dFðuÞ ¼ 0

for all F in a suitable space of distributions, we see on replacing F by ð12 1ÞF þ 1dy;

differentiating with respect to 1, and setting 1 ¼ 0; that the influence function Ltðv;FÞ ¼
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c{v; tðFÞ}=
Ð
2ct{u; tðFÞ}dFðuÞ; where ct represents the derivative of cð�;�Þ with

respect to its second argument. Hence the empirical influence function for b̂; a solution to

the estimating equation
Pn

j¼1cð yj; xj;bÞ ¼ 0; may be written as

li ¼ 2n21
Xn
j¼1

›cð yj; xj; b̂Þ

›bT

( )21

cð yi; xi; b̂Þ

For example, the defining equation for a least squares estimator may be written

X Tð y2 XbÞ ¼
j

X
xj yj 2 xTj b
� �

¼ 0

so c ð yi; xi;bÞ ¼ xi yi 2 xTi b
� �

; where xTi is the ith row of the regression matrix X, and so

li ¼ nðX TXÞ21xi yi 2 xTi b̂
� �

:

The derivation of empirical influence values (9) and (10) for the estimators (3) and (5) is

a messy but straightforward application of the formulae above and the rule for

differentation of a product.
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