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Simultaneous Estimation of the Mean of a Binary
Variable from a Large Number of Small Areas

Li-Chun Zhang'

We develop a frequentist method of simultaneous small area estimation under hierarchical
models. The simultaneous estimator is the best ensemble predictor under the model. It is pre-
ferable to the area-specific best predictor when the distribution of the small area parameters is
of interest as well. We provide details of application to binary data. We illustrate the proposed
methodology on register employment and unemployment data, and validate the results by the
true population values.
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1. Introduction

Small area estimation methods are often developed from the point of view of area-specific
prediction. (See Ghosh and Rao (1994) for an excellent overview.) Such methods, how-
ever, may be unsatisfactory if we are interested in the distribution of the small area
parameters as well. For instance, the between-area variation of the estimates is often found
to be much smaller than the true variation in the population, which is known as over-
shrinkage. Previously, the problem has been dealt with under the Bayesian framework
(Louis 1984; Spjgtvoll and Thomsen 1987; Lahiri 1990; Ghosh 1992). Judkins and Liu
(2000) carried out a simulation study for binary data, focusing on the estimator of
Spjgtvoll and Thomsen (1987) and a simple version of the constrained empirical Bayes
(CEB) estimator of Lahiri (1990), both of which were found to give better estimates of
the range of the small area parameters compared to the direct estimator and the empirical
Bayes (EB) estimator.

In this article we develop a method of simultaneous estimation from the frequentist
perspective, which recognizes the finiteness of the population that we are dealing with.
More explicitly, let 0, be the parameter of interest from area i, for i =1,..., A. The
collection of all the 6;’s, denoted by {0;}, forms an ensemble (Judkins and Liu 2000).
Now that the ensemble is of a finite size, one of them must have the smallest value among
all the 6,’s, another must have the second smallest value, and so on. This is a fact that we
may condition on in small area estimation. Since the rank of a small area parameter is
defined together with the ranks of all the other small area parameters, the best ensemble
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predictor of {6;} must be derived simultaneously. Hence the term simultaneous estimation.
We explain the details of the proposed methodology in Section 3.

But first, we review some area-specific prediction methods in Section 2. We start with
the model of Fay and Herriot (1979). We show that the best linear unbiased predictor
(BLUP) entails loss of between-area variation, just like the Bayes estimator (Louis
1984). Moreover, the Fay-Herriot model resembles the EB approach in that we assume
only the first two moments of 6;, without specifying its distribution. This is inadequate
if the interested distribution of §; is nonnormal. We turn next to two-level hierarchical
models. At the lower level, we have a distribution of 6;; at the upper level, we have a con-
ditional distribution of the data given 0;,. We review the beta-binomial model for binary
data, which will be used in the numerical study in Section 4. While it removes some of
the difficulties of the Fay-Herriot model, we show that the area-specific best predictor
under the beta-binomial model also suffers from over-shrinkage.

Finally, we apply the method of simultaneous estimation to the register employment and
unemployment data of Norway. We use the register variables instead of the Labor Force
Survey (LFS) variables for this study because it allows us to validate the results by the true
values in the population. Comparisons will be made with the direct estimator, the frequen-
tist area-specific predictors under both the Fay-Herriot model and the beta-binomial
model, the EB estimator, and the Lahiri CEB estimator.

2. Some Area-specific Prediction Methods

2.1. Best linear unbiased predictor

Denote by 0; the mean of a binary variable from small area i, fori = 1,..., A. Let 5,- be a
direct estimator such that £ D(éi | 6;) = 0;, where Ep, denotes expectation with respect to the
sampling design. Direct Fay-Herriot modeling gives us

0[:M+V[ and aizei-}-ei
where ; is the area-level random effect with zero mean and variance o”, and ¢, is the

sampling error with zero mean and variance y; = Varp(e; | 6;). When both ; and ¢” are
known, the best linear unbiased predictor (BLUP) is given by

0; = (1 — )i+ v,0; where y; = o*/(y; + 0°)
and g is the generalized least square (GLS) estimate of u. In practice, o’ is usually
unknown. Let 6% be a suitable estimator of ¢°. The plug-in BLUP, where 0%, is replaced
by 67, is referred to as the empirical best linear unbiased predictor (EBLUP).

Both the direct estimator and the BLUP are derived for area-specific prediction. Neither

of them leads to the right amount of between-area variation. This is easy to show in the
case of Y; = ¢, where we have v; = v and

Vary, p(0;) = Ey[Varp(@; 10,1 + Vary[Ep9;10)] = ¢ + o* = a*/y

where E),; and Var,, denote expectation and variance with respect to the model. Thus,

A
_ ~ = A ~ = ~
Evp |(A =17 ) (6;= 0| = - Vany p(0; — 0) = Vary p(6) = 0%y

i=1
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where 6 = > éi/A is the mean of the direct estimators, whereas

A
B A a A = _
Eyp|(A=1 : Z 0 —6)*| = 72ﬁvarM,D(0i —0) =7 Vary p(9;) = yo®

i=1

where § = > 91-/A is the mean of the BLUPs. In other words, while the direct estimators
are over-dispersed by a factor of 1/, the BLUPs are under-dispersed by a factor of y. The
results are similar to those under the Bayesian framework (Louis 1984).

Some additional difficulties of the EBLUP approach are worth noticing. Firstly,
only the first two moments of 6, are specified in the Fay-Herriot model. When we
are interested in estimating the distribution of 6;, such a model is inadequate if the
distribution of 6; is quite different from the normal distribution. This is for instance
the case when 6; is the small area unemployment rate, which is close to 0 and has
a skewed distribution.

Secondly, not only o but also ¥, is usually unknown and needs to be estimated. Denote
by n; the sample size in area i. For binary data, let y;; € {0, 1} be the value of the jth unit,
forj =1,...,n;.Lety;, = Z;":I yijand y; = y; /n;. Under some noninformative sampling
design, small n; implies a large probability of obtaining a degenerate subsample where
v; = 0 or n;, especially if 6; is close to 0 or 1. In such cases, the direct estimate of ; is
0, so the EBLUP is the same as ?),», which can be very misleading. While this can be
avoided by using some biased, ad hoc smooth estimator of y;, no theoretically sound
solution within the EBLUP approach seems available at the moment.

2.2.  Best predictor under beta-binomial model

Some of the difficulties of the EBLUP can be removed by means of hierarchical modeling.
For binary data, we assume that Y; has the Binomial(n;, ;) distribution. There are many
possibilities for the distribution of §;. The logit-normal distribution and the beta distribu-
tion are two of the most commonly used. For the theoretical discussion below and the
numerical study later in this article, we will use the beta-binomial model because it
is analytically more tractable. However, we notice that the method of simultaneous
estimation that we develop is applicable to any hierarchical model of choice.
The beta-binomial model is given as

0; ~ Beta(y, w) and Y; | 6; ~ Binomial(n;, 6;)

The direct estimator is 6; = y; with sampling variance y; = 0;(1 — 0,)/n;. If the sample
division of (n;, y;) is sufficient so that, within each area, we have approximately simple
random sampling, then the beta-binomial model can be considered to contain both model
and design variation. Otherwise, it is strictly a modeling approach.

The joint distribution of (y;, ;) is given as

f(yl-', 01) = { <nl )0[‘1(1 _ ei)n,-—)'i. } {01]/—1(1 _ Hi)“_'/B(V, 0))}

1.

where B(v, w) is the beta function. We obtain the marginal distribution of y; by integrating
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out 0;. The log-likelihood, denoted by /(v, w) is then given by
I(v,0) =Y logB(y; +v,n; — y; + @) — A - log B(v, )

_Z lo P(Yi.+V)+10 P(ni_yi.+w)_10 L(ni +v+w)
T2 T T T+ w

yi—l ni—yi—1 ni—1
:Z{Zlog(h—i—v)—i— Z log(h—i-co)—Zlog(h—i-v-l-w)}
i Lh=0 h=0 h=0

where I'( - ) is the gamma function, and any sum with an upper limit of —1 is set to be zero.
We obtain the maximum likelihood estimate (MLE), i.e., (», &), by the Newton-Raphson
method, and its covariance matrix by the inverse of the observed information matrix.

The best predictor of §; under the beta-binomial model is the conditional expectation of
0, given y; . The beta distribution being the conjugate prior of the binomial distribution, the
conditional distribution of §; given y; is again a beta distribution. We have

yi v
n+vto
Thus, skewness of §; and degenerate subsamples (#;, y; ) are handled at the same time. The
best predictor can also be written as a weighted sum between the overall mean and the
direct estimator. For simplicity, denote by E and Var the model expectation and variance.
Let u = E@,) = v/(v + w) and 7 = 1/(v + w). We have

pi=U—=vdu+v: where y; = n;/(1/7 +n;)

0;1y; ~ Beta(y;, +»,n;, —y; + w) and pi =E@®;1y) =

Since o = Var(0,) = u(1 — w)7/(7 + 1), we have, for large v + w
e+ D)=1/1+rv+w)=1/({r+w) = r=0° = u(l —wr
and by substitution
vi = 0’l(¢;i + %) where ¢; = u(l — p)in;

It is now easy to show that, if n; = n, then ¢; = ¢, and ; = v, and

A . -
E{A-1D""Y "0 - 9)21 = %Var(éi —0) = Var(d;) = E(Y;) + Var(6,) = o*/

i=1

where 0 = ) iéi/A is the mean of the direct estimators, whereas
_ B 4 )
—1 2| _ 2 A 5o m A2 DY e 2
E{A-1) Z(pi—p)] =" Var(, — ) = v’ Var®) ~ vo

i=1

where p = Y _; pi/A is the mean of the best predictors. In other words, similar to the results
under the Fay-Herriot model, the direct estimators are over-dispersed by a factor of 1/y,
whereas the best predictors are under-dispersed by a factor of v.

3. Simultaneous Small Area Estimation

3.1. Derivation of estimates

Simultaneous estimation consists of two steps. First, the best ensemble predictor is derived
regardless of the specific areas. Next, instead of using the area-specific best predictors
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themselves, these are ranked, and the estimates of the ranks are used to match the best
ensemble predictor with the small areas. In this way, the simultaneous estimates recover
the amount of under-dispersion in the area-specific predictors.

Denote by F(x;, 0;; £) some hierarchical model, where x; denotes the data from area i and
¢ contains the parameters of the model. Let F(0;; £) be the marginal distribution of 6;. Let é
be the MLE of £. Let 6;) be the ith order statistic of {6;}, where 0()) < 0y < -+ < 0.
Let the expectation of ;) and its estimator be, respectively,

ni=E@;:§) and @ = E0;)) M

Since 7, is the best predictor of 6,), and 7, is the best predictor of 6,5, and so on, {7} is the
best ensemble predictor of {6} under the distribution F(6;; £), and {4;} is the estimated
best ensemble predictor. We notice that, when the number of small areas is large, i.e.,
as A — oo, 7; is approximately given by

i =E@q) §) =F '(e3§)  where oy = il(A+ 1)

(Balakrsihnan and Rao 1998), and F 71(0:; £) is the a-quantile of F(0;; £).
For each i =1,...,A, »; is derived with respect to the conditional distribution

F(6j; & | rank(8)) = i) = F(8;): £)

It is not area-specific if we do not know which area is associated with 6;,, which is the case
in most applications. Since the rank of a small area parameter is defined together with the
parameters of all the other areas, the best ensemble predictor {%;} is derived simulta-
neously. In contrast, the area-specific best predictor of §; is derived with respect to another
conditional distribution, i.e., the distribution of 6; given x;, denoted by F(6;; £ | x;). The
area-specific best predictors are thus derived independently of each other. In the extreme
case where there are no data at all, the area-specific best predictor, given as u = E(6;; £), is
identical for all the small areas, which is completely misleading as an ensemble estimator
of {0,}.

It remains to match {#;} with the small areas. This is straightforward if the ranks of the
small areas are known. Otherwise, let 9,- = E(Hi;é | x;) be the estimated area-specific
predictor of 6;. We use the rank of 9,- among {9,-} as an estimate of the rank of §; among
{60,}. The simultaneous estimate of 0;, denoted by @;, is then given by

0, =4, where r; = rank(8;) @

The simultaneous estimates have therefore the same order as the estimated area-specific
predictors. In the special case of ties among the estimated area-specific predictors, we
assign the corresponding #;’s by random permutation.

Consider now the properties of §; as an area-specific predictor. Asymptotically, let
the sample sizes tend to infinity in all the areas. Assume that the MLE £ is a consistent
estimator of &, and the area-specific predictor 9l~ is consistent for ;. It follows that
rank(@,-) is a consistent estimator of the true rank of 6;, denoted by d; = rank(0;), and
the simultaneous estimator 6, is a consistent estimator of nq.- While 4 is not equal to
0;, the difference between the two tends to zero in probability as A — oo, because the
variance of 6, tends to zero in this case (Balakrishnan and Rao 1998).
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3.2.  Derivation of predictive intervals

Given the data x;, we may use the quantiles of F' (05;§ | x;) to estimate the quantiles of
F(0;; £ ] x;), and then derive the predictive intervals of 6; conditional on x;. It is possible
to add an adjustment similar to that in (2).

Consider the following finite population bootstrap:

1. obtain {6} where 6 ~ F(6;; £ | x,) is independently generated for i = 1,..., A;
2. set {8V} where 6" = 7, and r; is the rank of 6; among {6;"} and 4, by (1).

Let M be the number of independent repetitions of Steps 1-2. We use the sample
a-quantile of {051), ey GEM)} as the bootstrap estimate of the a-quantile of ;.

Step 2 of the bootstrap above adjusts the ensemble property of the bootstrap replicates
{B(Ik) s GX‘)} for k =1,..., M, forcing their order statistics to be equal to {#,}. Its effect
on the area-specific predictive intervals is unclear, however. Consider again the extreme
case where there are no data at all but the distribution F(6;; £) is known. Without the
adjustment, all the areas have the same bootstrap distribution F(6;; £). With the adjustment,
a bootstrap replicate of 6; takes the value »; with the probability P[rank(6;) = j; £], whichis
simply a discrete version of F(0;; £). The predictive intervals will not differ much one way
or the other if the number of small areas is large. In a given situation, therefore, we should
derive the predictive intervals both with and without the finite population adjustment, and
compare the results.

It is worth noticing that the predictive interval of §; typically is asymmetric around the
simultaneous estimate ;. For areas with high estimated ranks, the interval is longer on
the lower side of 6i, whereas for areas with low estimated ranks, the interval is longer
on the upper side of 6,. Take for instance the area with the highest estimated rank, say,
0; = 9. Since there are only A small areas in the population, the actual rank of 6; can
possibly be lower than A, but not higher. Given that the largest small area parameter in
the population is about 7,, the predictive interval of §; must be much longer on the lower
side of 6;. Again, this is a fact determined by the finiteness of the population.

4. Estimation of Municipality Register Employment and Unemployment Rates

4.1. Data and model

We consider the estimation of municipality employment and unemployment rates, based
on the administrative register data in Norway. We obtain the sample by linking the
registers to the LFS sample at the individual level, which is possible in several countries
including Norway. For simplicity, we define the employment rate as the ratio between the
employment and population totals, and likewise for the unemployment rate. In this study
we have used the Norwegian LFS sample of the 4th Quarter in 1997 (with 21,676
individuals). Only 3 out of the total 435 municipalities are not represented in the sample
and these will be left out of the analysis, so that A = 432 both in the sample and in the
population.

There is a problem of nonsampling errors, when we compare the register population
rates with the various estimates. For instance, nonresponse is known to depend on the
LFS employment and unemployment status (Thomsen and Zhang 2001). To concentrate
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Table 1.  Quantiles of the municipality register employment and unemployment rates: (I) the population values,
and (1I) the beta distribution fitted to the population values

Municipality register employment rate
Quantile e (0025 0.05 0.10 0.16 025 075 084 090 09  0.975

@ 0.636 0.649 0.663 0.677 0.692 0.751 0.769 0.782 0.800 0.813
1)) 0.628 0.644 0.661 0.676 0.691 0.753 0.767 0.779 0.793 0.805

Municipality register unemployment rate
Quantile 0025 0.05 0.10 0.16 025 075 0.84 090 095 0975

@ 0.007 0.008 0.010 0.012 0.015 0.026 0.029 0.032 0.039 0.047
{n 0.007 0.008 0.010 0.012 0.014 0.027 0.030 0.034 0.039 0.043

on the issue at hand, we adjust the population rates as follows. Let 0,-R be the true rate of
interest in the ith municipality. Let (n;, y; ) be the corresponding sample. We put

gizaf—zi:(?f/fﬁ (Zy>/<zn>

While this removes most of the bias due to the nonsampling errors, it does not affect the
finite population distribution of interest except for a shift in location. Notice that we do not
adjust the sample values because of problems with the degenerate subsamples.

As an exploratory analysis we fit the beta distribution to {0;}. Table 1 gives the true
quantiles of 6; compared to the ones derived from the fitted beta distributions. For the
employment rates, the beta distribution is slightly long-tailed at the lower end and slightly
short-tailed at the upper end, whereas for the unemployment rates the beta distribution fits
the actual population almost exactly. We conclude that the beta distribution is a reasonable
model for the population rates which we are considering.

4.2. Estimates

We compare the simultaneous estimator under the beta-binomial model to the direct esti-
mator, the EBLUP under the Fay-Herriot model, the EB estimator, the Lahiri CEB estima-
tor, and the estimated area-specific best predictor under the beta-binomial model. We use
the averaged squared error (ASE) to measure how an estimator works for area-specific
prediction, and we use the averaged squared distributional error (ASDE) to measure
how an estimator performs as an ensemble estimator. For the direct estimator, we have

A A

ASE@®,) = A™! Z @, —6,)*> and  ASDE®,)=A"" Z Oy — 04’

i=1 i=1
where E)(,-) is the ith order statistic of {é(,»)} and similarly for the other estimators.

The root ASEs and ASDEs of all the estimators are given in Table 2. The direct estima-
tor is clearly the worst method. The EBLUP is so sensitive towards degenerate subsamples
that it gives very misleading results both for employment and unemployment rates. The
area-specific best predictor relates to the simultaneous estimator in very much the same
way as the EB estimator relates to the Lahiri CEB estimator. The area-specific best
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Table 2. Root ASE and ASDE of the estimated municipality register employment and unemployment rates: (A)
the direct estimator, (B) the EBLUP, (C) the EB estimator, (D) the Lahiri CEB estimator, (E) the area-specific
best predictor under the beta-binomial model, and (F) the simultaneous estimator under the beta-binomial model

Municipality register employment rate

Estimator A B C D E F
Root ASE 0.139 0.105 0.042 0.051 0.042 0.050
Root ASDE 0.104 0.071 0.021 0.006 0.022 0.005

Municipality register unemployment rate

Estimator A B C D E F

Root ASE 0.0340 0.0191 0.0095 0.0094 0.0093 0.0098
Root ASDE 0.0269 0.0170 0.0090 0.0065 0.0081 0.0039

predictor and the EB estimator are only better for area-specific prediction of register
employment rates. The simultaneous estimator and the Lahiri CEB estimator are much
better ensemble estimators for both employment and unemployment rates. Finally, the
simultaneous estimator is better than the Lahiri CEB estimator for register unemployment
rates. Notice that we have used a simple version of the Lahiri CEB estimator, which was
implemented for binary data by Judkins and Liu (2000). Although it does not exactly
satisfy the ‘‘posterior linearity’’ condition for the Lahiri CEB estimator, it worked fairly
well in the simulation study of Judkins and Liu (2000).

Table 3 gives the quantiles of the estimated municipality register employment and
unemployment rates, which may be compared to the true quantiles given in Table 2. As

Table 3.  Quantiles of the estimated municipality register employment and unemployment rates: (A) the direct
estimator, (B) the EBLUP, (C) the EB estimator, (D) the Lahiri CEB estimator, (E) the area-specific best predic-
tor under the beta-binomial model, and (F) the simultaneous estimator under the beta-binomial model

Municipality register employment rate
Quantile 0025 0.05 0.10 0.16 025 075 0.84 090 095 0975

0.375 0.500 0.556 0.600 0.641 0.800 0.833 0.864 1.000 1.000
0.613 0.642 0.658 0.676 0.689 0.773 0.794 0.823 1.000 1.000
0.669 0.678 0.688 0.696 0.702 0.734 0.743 0.749 0.759 0.766
0.621 0.640 0.658 0.675 0.686 0.748 0.767 0.779 0.797 0.812
0.670 0.681 0.690 0.698 0.703 0.733 0.742 0.748 0.757 0.764
0.623 0.639 0.657 0.672 0.688 0.751 0.766 0.778 0.792 0.803

MmO AW >

Municipality register unemployment rate
Quantile (0025 005 0.10 0.16 025 075 084 090 095 0.975

0.000 0.000 0.000 0.000 0.000 0.027 0.039 0.056 0.083 0.100
0.000 0.000 0.000 0.000 0.000 0.010 0.011 0.014 0.016 0.020
0.019 0.020 0.020 0.020 0.020 0.021 0.021 0.021 0.021 0.022
0.015 0.016 0.018 0.018 0.019 0.022 0.023 0.024 0.026 0.028
0.017 0.018 0.019 0.019 0.019 0.021 0.021 0.022 0.023 0.024
0.010 0.011 0.013 0.014 0.016 0.024 0.026 0.028 0.031 0.033

Mmoo QW >
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was shown in Section 2, the direct estimator leads to over-dispersion, whereas the area-
specific best predictors lead to under-dispersion. The strange behavior of the EBLUP is
due to its sensitivity towards degenerate subsamples, where the EBLUPs are misleadingly
set to be the direct estimates. Both the Lahiri CEB estimator and the simultaneous estima-
tor give good estimates of the quantiles of the register employment rates. However, both
are seen to under-estimate the between-area variation of the register unemployment rates.
Since the exploratory analysis shows that the beta-binomial model is appropriate for the
unemployment rates, we believe that the problem is caused by the extremely large number
of degenerate subsamples, i.e., in 260 out of the 432 municipalities. In comparison, there
are only 30 municipalities with degenerate subsamples in the case of employment.

4.3. Predictive intervals

Under the beta-binomial model, we have 6; ~ Beta(y; + »,n; — y; + w) conditional on
(n;, y;). We first obtain the estimated quantiles of this beta distribution where (v, w) are
replaced by the MLE. Next, we derive the quantiles using the finite population bootstrap
method described in Section 3. Finally, we calculate the coverage levels of these quantiles.
More explicitly, denote by 9,-(01) the a-quantile of 6; under the estimated conditional beta
distribution, we derive its coverage level as

At Z Ty <o) where Iy _ = 1if 0; < f;(a) and 0 otherwise.
L

The approach for the finite population bootstrap a-quantiles is similar.

The coverage levels of the estimated quantiles are given in Table 4. There is little dif-
ference between the two methods. The finite population adjustment has no effect on the
predictive intervals in the present case. The estimated quantiles attain almost the nominal
coverage levels for the employment rates. The coverage levels are not satisfactory for the
unemployment rates. This is due to the under-estimation of the between-area variation of
the municipality unemployment rates, as reported in Table 3.

Finally, Figure 1 plots the true municipality register employment rates in the
population, together with the estimated area-specific best predictors and the simultaneous
estimates under the beta-binomial model, and the two-sided 90% predictive intervals. The

Table 4. Coverage level of the estimated quantiles of municipality register employment and unemployment
rates: (I) the conditional beta distribution, (II) the finite population bootstrap (with 2200 bootstrap samples)

Municipality register employment rate
Quantile (025 0.05 0.10 0.16 025 075 0.84 090 095 0.975

@ 0.019 0.053 0.102 0.153 0.227 0.729 0.822 0.880 0.928 0.961
1)) 0.021 0.051 0.100 0.157 0.227 0.729 0.815 0.877 0.924 0.958

Municipality register unemployment rate
Quantile e (0025 0.05 0.10 0.16 025 075 084 090 095 0.975

@ 0.090 0.130 0.178 0.261 0.301 0.657 0.750 0.813 0.884 0.912
1)) 0.093 0.130 0.183 0.243 0.299 0.660 0.755 0.810 0.882 0.907
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Figure 1. Two-sided 90% predictive intervals (dashed) and the population municipality register employment
rates (square points): sorted in increasing order of the simultaneous estimates (solid line) and the area-specific
best predictors (dotted line) under the beta-binomial model

simultaneous estimator is clearly the better ensemble estimator in terms of the range, the
dispersion, and the quantiles, etc. Notice that the predictive intervals are much more
asymmetric about the simultaneous estimates than the area-specific predictors.

5. Summary

We showed, in theory as well as by numerical example, that the area-specific best predic-
tor entails loss of between-area variation of the small area parameters. We derived the
simultaneous estimator as the best ensemble predictor under the assumed model. We
illustrated the proposed method on binary data, and validated the results using the true
population values. The numerical study has revealed a problem, where a large number
of degenerate subsamples caused under-estimation of the between-area variation of the
unemployment rates, even though the beta-binomial model was appropriate in that case.
Given that the sample size can be quite small in at least some of the areas, degenerate sub-
samples seem unavoidable for categorical data, especially if the probabilities of some of
the categories are close to O or 1. It is therefore a problem, which needs to be studied in
more detail in the future. In addition, we plan to generalize the simultaneous estimation to
situations where the survey variable is associated with known covariates.
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